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For the technology of mechanical elastic energy storage utilizing spiral torsion springs as the energy storage media presented
previously, a global multivariable control algorithm based on nonlinear internal model principle under multiclass external
disturbances is proposed. The nonlinear external disturbances with nonharmonic periodic characteristics are generated by
multiclass nonlinear external systems. New equations of nonlinear internal model are designed to estimate the multiclass external
disturbances. On the basis of constructing the control law of nominal system, a state feedback controller is designed to guarantee the
closed-loop system globally uniformly bounded, and a Lyapunov function is constructed to theoretically prove the global uniform
boundedness of the multivariable closed-loop system signals. The simulation results verify the correctness and effectiveness of the
presented algorithm.

1. Introduction

Energy storage technologies have a great practical signif-
icance for the solution of new energy interconnecting to
the grid, peak regulation, frequency modulation, and sta-
bility control [1, 2]. Based on lucubration of mechanical
elastic energy storage (MEES), a new way of MEES method
applying spiral torsion springs (STS) as the energy storage
material is proposed [3]. Due to the advantages such as large
power density, high efficiency, great electromagnetic torque,
small volume, and fast response speed, permanent magnet
synchronous motor (PMSM) is selected as the actuator for
MEES system, just as in many other servo systems [4].
One of the key technologies to be solved for MEES is the
nonlinear control owing to its electromechanical coupling
properties and nonlinear characteristics of PMSM [5]. When
PMSM based MEES system runs in energy storage, the
increasing load torque with the tightening of STS is unfa-
vorable for the operation of servo system. In addition, due

to the nonlinearities, strong coupling, and time variation
of PMSM, especially the existence of the nonlinear external
disturbances, the conventional PID controller is difficult to
satisfy the requirement of high precision control [6]. Hence,
the other control methods should be introduced, just as
nonlinear control [7–10], adaptive control [11], state feedback
control [12], and so forth.

One of the core questions in control field is to guarantee
asymptotical stability of unforced close-loop system, imple-
ment the asymptotical tracking of system output for given
trajectories, and reject exogenous disturbances [13–16]. The
control problems for servo system are also called the output
regulation problems; the problems of disturbance rejection
under the framework of output regulation have earned exten-
sive attention in recent years [17, 18]. The preexisting papers
mostly assumed that the exosystem generating disturbances
is linear, neutral, and stable; that is to say, disturbance
rejection under sinusoidal perturbation is frequently studied.
For instance, literatures [16, 17, 19] deal with the problems
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of sinusoidal perturbation rejection in known and unknown
frequency, respectively. Nevertheless, the nonharmonic dis-
turbances generated by nonlinear exosystems, which will
make practical servo systems, generators, and power flexible
mechanisms produce noise and precision reduction [20], are
harmful to these practical running systems. However, how to
tackle with disturbances generated by nonlinear exosystems
is rarely involved [21]. Therefore, rejection of these harmful
oscillations is essential to guarantee that the systems operate
stably under nonlinear external disturbances.

Another central issue in control field is to extend the
established control theory to more complex and generalized
circumstances. In [22], disturbance rejection under a class
of exosystems for a single-input nonlinear system is studied,
in which the dependent external system is a single model,
and the researched system is a single-input system. In [23], a
global harmonic rejection algorithm formultivariable system
is proposed; however, the rejection of the disturbances in the
paper aims at the standard sinusoidal components. For the
nonlinearity and complexity of PMSM based MEES system,
the focus of the paper is to extend the previous works in
[22, 23] to a generalizedmultivariable input field of nonlinear
systems under multiclass nonlinear exosystems with the
application of the constructed model for PMSM basedMEES
system in [5] and design a controller to suppress multiclass
external nonharmonic disturbances in PSMS based MEES
system.

The mainly theoretical contribution of the paper is to
propose a global multivariable disturbance control method
to reject multiclass nonlinear external nonharmonic dis-
turbances generated by multiclass nonlinear exosystems for
general multivariable nonlinear system, and the presented
control algorithm is employed to regulate an actual nonlinear
system.Thevalidity and effectiveness of the proposedmethod
are testified by the simulation results.

