Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 410981, 17 pages
http://dx.doi.org/10.1155/2014/410981

Research Article

The Cauchy Problem for a Dissipative Periodic 2-Component

Degasperis-Procesi System

Sen Ming,l Han Yang,1 and Ls Yong2

"' School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
? Department of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Correspondence should be addressed to Han Yang; hanyang95@263.net

Received 28 March 2014; Accepted 16 June 2014; Published 23 July 2014

Academic Editor: Sazzad Hossien Chowdhury

Copyright © 2014 Sen Ming et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dissipative periodic 2-component Degasperis-Procesi system is investigated. A local well-posedness for the system in Besov
space is established by using the Littlewood-Paley theory and a priori estimates for the solutions of transport equation. The wave-
breaking criterions for strong solutions to the system with certain initial data are derived.

1. Introduction

We consider the following dissipative periodic 2-component
Degasperis-Procesi system:

Uy — Uy + dun, + Ay (U — 1y, ) + cppy = Uiy, + uu

XXX

t>0, x€8,

prtup +2u,p+Ap=0, t>0, x€8S,

u(t,x)=u(t,x+1), pt,x)=p(t,x+1),

t>0, x€8,

u(0,x) =uy(x), pO,x)=py(x), x€8,

@

where A and A, are nonnegative constants, ¢ € R, (1, p,) €
B;,T(S) X B;rl(S) with s > max(3/2,1+ 1/p),and S = R/Z
denotes the unit circle.

In system (1), if A, = p = 0, we get the classical
Degasperis-Procesi equation [1]

Uy — Uy +4uu, =3u,u,, +uu,,.,, (2)

where u(t, x) represents the fluid velocity at time ¢ in x
direction (or equivalently the height of water’s free surface
above a flat bottom). The nonlinear convection term wuu,

causes the steepening of the wave form. The nonlinear
dispersion effect term 3u, u,, + uu,,, makes the wave form
spread.

Equation (2) has attracted many researchers to discover
its dynamics properties [2-15]. For example, Degasperis et al.
[2] proved the formal integrability by constructing a Lax pair.
They showed that (2) has bi-Hamiltonian structure with an
infinite sequence of conserved quantities and admits exact
peakon solutions which are analogous to the Camassa-Holm
peakons. The asymptotic accuracy of (2) is the same as that
of Camassa-Holm equation. Dullin et al. [3] showed that
the Degasperis-Procesi equation can be derived from the
shallow water elevation equation by an appropriate Kodama
transformation. Lin and Liu [16] proved the stability of
peakons for (2) under certain assumptions. In [17], Yin
proved the local well-posedness for (2) with initial data u, €
H*(R) (s > 3/2) and also derived the precise blow-up
scenarios for the solutions. The global existence of strong
solutions and global weak solutions to (2) are studied in [18].
Escher and Kolev [4] and Escher and Seiler [5] showed that
the Degasperis-Procesi equation can be reformulated as a
nonmetric Euler equation on the diffeomorphism group of
the circle. Vakhnenko and Parkes [7] derived periodic and
solitary wave solutions to (2). Lundmark and Szmigielski
[8] investigated multipeakon solutions to (2). The shock
wave solutions to (2) were obtained in [9]. Although the
Degasperis-Procesi equation is similar to the Camassa-Holm
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equation in many aspects, especially in the structure of equa-
tion, there are some differences between the two equations.
One of the famous features of Degasperis-Procesi equation is
that it not only has peakon solutions u(t, x) = ce ! with
¢ > 0 [2] and periodic peakon solutions [18] but also has
shock peakons [9] and periodic shock waves [19].

In general, it is difficult to avoid the energy dissipation
mechanisms in a real world. Thus different types of solutions
for the dissipative Degasperis-Procesi equation have been
investigated. For example, Guo et al. [20] studied the dissi-
pative Degasperis-Procesi equation

Uy — Uy +Auu, + A(u—u,) =3uu,, +uu,., (3)
where A(u — u,,) (A > 0) is the dissipative term. They
obtained the global existence of weak solutions. Wu and Yin
[21] established blow-up solutions and analyzed the decay
of solutions to (3). In [22], the authors studied the long
time behavior of solutions to (3). Guo [23] established the
local well-posedness, blow-up scenario, global existence of
solutions, and persistence properties for strong solutions to
(3).

On the other hand, many researchers have stud-
ied the integrable multicomponent generalizations of the
Degasperis-Procesi equation [24-29]. For example, Yan and
Yin [28] investigated the 2-component Degasperis-Procesi
system

Up = Uy t+ 4uux +cpp, = 3uxuxx + Uty

t>0, xeR,
prtup, +2u,p=0, t>0, x€R, (4)
u(0,x) =uy(x), xe€R,
p(0,x)=py(x), x€eR,

where ¢ € R. They established the local well-posedness for
system (4) in Besov space B;,r(R) X B;’r1 (R) with s > max(1+
1/p,3/2) and also derived the precise blow-up scenarios for
strong solutions in Sobolev space H'(R) x H*'(R) with
s > 3/2. Zhou et al. [27] investigated the traveling wave
solutions of the 2-component Degasperis-Procesi system. Jin
and Guo [25] established the local well-posedness, blow-up
criterions and the persistence properties of strong solutions
to the system in H'(R) x H*(R) with s > 5/2.

Recently, alarge amount of literature was devoted to the 2-
component Camassa-Holm system [30-39]. For example, Hu
[40] studied the dissipative periodic 2-component Camassa-
Holm system

Up = Uyyy T+ 3uux +A (u - uxx) T PPx = 2uxuxx T Ul

t>0, xe€8§,
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ptup, +up+Ap=0, t>0, x€8§,

u(t,x)=u(t,x+1), pt,x)=p(t,x+1),

t>0, x€8,

u(0,x) =uy(x), p0,x)=p,(x), x€8,

(5)

where A > 0. The author not only established the local well-
posedness for system (5) in Besov space B;’T(S) X B;}l(S)
with s > max(1 + 1/p,3/2) but also presented global
existence of solutions and the exact blow-up scenarios of
strong solutions in Sobolev space H*(S) x HY(S) with s >
3/2. It was shown in [41] that the dissipative Camassa-Holm,
Degasperis-Procesi, Hunter-Saxton, and Novikov equations
can be reduced to their nondissipative versions by means of
an exponentially time dependent scaling.

Motivated by the work in [20, 28, 32, 40-43], we study the
dissipative periodic 2-component Degasperis-Procesi system
(1). We note that the Cauchy problem of system (1) in Besov
space has not been discussed yet. One of the difficulties is that
we can not obtain the estimates for j[R(u2 +u’ + p*)dx, which
is a conserved quantity playing a key role in studying the
blow-up phenomenon of the 2-component Camassa-Holm
system [32, 33]. However, this difficulty has been dealt with
by establishing the estimates for [|u(t)[|;«, where u is the first
component of solution (1, p) to system (1). We state our main
task with two aspects. Firstly, we establish the local well-
posedness for system (1) in Besov space. Secondly, we present
the precise blow-up criterions for strong solutions.

We rewrite system (1) as

3
u, +uu, = P(D) <Eu2 + §p2> - Ay,

t>0, x€8,
prtup, =-2u,p—Ap, t>0, x€S, ©6)
u(t,x)=u(t,x+1), pt,x)=p(t,x+1),
t>0, x€8,
u(0,x) =uy(x), pO,x)=py(x), x€8S,

where the operator P(D) = —0,.(1 - Bi)_l. We write the space

S
ES, (T)

C(10.T1: B, (5)) nC' (0, T1: B (),
1 <r< oo,

L* ([0,T];B;, ., (S)) N Lip ([0, T]; B, 1, (S)),

,00

r = 00,

7)

withT > 0,s € R, p € [1,00], 7 € [1,00].
The main results of this paper are presented as follows.
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Theorem 1. Let 1 < p,r < 00, s > max(3/2,1 + 1/p), and
(ug> o) € B3, (S) x B;}l(S). Then there exists a time T > 0
such that the Cauchy problem (1) has a unique solution (u, p) €
E‘SW(T) X E;:(T). The map (uy, py) — (u, p) is continuous
from a neilghborhood of (uo,pO,) in B;)r(S) X B;rll(S) into
C([0,T); B, (S)NC' ([0, T]; B, ;' (S)) x C([0, T]; B, ;1 () n
c([o, T];B;LZ(S))for every s < swhenr = coands' =s

NG
whereas r < 00.