The organization of the paper is as follows. It starts
with an introduction of the research status of disturbance
rejection and points out the significance of rejection of
nonharmonic external disturbances in Section 1. The math-
ematical model of PMSM based MEES system is constructed
and the formulation of control problem in the paper is given
in Section 2. In Section 3, the nonlinear internal models
simulating themulticlass external nonharmonic disturbances
are presented based on internal model principle. Nonlinear
multivariable state feedback controller ensuring the closed-
loop system globally bounded is demonstrated in Section 4.
The verifications of the proposed algorithm by means of
numerical simulations are shown in Section 5. Ultimately,
Section 6 sums up the conclusions of the research and puts
forward the work in the future.

2. Problem Formulation

2.1. Mathematical Model of PMSM Based MEES System.
For the convenience of understanding and reutilization, the
model of the whole system for PMSM based MEES system
proposed in [3, 5] is shown in Figure 1, where gear case is
simplified as amodel of springmass damperwithmultidegree
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Figure 1: The model of PMSM based MEES system.

of freedom, 𝐵
𝑚
and 𝐵

𝐿
denote the damping coefficients of the

motor and elastic shaft, respectively, 𝑇
𝑚
and 𝑇

𝐿
represent the

output torque of the motor and main shaft, respectively, and
𝜔
𝑚
and 𝜔

𝐿
symbolize the angular velocity of the motor and

main shaft of energy storage box, respectively. STS is installed
in energy storage box.

In the process of energy storage, PMSM runs in the state
of electric motor. For PMSM, assume that the inductance of
d-axis 𝐿

𝑑
is equal to the inductance of q-axis 𝐿

𝑞
. Accordingly,

themathematicalmodel for PMSM in dq rotating coordinates
can be expressed as follows [24]:
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(1)

where 𝑖
𝑑
and 𝑖
𝑞
denote the current components of stator in dq

axis, respectively, 𝑢
𝑑
and 𝑢

𝑞
display the voltage components

of stator in dq axis, respectively, and 𝑅
𝑠
, 𝜔
𝑚
, 𝜑
𝑓
, 𝑝, and 𝐽

𝑚

represent the resistance of stator, angular velocity, flux linkage
of rotor, numbers of pole pairs, and moment of inertia of
rotor, respectively.

The ratio of gear case is assumed to be 𝑟; without regard
to the power loss of gear case, the relationship between
torque and angular velocity on both sides of gear case can be
expressed as

𝑇
𝑚
=
𝑇
𝐿

𝑟
, 𝜔

𝑚
= 𝜔
𝐿
⋅ 𝑟. (2)

Suppose the outer end of STS to be fixed in spring box
as V type, and in terms of the national standard design and
calculation of spiral torsion spring (JB/T7366-1994) in China,
the torque of STS with rectangle cross section can be written
as

𝑇
𝐿
= 𝑘

𝐸𝑏ℎ
3

6𝑙
𝑛, (3)

where 𝑛 denotes the working turns of spring, 𝐸, 𝑙, 𝑏, and
ℎ represent the modulus of elasticity, length, width, and
thickness of STS, respectively, and 𝑘 indicatesmass coefficient
of spring.

Due to the large mass and high inertia of MEES system,
the working rotation velocities for the main shaft of energy
storage box and the rotor of PMSM are both assumed to
be invariable. Hence, the relationship between the angular
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velocity 𝜔
𝐿
and the working turns 𝑛 for the main shaft of

energy storage box can be written as follows:

𝑛 =
𝜔
𝐿
𝑡

2𝜋
, (4)

where 𝑡 represents the time.
Equation (4) is substituted into (3); the relationship

between the torque 𝑇
𝐿
of STS and angular velocity 𝜔

𝐿
of the

main shaft can be given by the following formula:

𝑇
𝐿
= 𝑘

𝐸𝑏ℎ
3

𝜔
𝐿

12𝜋𝑙
𝑡. (5)

For a given STS, (5) shows that the torque 𝑇
𝐿
of STS is

proportional to the time 𝑡 if angular velocity 𝜔
𝐿
is a constant.

The mathematical model for the whole system of PMSM
based MEES can be obtained by combining differential
equation (1) with algebraic equations (2) and (5).