Theorem 2. Let (u,, py) € H(S) x HY(S) with s > 3/2 and
T < oo is the maximal existence time of corresponding solution
(u, p) to system (1). Then

T
j 01 (7)]|jeoddT = 0. (8)
0

Theorem 3. Let (uy, p,) € H(S) x H(S) with s > 3/2 and
T < oo is the maximal existence time of corresponding solution
(u, p) to system (1). Then the solution (u, p) blows up in finite
time if and only if

hmtgljfwlcrelgux (t, x) = —00. 9)

Theorem 4. Let ¢ > 0 in system (1) and (uy, p,) € H(S) x
HY(S) with s > 5/2. Assume that u, is odd, p, is even,
Uy (0) < —A,, and py(0) = 0. Then the corresponding solution
(u, p) to system (1) blows up in finite time. More precisely, there
exists T € (0,-1/(1 — 6)(14,,(0) + A,/2)] such that

lim inf u, (£,0) = —oo.
1mtg1T_ux( ) =00 (10)

In addition, if py,(x,) # 0 with some x, € S satisfying
Ug(xg) = iInf csu,(x), then there exists T, € (0,-1/(1 -
0) (1, (0) + A, /2)] such that

(i) limsup, _, -sup, g p(t, x) = +00 if po,(xg) > 0;

(i) liminf,  ;-inf,cgp,.(t,x) = =00 if py,(xg) < 0,
where 8 € (0, 1) such that —\/g[qu(O) +A,/2] = Ay/2.

Theorem 5. Let ¢ > 0 in system (1) and (uy, p,) € H*(S) x
HY(S) with s > 5/2. Assume that u, and p, are odd, u,,(0) <
—A,. Then the corresponding solution (u, p) to system (1) blows
up in finite time. More precisely, there exists T, € (0,—1/(1 —
0) (1, (0) + A, /2)] such that

lim inf u, (t,0) = —co. a1

t—>T,

In addition, the inequalities hold:

(i) p(£,0) > py, (0)e Chox @V if 5 (0) > 0;
(i) po(t,0) < o, (0)e CHox@E g 5 (0) < 0.
The remainder of this paper is organized as follows. In

Section 2, several properties of Besov space and a priori
estimates for solutions of transport equation are reviewed.

Section 3 is devoted to the proof of Theorem 1. The proofs of
Theorems 2, 3, 4, and 5 are presented in Section 4.

Notation. We denote the norm in Lebesgue space L, 1 < p <
00, by | - lI;», the norm in Sobolev space H*,s € R, by | - | >
and the norm in Besov space B‘SDJ, s € R, by|- IIB;”. Since
functions in all the spaces are over S, for simplicity, we drop S
in our notations if there is no ambiguity. We denote a+ = a+e,
where & > 0 is a sufficiently small number.

2. Preliminary

This section is concerned with some basic facts in periodic
Besov space and the theory of transport equation. One may
check [33, 44-49] for more details.

Proposition 6 (see [44, 46]). There exists a couple of smooth
functions (x, ¢) valued in [0, 1], such that y is supported in the
ball B = {& € R | |&| < 4/3}, and ¢ is supported in the ring
C={eR|3/4<|& < 8/3}. Moreover,

XE©+ Y e(27%) =1,

q€eN

V¢ e R,

supp (27) Nsuppp (279 =0, if |g—q =2, (12)

suppy () Nsuppep (271) =0, if g>1.

Then, for all u € S'(S), we define the nonhomogeneous dyadic
blocks as follows:

Agu=0, if g<-2

A=Y x@aE) e ™,
1 zzi 13)

Agu= Z‘P(Z_qf)ﬁ(f) 2 if q20.
tez

Thus u = Y., Agu, which is called the nonhomogeneous
Littlewood-Paley decomposition of u.

Proposition 7 (see [44, 46]). Lets € R, 1 < p,r < oo.
The nonhomogeneous periodic Besov space B;)r(S) is defined

by B;,r(g) = {f € S’(S) | "f”B;r(S) < +OO}, Where

1/r
2jrs A f
“f"B;J(S) = <j=zl ” '

Js:—p12]s"AJ‘f"LP’

r
N r < 00,
L (14)

r = 00.
Moreover, the low frequency cut-off S, is defined as S;u =
ZZ;I_1 A puforallg € N.

Proposition 8 (see [44, 49]). Lets € R, 1 < p, 7, py, Py 1115
< 00; then consider the following.

(1) Density: C° is dense in B, . < 1 < p,r < co.
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(2) Embsezddmg. BSW1
. By, — By,

s—n(1/p;—=1/p,) .
— By, b, ifpy < pp1y <

,, is locally compact if s, < s,.

(3) Algebraic properties: for all s > 0, B, N L™ is an
algebra. B, is an algebra & B, — L% & s >
n/p ors>n/p and r = 1.

(4) Complex interpolation: consider

“f' 951+(1 0)s, < C”f 51 527’
(15)
Vf e le nBj;,, 6 ¢e0,1].
(5) Fatou’s Lemma: if (u,,) ,en is bounded in B;’r andu, —
uinS'(S), thenu € B;,r and

ol < (16)

(6) I-D Morse-type estimates.

(i) Fors > 0,

5, <C( N fllals ). a7

(ii) Fors, < 1/p,s, > (1/p) (s, = 1/pifr = 1), and

s;+8, >0, then

| /gl < ClLfls

51

5 (18)

(iii) In Sobolev space H*

<c(lf

= B;,, for s > 0, we have

A P A

Gloe + w)- (19

1o

Hs!

(7) The lifting property: let u € S'(S) and « € R; then
u € B, if and only if

> ) aE)e™ e By (20)

EeZ,+0

Lemma 9 (see [46]). Let1 < p, v < 00, s > —min(1/p,1 -
1/p). Assume f, € Bpr, F ¢ Ll([O,T];B;,r) and 0,v €
L0, T} B)) if s > 1+ 1/p or to L'([0,T}; B,f 0 L*®)

otherwise. If f € L([0, T];B;,r) n C([0,T];S) satzsﬁes the
I-D transport equation

fi+v-Vf=F
ftx+1)=f(tx), (21)
flt:O =f0)

where v : R x R" — R”" stands for a given time dependent
vector field, fo : R" — R™and F : RxR" — R"™ are known
data. There exists a constant C depending only on s, p, and r
such that the following statements hold.

Journal of Applied Mathematics

(DIfr=1ors+ 1+1/p,

I < "fO B
t t ,
+ JO |F (T)"B;Jd‘l.' +C L V' (1) ||f () B;,,dT’
(22)
or
g, s [Ilfo 5, * I VO (1), dr
(23)
where
ot
[ 1 @l
s<1+ l,
V() =19 P (24)
[
0 br
1 1
s>1+—ors=1+—, r=1.

2)Ifs<1+1/p, for € L, f, € L((0,T) xS), F, €
LY((0,T); L), then

£, + Dl

<),

! —-CV(1)
+ L e (IFlg,, +[Fl,) dT] ,

(25)

B, T I fosll oo

where V(t) = [ 10,00 s .
pr
(3)If f = v, then for all s > 0, (23) holds true with V(t) =
[; v (@)l edr.
(4) If r < oo, then f ¢ C([O,T];B;,r)
feC(o,T];

fr = oo, then

B;”I)for alls' < s.

Lemma 10 (see [46]). Let p,t,s, f,, F be defined as in
Lemma 9. Assume v € LP([0,T]; B_M o) for some p > 1,
M > 0.v, € L'([0,T]; Bs1 zfs>1+1/pors—1+1/p,r—1

and v, € L'([0,T}; B”P NL®)ifs < 1+ 1/p. Then, (21) has

a unique solution f € L*([0,T]; B},,) N (N <sC([O’T];B;7,1))
and (23) holds true. If r < oo, then f € C([0,T]; B, ).

Lemma 11 (see [32]). Let 0 < o < 1. Assume f, €
H° F e LY[0,T;H’), v and 0,v € L'([0,T];L™®). If
f e L®([0,T; H) n C([0,T);S) satisfies (21), then f €
C([0,T]; H?), and there exists a constant C depending only on
o such that the statements hold:

If Olip < 1ol +C || 1F @lypde

(26)

HodT

t !
cj v (@) |f (@)
0
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or

t
If @)l < e [llfo oo j IF (r>||Hudr] , (27

where V(t) = fot V(e + 109(7) oo )T

3. The Proof of Theorem 1

We finish the proof with two subsections.

3.1. Existence of Solutions. We use a standard iterative process
to construct approximate solutions to system (6).

Step 1. Starting from u’ = p” = 0, we define by induction a
sequence of smooth functions (i, p*);cn € C(IR*;B;?(S))2
satisfying

(at + u"ax)u"“ =F(t,x), t>0, x€S,

(3, +u'd,)p™ =Fy(t,x), t>0, x€S,

i+1 i+1

u't! (t, x) =yt (t,x+1), ptx)=p  (t,x+1),
t>0, x¢€S,

W (0,x) = ugﬂ (x) = S;314p»

’7i+1 (0,x) = ’73r1 (%) = Si1Mo>

x €S,

(28)
where F(t, x) = P(D)[(3/2)(d)* +(c/2)(p')*)-Ay1d', Fylt, x) =
-20.u'p' — Ap'.

Since all the data S; 1, S;.1p, € B;’,f’r, Lemma 10 enables

us to show that, for all i € N, system (28) has a global solution
which belongs to C(R*; B.(S))’.

Step 2. Now we are in the position to prove that (i, p'),. is
uniformly bounded in E;)r(T) X E;_rl (T).
According to Lemma 9, for all i € N, one has

ty i
“um < N P
B5
pr
Lo [Tl dt
X |l + | e b F (1) gs dT |,
pr 0 pr
i+1 G Jyldllps dr
Hp B T "
pr

t T
-C. llps d
. L oG I, IE, ()

< I

L dT | .
By

(29)

We know if max(3/2,1+ 1/p) < s <2+ 1/p, then B;}l isan
-2

algebra. Andif's > 2+1/p, then B, ;
combining (7) of Proposition 8 and

is an algebra. Moreover,

P(D)u(x) = Y ™ P(D)u(®)

tez
. (30)
_ ZeZm'xE 27—”5 i (E)
R B S
one deduces
|P (D) u||B;r1 < CllullBju ifue B;’r. (31)
Using (6) of Proposition 8 yields
i|? i||2 i
P9l < ([l 1ol 1], ).
, Y ’ (32)
”FO (t, x) By} < C("ul B, pl”B;;l + “pl”B;j})'
Therefore, from (29) to (32), one gets
|'ui+1 b, + ||Pi+1 BSP}]
<Cy-e” Jol'ls,
X [ (””0 B, t leo B;,j,l) (33)

t T
=C; [y I lps d - ;
+ J e’ Jo W, 5(“14’" + Hp’
B
0 pr

(1, 11,

Let us choose a T' > 0 such that 2C§(||uf)||35 + ”P(i)”Bs-l +1)T <
o por
1 and

By} " 1)

i
+p
B;J

: . C 1+ "u s+ “P -
1+ “”1”3;, + |' Pl"B;;) < : 23(:(2 (1 ollgs, T llPo BP,;) .
=2C3 (1 ol + ol )
(34)
Pluging (34) into (33) yields
1+ ||ui+1 N 4 “pi+1 -
;)
(O (1 + "”0”3;7’7 + ”Po B;;‘) (35)

< :
1-2C3 (1 + "”‘OHB;M + ||P0||B;j}>t

Therefore, (i, pi)ieN is uniformly bounded in C([0,T];
B;’r(S)) x C([o, T];B;_I(S)). From Proposition 8 and the

N

embedding properties

B N Bsfl Bs—l N Bs—z (36)

S
pr pr’ pr pr?



6

one obtains

i i+1 i i+1 i i+1
R S o %1 R P U e T
" x B;M‘ B;,} x B;,} B, B,

i+1

i i i+1 i i+1
N P Y N P P [ P
|wo.p B;? B %P g2 B P s

(37)

Thus, we conclude that u'u/"" and F(t,x) are uniformly

bounded in C([O,T];B;rl(S)). In the same way we

have that uipi+1 and Fy(t,x) are uniformly bounded

in C([O,T];B;;rz(S)). Using (28), one obtains that
©u*,0,p™") € C(0,T];B; [ (S) x C((0,T); B, (S))
is uniformly bounded, which vyields that (u',p");n is
uniformly bounded in E;, (T x E;}l(T).

Step 3. We demonstrate that (i, p'),.y is a Cauchy sequence

in C((0,T}; By, (S)) x C([0, T}; By, (S)).
In fact, according to (28), for all 4, j € N, one has

(at + ui+jax) (ui+j+1 _ ui+1)

= (ui - u”j) axui” + P (D)

<[5 W) x () S (6 ) (0 )
~ Ay (=),
(38)
(3 +u,) (o1 - )
= (u' =) o,p™" —2(p" - p) o (39)
—2p™0, (u™ =) - A (p" - p').

(1) For the case s # 2 + 1/p, firstly, we estimate the right
side of (38). From (17) and (18), we obtain

i i+j) i+1.| i+j i i+1
u-—u)o.u L <Cllu™ =u| _ |l0.u N
X B;,rl Bsp,rl X Bsp,rl

[P () - ) () + )|

-1
B;M

< Ot =t 7+ o
- B! By

x

o (40)
[P [(e™ =) (™ + )]

i+j i i+j i
<Cle™ =Pl e + 2l

i+j i i+j
[ (™ = )]s < OO =]
P b
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Secondly, we estimate the right side of (39). Using (18), one
gets

”(ui _ ui+j) axpi+1|

i+j i i+1
< Clu o] oo™

—2 522
By B

[(p" = #") 0,14

< CHPHJ‘ N pi|

i
o.u "
—2 —2 X -1
B By By

||pi+jax (ui+j _ ui)|

clo. (u -u)

PHj "B;j} )
(41)

< _
B} B}

For all ¢t € [0,T1, it is deduced from Lemma 9 that

||ui+j+1 _ ui+1|'
-1
B;’r
-
< ey, dx
i+j+1 i+1
x o™ = 7
{ 0 0 lsg}
b e[t dE
+CJ e P T
0
i+j i
<l ol
pr
it+j i i+j i
(s P T T T
B;’r B;J B;m
i i+j
< ('l + ]
B;’r B;’r
i+1
o il +n) et
B,

(42)

i+j+1 i+1
-p

I

—2
B ;,r

tyoivi
< Sl dx
i+j+1 i+1
Al =
Loy de
+Cle ™ pr
0
S | ey
prr
i+1 it+j i+ i
(1™ g + 1™ ] ) + 17 = p
Bp,r Bp,r

< ([l +2) | ae}.

-2
B;,r

(43)
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Since (', pi)ieN is uniformly bounded in E;’T(T) X E;’: (T)
and

l+] l+]

Z A jug P(I)Jr]Jrl Hl Z A 4pos

q=i+l q=i+1
(44)

z+]+1 1+1

there exists a constant C independent of 4, j such that for all
€ [0,T]

i+j+l z+1 “ i+j+1 i+1
u + - g
" Bs 1 P p B;,yz

. t
-1 l+] l+]
<Cyr [2 +L <'|u le+||p B”)d‘r]
(45)
By induction, one obtains

i+j+l i+1|| || i+j+l z+1||

”u LY By P L$(B5?)

(CTT)i+1

G +1)! ["”J “Lw([o,T];B;;}) + "pj"LW([o,T];B;j})] (46)

CrT
+CTZZ l)( T )

Since ||| L(B;,) Pl L)) Are bounded independent of j,

there exists a new constant Cy, such that

i+j+l i+l —i
(47)

i+j+1 i+1
J« ST R
Lg[‘o(Bp,rl) p

Consequently, (i, '),y is a Cauchy sequence in C([0, T];
By, (S)) x C([0,T; B}, X(S))-

(2) For the case s = 2 + 1/p, using (4) of Proposition 8,
one has

i+j+l 1+1
u Lco Bs 1)
_ '|ui+j+1 i+1'|
- - 1+1/p
L8y,
< '|uz+]+1 1+1.| itj+l z+1||
L5 (B
. 10 L . 1-0
< '|u1+]+1 B u1+1' / [||u1+]+1 o+ "u'“ / ]
= 1+1 2+1 2+1
By By By

1\0 -0 i+j+1 1-0
< (CT) 2 1["1/11 ] | Bz+1/p] 5
D

i+1
sp + ||
By, "F

(48)

where s, € (max(1+1/p,3/2)-1,1+1/p),s, € (1+1/p,2+
1/p), and

||Pi+j+1 _ i+1||L?(B;}2)
— ||Pi+j+1 _ z'+1||LOTO(B;{;D)
< ||pi+j+1 i+1 i+j+l 1+1“LOo
(By»)
- 1-6,
< "PH]H 1+1|| W[ i+] +1| 1+1/p+||p 'B;;I’P]
0 . . . 1-6,
< (C;) 12_611[||P1+]+1.B;1/P i ||pz+1| B;I/P] ,
| | (49)

where s; € (max(1 + 1/p, 3/2) -2,1/p), s, € (1/p, 1+ 1/p).