2.2. Control Problem Formulation. Consider the multivari-
able nonlinear system with a standard affine form under
multiclass disturbances:

ẋ = f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)) , 1 ≤ 𝑖 ≤ 𝑚, (6)

where x ∈ R𝑛 are the state vectors, u
𝑖

∈ R are the
control inputs, f(x) and g

𝑖
(x) are the known smooth vector

fields, v
𝑖
(w) are the nonlinear disturbance inputs, and w ∈

R𝑞 indicate the external signals generated by the nonlinear
exosystem shown as follows:

ẇ = s
𝑖
(w) , 1 ≤ 𝑖 ≤ 𝑚. (7)

If the nonlinear disturbance inputs are ignored, for system
(6), its nominal system can be written as

ẋ = f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) u
𝑖
, 1 ≤ 𝑖 ≤ 𝑚. (8)

The essence of solving stability problems for a multi-
variable input system is to convert these problems into the
stability problems of multiple single-input systems [25].

Assumption 1. For system (8), there exists a control law of
state feedback 𝛼

𝑖
(x) making the nominal close-loop system

ẋ = f(x) + ∑
𝑚

𝑖=1
g
𝑖
(x)𝛼
𝑖
(x) asymptotically stabilize at the

origin. Therefore, there exists a Lyapunov function V(x)
satisfying

𝑑 (‖x‖) ≤ V (x) ≤ 𝑑 (‖x‖) ,

𝜕V (x)
𝜕x

(f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x)) ≤ −𝑑

0
(‖x‖) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V(x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑑
0
(‖x‖) ,

(9)

where 𝑑, 𝑑, and 𝑑
0
are all of 𝐾

∞
class functions.

Assumption 2. The trajectory of the vector field for the
nonlinear exosystem (7) is bounded.

Remark 3. The functions, which meet Assumption 2, include
harmonic functions and limit cycles of nonlinear dynamic
systems. For instance, the famous Van der Pol circuit can be
written as

𝑤̇
1
= 𝑤
2
− 𝜍 (

1

3
𝑤
3

1
− 𝑤
1
) ,

𝑤̇
2
= −𝑤
1
,

(10)

where 𝜍 denotes a parameter to adjust the period of current
or voltage. The eigenvalues of Jacobian matrix for (10) at the
origin are (1/2)(𝜍 ± √𝜍2 − 4). If 0 < 𝜍 ≤ 2, the eigenvalues
have positive real parts; if 𝜍 > 2, the eigenvalues are positive
real numbers. Consequently, as long as 𝜍 > 0, the equilibrium
points at the origin of (10) are unstable and there exists a
bounded limit cycle [20].

Assumption 4. There exists a smooth function r
𝑖
(x) : R𝑛 →

R𝑞 making

𝜕r
𝑖
(x)

𝜕x
g
𝑖
(x) = K

𝑖
, 1 ≤ 𝑖 ≤ 𝑚, (11)

where𝐾
𝑖
∈ R𝑞 is a nonzero constant vector.

The problem to be solved in the paper can be described as
in the following definition.

Definition 5. For any given compact subset Dw ∈ R𝑞, a state
feedback controller u

𝑖
can be found to make the solution

of the close-loop system (6) exist and be bounded, and
lim
𝑡→∞

x(𝑡) = 0 under arbitrary initial conditions for all
w(0) ∈ Dw and 𝑡 ≥ 0.

3. Multiclass Nonlinear Internal
Models Design

In the paper, internal model principle (IMC) is utilized
to reject the multiclass disturbances. Disturbances rejec-
tion by IMC belongs to indirect suppression algorithm.
Hence, appropriate internal model equations should be firstly
established to estimate the inputting nonlinear disturbances.
Because the exosystem discussed in the paper is nonlinear,
the internal model equations established should also be
nonlinear. Therefore, Assumption 6 is introduced as follows.