One deduces that (i, p');c is a Cauchy sequence in
C([0,T7; BS 1(S)) x C([0,TT; BS 2(S)) for the critical case.

Step 4. We end the proof of existence of solutions.

Firstly, since (i, p'),c is uniformly bounded in
L*([o, T];B (S)) x L*([0,T]; B (S)) according to
Fatou’s Lemma in Besov space, it guarantees that (u, p)
belongs to L*([0,T]; B;’r(S)) x L2([0,T]; B;::(S)).

Secondly, since (i, p'),y is a Cauchy sequence in
C([0,T]; By, (S)) x C([0,T]; B, 2(S)), it converges to limit
function (u p) € C([0,T]; Bp)r( )) X C([O,T],Bp)r( )). An
interpolation argument insures that the convergence holds
in C([0,T1; BS, (S)) x C(0, T} B (S)) for any s' < .
Taking the limit in (28) derives that (1, p) is indeed a solution
to (6). Thanks to the fact (u,p) € L%°([0,T]; B A(S)) x

L™([0,TT; BS 1(§)) we know that the right side of the
first equatlon in (6) belongs to L*([0, T],B;’V(S)), and
the right side of the second equation in (6) belongs to
L*™([0,T]; Bs 1(S)) For the case r < 00, applymg Lemma 9
derives (u, p) € C([O,T];B;J( ))XC([O,T];BW
s’ <.

Finally, from (6), one has (1, p,) € C([0,T]; Bs 1(S)) X
C([0,T]; BS 2(S)) if r < 0o, and in L™([0,T]; B (S)) X
L*([0,T]; Bs 2(S)) otherwise. Thus (u,p) € (T) X

ES 1(T) A standard use of a sequence of viscosity approx1—

(S)) for any

mate solutions (u,,1,).s( for (6) which converges uniformly

in C([0, T]; B, ,(S)NC' ([0, T]; B, }(S))xC([0, T; By, (S)n

1([O T]-BS_Z( S)) gives the continuity of solution (u, p) €
(D) X Ep (T)

3.2. Uniqueness and Continuity with Initial Data

Lemma 12. Let 1 < p,r < 00, s > max(l + 1/p,3/2).
Assume that (ul,pl) and (uz,pz) are two given solutions to
the Cauchy problem (6) with initial data (ué,p&), (ug,pg) €
BS (S) x Bs 1(S) satisfying u',u> € L([0, T];B;)r(S)) n



C([0,T]; By, (S)), and p', p* € L([0,T}; By, (SHNC((0, T;

i s

S—2
BPJ (S)). Then, forallt € [0,T],

2 2

' =

1
o+l
R

< (I~ ) 0

t 1 2 1 2
o o0 g, 1l +D+(lp" et +lp s lde

—2
B

1 2
B! + ||P0 ~Po
por

Proof. Letu'? = u*> —u', p'* = p* - p'; then

u'? € L ([0,T]; B}, (S)) nC([0,T]; B, (S)),
(51)
p'? € L2 (0,713 B3, (S)) nC ([0, T1; B} (S))

which derives that (u'?, p'%) € C([0,T]; B} }(S)) x C([0, T;
B;_rz (S)), and (u'?, plz) satisfies the transport equation

12, 15 12 124 2
ou+u oy’ =-uou +F (tx),

t>0, x€8,

0,p" +u'd p'? = F, (t,x),

t>0, x€8,

u'? (t,x) = u'? (t,x+1), p12 (t,x) = p12 (t,x+1),

t>0, x€8,

WO, =ul =k —ul, g2 0,x) =2 =2 -n

x €S,
(52)

where
3 /1, 2y, €1/ 2
Fl(t,x):P(D)[Eu (u +u)+5p (p +p)]
~ A2 (53)

E, (t,x) = —u0,.p° -2 (axulplz + axulzpz) ~Ap'.

According to Lemma 9, one deduces

— 4 1
e C.[o”ax” ”Bi{}d‘r 1/!12 .
By
t T 1
12 —C | 10,1 [l gs-1dE€
< "uo . +CJ- ¢ ol
BS
b 0
124 2
x (“u ou |l +|F BH)dT,
By, %
(54)
t
—C [yl ligsrdry 1
€ " " B2
(55)
t T 1
12 ~C [ 05t Il gs-1 dE
<ol v e Ny g
pr 5
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Similar to the arguments in Step 3 in Section 3.1, one derives

By} )

t 1
e—c Jolo.u ||B;;r1 dr (||1/l12

12
. |'
B;’rl

12 12
< ( [Ju +|
( 0 g T lIPo g2
t T 1
=C [ 10,u [l -1 dE 12 12
+CJ e P ||u L+ ||p 5
0 By By
1 2 1 2
(1], +[], +]e'],. +] ,)dT.
< B;, gy, 1P lsg TP g

(56)

Applying Gronwall’s inequality completes the proof of
Lemma 12. O

Remark 13. For the critical case s = 2 + 1/p, the proof is
similar to Step 3 in Section 3.1.

Remark 14. Note that, for every s € R, B;, = H’. The
existence time of system (1) may be chosen independently
of s in the following sense [50]. If (i, p) € C([0,T]; H®) N
CY([0,T; HY x C(0,TI;H™) n CY([0,T];H?) is a
solution to system (1) with initial data (1, p,) € H" x H"'
for some r > 3/2,r # s, then (u,p) € C([0,T];H") n
C[0, T); H ™Y x C([0, T;; HY) n C([0, T]; H%) with the
same time T In particular, if (u, p) € H* x H*, then (u, p) €
C([0, T]; H*) x C([0, T]; H*™).

4. Wave-Breaking Phenomena

This section is devoted to investigating conditions of wave
breaking mechanisms of strong solutions to system (1). Using
Theorem 1 and a simple density argument, we deduce that the
desired results are valid for s > 3. Here we take s = 3 in the
proof for simplicity. We begin with three lemmas.

Lemma 15 (see [51]). Let T > 0 and u € C'([0,T]; HX(S)).
Then for all t € [0, T] there exists at least one point &(t) € S,
such that

m(t) = ilelgux (t,x) =u, (t,E()). (57)
The function m(t) is absolutely continuous on [0, T| with

im ) =u, (t,E®) ae on[0,T]. (58)

dt

We consider the trajectory equation

d
16X = u(t,q(t,x)), tel0,T], 59)

q0,x)=x, x€S,

where u denotes the first component of solution (u, p) to system

D).
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Lemma 16 (see [52]). Let u € C([0,T]; H(S)) n C'([0, T];

HY(S)) with s > 2. Then (59) has a unique solution q €

CY([0,T] x S,S). Moreover, the map q(t,-) is an increasing

diffeomorphism of S for all t € [0,T] and

wmaq@xDdr o oy (¢, x) € [0,T] x S.
(60)

q, (t,x) = eJOr

Lemma 17. Let (ug, py) € H(S) x H*'(S) with s > 3/2 and
T > 0 is the maximal existence time of corresponding solution
(u, p) to (6). Then for all (t,x) € [0,T] xS

p(t,q(t, %) g (8, x) = py (x) e ™. (61)
Moreover, if there exists M > 0 such that u,(t, x) > —M for all
(t,x) € [0,T] XS, then forallt € [0,T],

Ip @l = e oyl
(62)
(M-t

lp )] < €= g

Proof of Lemma 17. Differentiating the left side of (61) with
respect to t, using (59) and the second equation in (1), we
obtain

Hs 1

% [p(ta(t,x)d: )]
= (p (6:9) + py (£:9) 4; (8, %)) q; ()
+2p(t,q) g, (t, X) 4y (¢, X)
=[p (t.q) + p, (@) u(t.9) +2p (t,q) . (t.9)] 4% (2, %)

= —Ap(t:q(t,x)) 4. (t,x).
(63)

Applying Gronwall’s inequality and (59) yields (61).

From Lemma 16, (61) and the assumption in Lemma 17,
one deduces

"P (t> ')"Loo
=l (t. & ))] o = "e’“e*Z X e (')"Lm
< e gy (O o

J lp (&, x)|2dx
R

(64)
- [ patm)Pa.ex ax
= JR 'Po (x) ef’“|261;3 (t,x)dx
BM-2 J |l (0)’dx, ¥t e [0,T].
This completes the proof of Lemma 17. O

In what follows we derive the estimates for [[u4(t)]| ;co.

Lemma 18. Let (uy, p,) € H(S) x H*X(S) with s > 3/2
and T is the maximal existence time of corresponding solution
(u, p) to system (1). Assume that there exists M > 0 such that

lpt e < €M ™Mol g, 1oz < eV poll g
forallt € [0,T]. Then for all t € [0,T], we have

Nl ()17
< [4”%"; + 2| Te®MH2AT) p 1% e 2lclte?M1”
=H(t),
(65)
It )l < Jitg (O o + €M '4P 1), (66)

where P(t) = (3/4)H(t) + (1/4)lcl(€® [l pyl ).

Proof of Lemma 18. As mentioned before, here we assume s =
3 to prove Lemma 18. Letm = (1 —ai)u, w = (4—8§)_1u. Then
we rewrite the first equation in (1) as

m, + 3mu, + mu+ Aym+cpp, = 0. (67)

Noting (m,, W) = (m, W,) or _[S mawdx = IS muw,dx, one has

|
'——.

wppx dx -\, J wmdx
S

=- J w(mu), dx -2 J wmu,, dx (68)

s s
+ < J wxpzdx—)x1 J wmdx,

2 Js S

J w(mu), dx = - J w,mudx

s s

2 2
= L w,u dx — L w,u, dx,

2 J wmu, dx = — J w o’ dx + J wxui dx.
S S s

Combining the above three equalities, one derives

4 J mwdx = -2\, J mw dx + CJ w.pidx.  (69)
dt Js S S
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Using Gronwall’s inequality, we have

J- mw dx
s

t
_ oMt [J Myw, dx+cj eulTJ w, p’ dxdr] (70)
S 0 S

t
SJ myw, dx + |c|eu1tj J w, p’ dxdr.
s 0Js

Thus

lu (D172

T (L i PN
=la@)l <4 L s |2n€|2 |t (t,8)|"dE = 4 (m (1), w (1))

t
=4(m(t),w(t)) =4 (my wy) +4|c| et J j wxp2 dxdrt
0 Js

t
< dlluo|2 + 41| e L L w, p’ dxdr.
(71)

Noting

_ 2
@7 = [ou(4-22) "u)| , < ez @2

and using the assumption in Lemma 18, we obtain

It = o ot s < [ e ] -
(73)

Hence

s (01172

t
< ol +21el ™ [ [ el + ol

4

< 42 + 21l M gy

t
+2c| Mt J lu (7)1 d7
0

4

< 4"“0”]2} 12 |C| Te(8M+4A+2A1)T"pO e

t
£ 2T j () dr.
0

(74)

Applying Gronwall’s inequality yields (65).

Now we present the proof of (66). Note that, for all
x € S, if g(x) = cosh(x — [x] — 1/2)/2sinh(1/2), where
[x] denotes the integer part of x, then (1 — afc)*l f =g
f for all f € L*S). It follows from some calculations
that g(x) is continuous and decreasing on interval [0, 1/2]
and increasing on interval [1/2,1]: g(1/2) = 1/2sinh(1/2),
g(0) = g(1) = cosh(1/2)/2sinh(1/2), 1/2sinh(1/2) < g(x) <

Journal of Applied Mathematics

cosh(1/2)/2sinh(1/2) = ¢y, and |0, gll,c < 1/2. Applying
Young’s inequality, one has

oo+ (50 +397)

3 1
o < ||—E)xg||Loo zuz + ECP2

Ll
3 | 2
< Zfulfs + S el
(75)
Using (59), we obtain
du(t,q(t, x)
M =u, (t,q(t,x)) +u, (t,qt x))q, (t x)

= (u, +uu,) (£,q(t,x)).

For the first equation in system (6), using (65) and the facts
above, one derives

du(t,q(t, x))
dt

It follows from Gronwall’s inequality that

-P(t) < +Mu(t,qtx) <P(). (77)

|u(£,9 ()| < o ()] oo + €M 2P (2). (78)
From Lemma 16, we obtain (66). O
Lemma 19. Let (uy, py) € H(S) x H'(S) with s > 3/2 and
T is the maximal existence time of corresponding solution (u, p)

to system (6). If O,u € LY([0, T]; L), then forallt € [0,T],
we have

llet ()]l oo

< Jluo (0o

3 c t 2
LM [_ H, () + U( 2Ly HH) ]
4 4
=L(t),
(79)
where
H, (¢)
T
_ [4||”o||iz + 2l Te®lo IIBXu(T)IILoodT)+(4/\+2A1)T"PO ;H]
2e2A1T|c|t
e .
(80)

Proof of Lemma 19. It follows from the proof of Lemma 17
that

~At+2 [} [0,u(1) | oo d

lp &l b )]s < Ia

Hs !
(81)
< P hIu@ldr)
Using similar arguments as in the proof of Lemma 18, one
completes the proof of Lemma 19. O
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4.1. The Proof of Theorem 2. We present the proof of
Theorem 2 by inductive arguments with respect to the index
s(s>3/2).

Step 1. For s € (3/2,2), using Lemma 11 and the second
equation in (6), one obtains

e (t)

t
e < ool +C [ el
(82)

t
+C L lpl s (Metll oo + ot oo + A) .
From (17), we have

[0s1pll s < € ([0t ps Pl oo + 024l ) -

Thus

t
o ® o +C | [0l lplde

1 < e H!

it (lullpeo + 0,1 0 + A) .
(84)

t
N
0

On the other hand, using (3) of Lemma 9 and the first
equation in (6) derives

! 3 c

s Ol < Juoly + € | [P @) (3074 57) = A

t

+C L lleell s | 01| ;o T
(85)
Applying (7) of Proposition 8 yields
3 c
HP(D) (Euz + Ep2> -Au .

(86)

3, ¢
<Cl|l=-u"+ =
”2 2P

+ CA flull
HS*I

< C(lullpg—ilull oo + [l et ol oo + Ntllgse) -

Hence

t
Nt (Dl < [t +C L ety (Neallzeo + 0] oo + 1) dt

t
+C | ol bl
(87)
Combining (84) and (87), one deduces
lu )l + [l )] st
< o]l + ol
(88)

t
+chmmw+wamw)

X (lullpeo + 054l o + o + 1) .

1
Applying Gronwall’s inequality yields
e Ollgzs + [l ()] s
t 89)
< ("”o et HPOHHH)eCIO(IIullLoo+H5xu||Loo+||p||Loo+1)dr_

T
Therefore, if T < o0 satisfies _[0 loqu(t)ll edr < o0,
from (89), Lemmal9, and the fact that [p(t,")l,c <
&> Iollaxu(T)llLOOdT||p0 g1, we have

e Ol + o (O g

< (luols + lpollerr) (90)

t
y eCt[L(t)+e2 folosuleodey L 41]4C jof 19, 4ll o0 dT

Thus

lim sup (llu (Ol + o @) ger) < 00, (91)
t—>T"

which contradicts the assumption that T' < co is the maximal

existence time. This completes the proof for s € (3/2,2).

Step 2.Fors € [2,5/2), applying (1) of Lemma 9 to the second
equation in (6) derives

t
o @it < Daoliges + C [ [oapl
0
(92)

t
+c| o
0

e (05 o0 + A) A

Thus

t
I @l = loulia-s + € [ Tt el e

Hsfl
(93)

t
+C [ ol (sl + 2 .

which together with (87) and the fact that H 12+s) —
HY?(S) n L®(S), makes one deduce

e )l + o ()

< ||u0

et

we + [Polles

1) (Il e + ||pllpe + 1) dr.
(94)

+Cmemm+Wm

It follows from Gronwall’s inequality that

e Ol + [|p )]
(95)

)eC Jo a2+ +lplzoo +1)dT

< (luoles + lpoll -

Therefore, if T < o0 satisfies fOT 0, u(D)ll;dT < 00, from

(95) and [|lp(t, ) e < € It)”axu(T)llL‘”"lTIIpOIIHH, we obtain

lim sup (Jlu ()l + | (1)

1) < 00,
e 4 H (96)
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which contradicts with the assumption that T < oo is the
maximal existence time. This completes the proof for s €
(2,5/2).

Step 3. For s € (2, 3), differentiating the second equation in
(6) with respect to x, we obtain

0,py + U0 p, + 33U, p, +2u, p+Ap, =0. (97)

Using Lemma 11 derives

lo.p ()

HS*Z

t

< Pupollipe + C L 13y + 21typ + Ap|ppadt

t
e L [0l (o + o, ) .

(98)

Thanks to (6) of Proposition 8, one obtains

o <C ([

“”xPx He L P||L°° + "ax”‘”L00 "axP HH) >

lpucallrs < € (lpllpes0stll oo + ol o =)

APl s < CAlp] e
(99)

Thus
[0.2p ()] -
< "axPO

H?
(100)

t
+C L (leall g + [|pll pger)

X (lelleo + [Ogtt] oo + o + 1)

which together with (87) and (84) with s — 2 instead of s — 1
derives

lloe ()l + [l (2)

< ”“0

Hs!

o I
(101)

t
+C [ i + ol

X (Il + [0, oo + [l o + 1) .

Similar to the arguments in Step 1, one completes the proof
fors € (2,3).

Step 4. For s = k; € Nand k; > 3, differentiating the second
equation in (6) k; — 2 times with respect to x derives

k-2 L+l AL+l
(0, +uo,) 0y “p+ Cp 0,0 ud p
L +ly=ky—3,01,,20

102)
+ 2pa:1_1u + )La’;‘_zp =0.

Journal of Applied Mathematics

From Lemma 9, we have
J882p @),

<okl [, o8 2ol oo

t
0
t 103
+C J Z Cll,lzailﬂuaizﬂp ( )
0

I+ =k, —3,,,1,>0

dr.

Hl

+ Zpail_lu + )Lal;‘_zp

Using the algebraic properties of H'(S) derives

o2 al . = Clol |27 = Cliel il

L+l ~L+1
Cy 1,0 udz " pll < Cllullgs || o] s
Ltly=k; —3.0;,1,>0 o
k-2
[0l =l
(104)

Thus
o2 p )]

< [0 ol

t
+C L (elgge + [Pl )  (lillzes + o] e + 1)

(105)

which together with (87), (84) with s — 1 instead of 1 derives

lle )l + [l ()
< C(|luy

H 1

mt ”Po HH)
(106)

t
+C jo (e )l + o )

1)
X (lu Ol + [lp O] + 1) dr.

Using Gronwall’s inequality, we obtain

e Ol + [lp )] o
(107)

< C (ol + [l ) b AP

T
If T < oo satisfies Io 0, u(1)]l dT < 00, using the unique-
ness of solutions in Theorem 1, one obtains that [ullg-1 +
ol is uniformly bounded. Then

lim sup (Jlu (D)l + ||p )] ;51) < 00,

S (108)
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which contradicts the assumption that the maximal existence
time T' < co. This completes the proof for s = k; € N and
k, > 3.

Step 5. For s € (ky,k; +1),k; € Nand k; > 3, differentiating
the second equation in system (6) k; — 1 times with respect to
x, we obtain

@+ud)d o Y Gty

L+l =k, 2,1, 1,20

(109)
+ 2pa’;1u + )La};ﬁlp =0.
Using Lemma 11 with s — k; € (0, 1), one derives
Ky~
los e @),
Ky~
= "ax 1P() sk
wcf o (19, oo + lluall o) A
0 x P k1 x| e L*®
(110)
t
+C Cll’lzaiﬁ—luaiz*—lp
0

1+ =ky—2,1;,1,20

+2p0fu+ 205l dr.

R

For sufficiently small ¢ > 0, using (19) and the fact that
HY?*(S) < L®(S), one has

"Pal;lu Hk
< C (|0t o Nl + 05 0] cllst)
< C (Jlull s ,D"Loo  Ntllpga-vzve | pl| e on) »
Cll,lzaféﬂuaizﬂp
L+, =ky—2,1; 10 o
<C Y G (el u] 0 ol e,
1+l =k, 2,1, 1,20
Nl AR P e Y
< C (fulgoronc |l s + Nzl ove)
12257 ] ey < Cllollger

(111)

13

Making use of (110) and (111) yields

o5 0

H k1

k-1
< ”axl Po

H .

t
+ C JO ("u”Hs + ||P HS’I) ("u”Hkrl/Zﬂ + "P”Hkl’ﬂhs + l) dT)

(112)

which together with (87) and (84) with s — k; € (0, 1) instead
of s — 1 derives

llee ()= + || (£)
<C (||u0

Hsfl

m T "PO Hs-l)

Hsfl) (”u"Hk‘fl/zn + ||p||Hk1’3/2+5 + l)dT
(113)

t
+C L (el + [

Thanks to Gronwall’s inequality, one has

lloe ()1« + [l (2)

Hs!

t
[ ) €C oW e 1Py
. )

(114)

< C((Juy

= + o

Using the uniqueness of solutions in Theorem 1, we obtain
that

71/ ) - (115)

is uniformly bounded by the induction assumption. Then

lim sup (e (®)l + [ (1

1) <00 (q16)
t—>T"

which leads to a contradiction.
Thus from Step 1 to Step 5, one completes the proof of
Theorem 2.

4.2. The Proof of Theorem 3. Using simple density arguments,
here we only need to prove the theorem for s = 3. Assume that
there exists T > 0 and M > 0 such that

u,(t,x)=-M, V(t,x)el[0,T]xS. 17)
Applying Lemma 17 yields
lp @ ios o &) 2 < e

2Mt

vt € [0,T].
(118)

”Po

Hsfl bl

Differentiating the first equation in (6) with respect to x and
usingd>g * f = g * f — f yield
U = — u)zc — Ul —g* <§u2 + %/)2) - Alux

(119)
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Noting

d ,q (1,
W = Uy (t: q (t’ x)) T Uyx (t’ q (t’ x)) 4 (t’ x)

= (v + 1) (£, (8, %))
(120)

and combining (119), (120), and ui > 0, g * w* > 0,
lg * p*lle < Igllllple < Gllpl7e, (62), (66), one deduces

du, (t,q(t, x))
dt

3 c 3 c
B [‘“fc —9r (5“2 ¥ z/’z) it (5”2 ¥ zpz)] (&)
—'Cl%llpll2 FAM 2l + 1 el
=2 Le 77 2 IE® Ty ML
(121)

Using Lemmas 17 and 18, one deduces that there exists C, > 0
such that

du, (t,q(t,x))

122
. (122)

<C,.

For t € (0, T), integrating the above inequality with respect
to t on interval (0, t), we have

u, (t,q(t, x)) < ug, (x) + Cyt. (123)
Thus
supus,, (t,x) < [0t o + Cat < ||tig|| s + CoTs
x€S (124)
vt € [0,T],
which together with (117) and T' < co derives
T
J 10,4 ()] wodl < co. (125)
0

This contradicts with the results in Theorem 2.
On the other hand, applying Sobolev’s embedding theo-
rem, one deduces

lim inf infu, (¢, x) = -0,
t— T x€S

(126)

and then the solution (u, p) blows up in finite time. This
completes the proof.

Remark 20. Theorem 3 implies that the blow-up phe-
nomenon of solution (u, p) to system (6) only depends on
the slope of the first component u. In other words, the first
component u blows up before the second component p in
finite time.

4.3. The Proof of Theorem 4. We use Lemmas 17 and 18 to
prove Theorem 4. For simplicity, we assume s = 3 here.
Noting the assumption u, is odd, p, is even, and the structure

Journal of Applied Mathematics

of system (6), one deduces that u(t, x) is odd and p(t, x) is
even with respect to x for all t € (0, T). Thus u(t,0) = 0 and
px(t,0) = 0. Thanks to the second equation in system (6) at
the point x = 0, we have

d
Ep(t, 0) = [-2u, (£,0) - A] p(£,0), t>0, x€S, 127)

p(0,0)=0, xe€S,

which derives p(t,0) = 0.
Differentiating the first equation in system (6) with
respect to variable x yields

2 32, ¢ 32, ¢
uxtz—ux—uuxx—g*(au +5p>+§u t5P - A,
(128)

Noting the assumption ¢ > 0 in Theorem 4, one obtains g *
((3/2)u? + (c/2)p2) > 0. Setting M(t) = u,(t,0) + A,/2 and
combining with (128) yield

2

WO e

dt
By the assumption M(0) = u,,(0) + A,/2 < —A,/2, we have
M*(0) > )L%/4. We claim that M(¢) < —A,/2 is true for all
t € [0, T]. In fact, if the claim is not true for all ¢ € [0, T], then
from the continuity of M(t), we deduce that there exists ¢, €
(0, T) such that M2(t) > A§/4 fort € [0,t,], and Mz(to) =
/ﬁ /4. Combining this with (129) derives dM(t)/dt < 0 a.e. on
[0, t,]. Since M(¢) is absolutely continuous on [0, t,], one gets
the contradiction M(t,) < M(0) = uy,(x,) + A,/2 < —A,/2.
This completes the proof of the claim.
Thus we obtain that M(t) is strictly decreasing on [0, T'].
Let 8 € (0,1) such that =M (0) = A,/2. From (129), we
have

dM (t) 2 2
— <M () + M (0) 50

<-(1-8)M*(t) ae. on[0,T].

(129)

Since M(t) is locally Lipschitz on [0, T'] and strictly negative,
thus 1/M(t) is also locally Lipschitz on [0, T']. It follows that
dM (t)

d 1 1
E[M(t)] M) dt >1-0

a.e. on [0,T].
(131)
Integrating (131) with respect to t over (0, t) yields
1 1
—t—
M) M(0)

Since M(t) < 0 on [0,T], one obtains that the maximal
existence time T < —1/(1 — §)M(0) < co. Moreover, using
the assumption M(0) = u,,(0) + A,/2 < 0 derives

<-(1-98)t ae. on[0,T]. (132)

uox (0)+A1/2 —b -
uy (,0) < L+t (1-08) (up, (0) +4,/2) 2 o
1
T T (e @+ 4, /2)
(133)

which completes the first part proof of Theorem 4.
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On the other hand, differentiating the second equation in
(6) with respect to x yields

d t’ t’
W = (_3uxpx = 2Up — APx) (t’ q (t’x)) :

(134)

Taking x = x,(t) and noting g(t, x, (t)) = &(t), together with
the definition of m(t) in Lemma 15, one deduces u, (£, &(t)) =
0 a.e. t € [0,T]. Thus

dp, (1,8() _

B [-3u, (t,E@®) = Al p, (1€ (). (135)

Using the assumption u,(x,) = inf, gug,(x) in Theorem 4,
(57) and letting &£(0) = x, yield py,(§(0)) = py.(x,). From
(135), one deduces

Px (t) E (t)) = Pox (xO) ejﬂ (=31, (5,E(s))-M)ds
(136)

= pos (x0) € N (-3inf cst(5x)-A)ds

Thanks to (133), for all ¢ € [0, T], we have

¢ [y (=3inf s, (s,)-A)ds

S ol [F3 (o (0)+2,/2)/(1+s(1-8)(uou (0)+1,/2)-1, /2)-Nds~ (137)

= oBM/2=Mt=(3/(1-8)) In[1+(1-0) (1o, (0)+4,/2)t]

Note eGM/2-Mt-G/1-) L+ 1-8)woO+A/2]  _  ( ac't
-1/(1 = 8)(uy,(0) + Ay/2). Thus, if py,(x,) > 0, then from
(136), for T; € (0,—1/(1 — 8)(11y,(0) + A, /2)], one has

supp, (t,x) = p, (1,E(t)) — +o0 ast — T7.
x€S

(138)

On the other hand, if p,(x,) < 0, it follows from (136) that,
for T; € (0,-1/(1 = 8)(1,.(0) + A,/2)], one deduces

irelgpx (tx)<p (tE() — —c0 ast —T. (139)

This completes the proof of Theorem 4.

4.4. The Proof of Theorem 5. Let X(t,x) = (u(t,x), p(t, x))
be the corresponding solution to system (1) with initial data
(1g, py)- Differentiating the first equation in (1) with respect
to x, one has

3 c 3 c
2 2 2 2 2
Uat = —ux—uuxx—g*<§u +Ep>+5u +E (140)

- Au,.

Differentiating the second equation in system (6) with respect
to x yields

Pt = —UpPygy — 2Up — (3, + A) py. (141)

We obtain that —X(t,—x) is also a solution to system (1)
provided that X(¢,x) is a solution to system (1). Note the
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initial data u, and p, are odd; one derives —X(0,-x) =
X(0, x). Using the uniqueness of solutions yields —X (¢, —x) =
X(t, x), and X(t, x) is odd for all t € [0,T]. Thus u(t,0) =
u, (t,0) = p(t,0) = 0 for allt € [0,T]. From the above
analysis and (140), we have

du, (1,0) _
dt

Similar to the proof of Theorem 4, we complete the first part
proof of Theorem 5. From (141), one deduces

—ul (£,0) = Ayuy (£,0). (142)

Pyt (£,0) = (3u, (£,0) = 1) p, (£,0), t€[0,T]. (143)
From (143), we get
p, (£,0) = py, (0) ejot(*3ux(‘r,0)*/\)d‘r. (144)

As before, we also obtain that u,(¢,0) is decreasing with
Uy, (0) < —Ay. Thus —u,.(t,0) > —u,,(0) > 0, which combined
with (144) completes the proof of Theorem 5.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Foun-
dation of China (71003082) and Fundamental Research
Funds for the Central Universities (SWJTU12CX061 and
SWJTU09ZT36).

References

[1] A. Degasperis and M. Procesi, “Asymptotic integrability;’ in
Symmetry and Perturbation Theory, pp. 23-37, World Scientific,
Singapore, 1999.

[2] A. Degasperis, D. D. Kholm, and A. N. I. Khon, “A new
integrable equation with peakon solutions,” Theoretical and
Mathematical Physics, vol. 133, no. 2, pp. 1463-1474, 2002.

[3] H.R.Dullin, G. A. Gottwald, and D. D. Holm, “Camassa-Holm,
Korteweg-de Vries-5 and other asymptotically equivalent equa-
tions for shallow water waves,” Fluid Dynamics Research, vol. 33,
no. 1-2, pp. 73-79, 2003.

[4] J. Escher and B. Kolev, “The Degasperis-Procesi equation as a
non-metric Euler equation,” Mathematische Zeitschrift, vol. 269,
no. 3-4, pp. 1137-1153, 2011.

[5] J. Escher and J. Seiler, “The periodic b-equation and Euler
equations on the circle,” Journal of Mathematical Physics, vol.
51, no. 5, Article ID 053101, 2010.

[6] TJ. Escher, Y. Liu, and Z. Yin, “Global weak solutions and blow-
up structure for the Degasperis-Procesi equation,” Journal of
Functional Analysis, vol. 241, no. 2, pp. 457-485, 2006.

[7] V. O. Vakhnenko and E. J. Parkes, “Periodic and solitary-wave
solutions of the Degasperis-Procesi equation,” Chaos, Solitons &
Fractals, vol. 20, no. 5, pp. 1059-1073, 2004.

[8] H.Lundmark and J. Szmigielski, “Multi-peakon solutions of the
Degasperis-Procesi equation,” Inverse Problems, vol. 19, no. 6,
pp. 1241-1245, 2003.



16

[9] H. Lundmark, “Formation and dynamics of shock waves in the
Degasperis-Procesi equation,” Journal of Nonlinear Science, vol.
17, no. 3, pp. 169-198, 2007.

[10] S.Laiand Y. Wu, “A model containing both the Camassa-Holm
and Degasperis-Procesi equations,” Journal of Mathematical
Analysis and Applications, vol. 374, no. 2, pp. 458-469, 2011.

[11] L. Tian, Y. Chen, Y. Liu, and Y. Gao, “Low-regularity solutions
of the periodic general Degasperis-Procesi equation,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 74, no. 8, pp.
2802-2812, 2011.

[12] X. Ai and G. Gui, “Global well-posedness for the Cauchy
problem of the viscous Degasperis-Procesi equation,” Journal of
Mathematical Analysis and Applications, vol. 361, no. 2, pp. 457-
465, 2010.

[13] Y. Liu and Z. Yin, “Global existence and blow-up phenomena
for the Degasperis-Procesi equation,” Communications in Math-
ematical Physics, vol. 267, no. 3, pp. 801-820, 2006.

[14] Y. Matsuno, “Parametric representation for the multisoliton
solution of the Camassa-Holm equation,” Journal of the Physical
Society of Japan, vol. 74, no. 7, pp. 1983-1987, 2005.

[15] Y. Matsuno, “The N-soliton solution of the Degasperis-Procesi
equation,” Inverse Problems, vol. 21, no. 6, pp. 2085-2101, 2005.

[16] Z. Lin and Y. Liu, “Stability of peakons for the Degasperis-
Procesi equation,” Communications on Pure and Applied Math-
ematics, vol. 62, no. 1, pp. 125-146, 2009.

[17] Z.Yin, “On the Cauchy problem for an integrable equation with
peakon solutions,” Illinois Journal of Mathematics, vol. 47, no. 3,
pp. 649-666, 2003.

[18] Z. Yin, “Global weak solutions for a new periodic integrable
equation with peakon solutions,” Journal of Functional Analysis,
vol. 212, no. 1, pp. 182-194, 2004.

[19] J. Escher, Y. Liu, and Z. Yin, “Shock waves and blow-up phe-

nomena for the periodic Degasperis-Procesi equation,” Indiana
University Mathematics Journal, vol. 56, no. 1, pp. 87-117, 2007.

[20] Y. Guo, S. Lai, and Y. Wang, “Global weak solutions to
the weakly dissipative Degasperis-Procesi equation,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 74, no. 15, pp.
4961-4973, 2011.

[21] S. Wu and Z. Yin, “Blow-up and decay of the solution of the
weakly dissipative Degasperis-Procesi equation,” SIAM Journal
on Mathematical Analysis, vol. 40, no. 2, pp. 475-490, 2008.

[22] S. Wu, J. Escher, and Z. Yin, “Global existence and blow-
up phenomena for a weakly dissipative Degasperis-Procesi
equation,” Discrete and Continuous Dynamical Systems B, vol.
12, no. 3, pp. 633-645, 2009.

[23] Z. Guo, “Some properties of solutions to the weakly dissipative
Degasperis-Procesi equation,” Journal of Differential Equations,
vol. 246, no. 11, pp. 4332-4344, 2009.

[24] Y. Fu and C. Qu, “Unique continuation and persistence prop-
erties of solutions of the 2-component Degasperis-Procesi
equations,” Acta Mathematica Scientia B, vol. 32, no. 2, pp. 652
662, 2012.

[25] L. Jin and Z. Guo, “On a two-component Degasperis-Procesi
shallow water system,” Nonlinear Analysis: Real World Applica-
tions, vol. 11, no. 5, pp. 4164-4173, 2010.

[26] M. Yuen, “Self-similar blowup solutions to the 2-component
Degasperis-Procesi shallow water system,” Communications in
Nonlinear Science and Numerical Simulation, vol. 16, no. 9, pp.

3463-3469, 2011.

[27] J. Zhou, L. Tian, and X. Fan, “Soliton, kink and antikink solu-
tions of a 2-component of the Degasperis-Procesi equation,”

Journal of Applied Mathematics

Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp.
2529-2536, 2010.

[28] K. Yan and Z. Yin, “On the Cauchy problem for a two-
component Degasperis-Procesi system,” Journal of Differential
Equations, vol. 252, no. 3, pp- 2131-2159, 2012.

[29] Z. Popowicz, “A two-component generalization of the
Degasperis-Procesi  equation,”  Journal —of Physics A:
Mathematical and General, vol. 39, no. 44, pp. 13717-13726,
2006.

[30] J.Escher, O. Lechtenfeld, and Z. Yin, “Well-posedness and blow-
up phenomena for the 2-component Camassa-Holm equation,”
Discrete and Continuous Dynamical Systems A, vol. 19, no. 3, pp.
493-513, 2007.

[31] A. Constantin and R. I. Ivanov, “On an integrable two-
component Camassa-Holm shallow water system,” Physics Let-
ters. A, vol. 372, no. 48, pp. 7129-7132, 2008.

[32] G. Guiand Y. Liu, “On the global existence and wave-breaking
criteria for the two-component Camassa-Holm system,” Journal
of Functional Analysis, vol. 258, no. 12, pp. 4251-4278, 2010.

[33] G. Gui and Y. Liu, “On the Cauchy problem for the two-
component Camassa-Holm system,” Mathematische Zeitschrift,
vol. 268, no. 1-2, pp. 45-66, 2011.

[34] M. Chen, S. Liu, and Y. Zhang, “A two-component generaliza-
tion of the Camassa-Holm equation and its solutions,” Letters in
Mathematical Physics, vol. 75, no. 1, pp. 1-15, 2006.

[35] W. Chen, X. Deng, and J. Zhang, “Blow up and blow-up rate
for the generalized 2-component Camassa-Holm equation,”
International Journal of Nonlinear Science, vol. 12, no. 3, pp. 313-
322, 2011.

[36] K. Yan and Z. Yin, “Analytic solutions of the Cauchy problem
for two-component shallow water systems,” Mathematische
Zeitschrift, vol. 269, no. 3-4, pp. 11131127, 2011.

[37] C.Guan and Z. Yin, “Global existence and blow-up phenomena
for an integrable two-component Camassa-Holm shallow water
system,” Journal of Differential Equations, vol. 248, no. 8, pp.
2003-2014, 2010.

[38] C. Guan and Z. Yin, “Global weak solutions for a two-
component Camassa-Holm shallow water system,” Journal of
Functional Analysis, vol. 260, no. 4, pp. 1132-1154, 2011.

[39] W. Chen, L. Tian, X. Deng, and J. Zhang, “Wave breaking for
a generalized weakly dissipative 2-component Camassa-Holm
system,” Journal of Mathematical Analysis and Applications, vol.
400, no. 2, pp. 406-417, 2013.

[40] Q. Hu, “Global existence and blow-up phenomena for a
weakly dissipative periodic 2-component Camassa-Holm sys-
tem,” Journal of Mathematical Physics, vol. 52, no. 10, Article ID
103701, 2011.

[41] J. Lenells and M. Wunsch, “On the weakly dissipative Camassa-
Holm, Degasperis-Procesi, and Novikov equations,” Journal of
Differential Equations, vol. 255, no. 3, pp. 441-448, 2013.

[42] Y. Mi and C. Mu, “On the Cauchy problem for the modified
Novikov equation with peakon solutions,” Journal of Differential
Equations, vol. 254, no. 3, pp. 961-982, 2013.

[43] J. Liu, “The Cauchy problem of a periodic 2-component u-
Hunter-Saxton system in Besov spaces,” Journal of Mathemat-
ical Analysis and Applications, vol. 399, no. 2, pp. 650-666, 2013.

[44] H. Bahouri, J. Chemin, and R. Danchin, “Fourier analysis and
nonlinear partial differential equations,” in Grundlehren der
Mathematischen Wissenschaften, vol. 343, Springer, 2010.

[45] R. Danchin, “A few remarks on the Camassa-Holm equation,’
Differential and Integral Equations, vol. 14, no. 8, pp. 953-988,
2001.



Journal of Applied Mathematics

[46]

(47]

(48]

(49]

(50]

R. Danchin, “Fourier analysis methods for PDEs, Lecture
notes,” 2005.

W. Yan, Y. Li, and Y. Zhang, “The Cauchy problem for the
integrable Novikov equation,” Journal of Differential Equations,
vol. 253, no. 1, pp. 298-318, 2012.

W. Arendt and S. Bu, “Operator-valued Fourier multipliers
on periodic Besov spaces and applications,” Proceedings of the
Edinburgh Mathematical Society II, vol. 47, no. 1, pp. 15-33, 2004.

O. Glass, “Controllability and asymptotic stabilization of the
Camassa-Holm equation,” Journal of Differential Equations, vol.
245, no. 6, pp. 1584-1615, 2008.

X. Wu and Z. Yin, “Well-posedness and blow-up phenomena
for the generalized Degasperis-Procesi equation,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 73, no. 1, pp. 136-
146, 2010.

A. Constantin and ]. Escher, “Wave breaking for nonlinear
nonlocal shallow water equations,” Acta Mathematica, vol. 181,
no. 2, pp. 229-243,1998.

A. Constantin, “Global existence of solutions and breaking
waves for a shallow water equation, a geometric approach,”
Annales de I'Institut Fourier Universite de Grenoble, vol. 50, pp.
321-362, 2000.

17