Assumption 6. For the nonlinear exosystem (7), when 1 ≤

𝑖 ≤ 𝑚, there exists an immersion system being depicted as
follows:

𝜂̇
𝑖
= F
𝑖
𝜂
𝑖
+ G
𝑖
𝛾
𝑖
(J
𝑖
𝜂
𝑖
) , v

𝑖
(w) = H

𝑖
𝜂
𝑖
, (12)

where 𝜂
𝑖

∈ R𝑟, F
𝑖
,G
𝑖
,H
𝑖
, J
𝑖
are matrices with certain

dimensions, the matrix pair (F
𝑖
, H
𝑖
) is observable, and there

exists a positive definite matrix P𝜂̂
𝑖

making the following
formula hold:

P𝜂̂
𝑖

G
𝑖
+ (J
𝑖
)
𝑇

= 0, (13)



4 Abstract and Applied Analysis

and the nonlinear function 𝛾
𝑖
(J
𝑖
𝜂
𝑖
) can be expressed as

𝛾
𝑖
(J
𝑖
𝜂
𝑖
) =

[
[
[
[
[
[
[
[
[

[
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1
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(
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J1𝑗
𝑖
𝜂
1𝑗
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)
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𝑟

∑
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]
]
]
]
]
]
]
]
]

]

(14)

and satisfies (𝑠
1
− 𝑠
2
)
𝑇

(𝛾
𝑖
(𝑠
1
) − 𝛾
𝑖
(𝑠
2
)) ≥ 0.

Consequently, the multiclass nonlinear internal model
equations can be designed as follows:

̇̂
𝜂
𝑖
= (F
𝑖
− K
𝑖
H
𝑖
) (𝜂̂
𝑖
− r
𝑖
(x)) + G

𝑖
𝛾
𝑖
(J
𝑖
(𝜂̂
𝑖
− r
𝑖
(x)))

+ K
𝑖
u
𝑖
+
𝜕r
𝑖
(x)

𝜕x
f
𝑖
(x) ,

(15)

where K
𝑖
∈ R𝑞 satisfies Assumption 4 and makes F

𝑖0
=

F
𝑖
−K
𝑖
H
𝑖
a Hurwitz matrix; hence there exist positive definite

matrices P𝜂̂
𝑖

andQ𝜂̂
𝑖

satisfying the following equation:

P𝜂̂
𝑖

F
𝑖0
+ F𝑇
𝑖0
P𝜂̂
𝑖

= −Q𝜂̂
𝑖

. (16)

Define an auxiliary error e
𝑖
as follows:

e
𝑖
= 𝜂
𝑖
− 𝜂̂
𝑖
+ r
𝑖
(x) , (17)

and derivative of (17) along with (6), (12), and (15) is given by

ė
𝑖
= 𝜂̇
𝑖
− ̇̂
𝜂
𝑖
+
𝜕r
𝑖
(x)

𝜕x
(f
𝑖
(x) + g

𝑖
(x) (u

𝑖
− v
𝑖
(w)))

= F
𝑖
𝜂
𝑖
+ G
𝑖
𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − (F

𝑖
− K
𝑖
H
𝑖
) (𝜂̂
𝑖
− r
𝑖
(x))

− G
𝑖
𝛾
𝑖
(J
𝑖
(𝜂̂
𝑖
− r
𝑖
(x))) − K

𝑖
u
𝑖
−
𝜕r
𝑖
(x)

𝜕x
f
𝑖
(x)

= F
𝑖0
e
𝑖
+ G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) .

(18)

4. State Feedback Controller Design

In terms of the nonlinear internal models shown in (15) and
Assumption 1, the state feedback controller can be designed
as follows:

u
𝑖
= 𝛼
𝑖
(x) +H

𝑖
(𝜂̂
𝑖
− r
𝑖
(x)) , (19)

where 𝛼
𝑖
(x) is a controller being able to stabilize the nominal

system (8).
Construct a Lyapunov function as follows:

𝑊 = 𝑉 (x) +
𝑚

∑

𝑖=1

e𝑇
𝑖
P𝜂̂
𝑖

e
𝑖
. (20)

Derivative of Lyapunov function𝑊 along with system (6)
and auxiliary error (18), we can obtain

𝑊̇ =
𝜕𝑉 (x)
𝜕x

(f (x) +
𝑚

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)))

+

𝑚

∑

𝑖=1

e𝑇
𝑖
((P𝜂̂

𝑖

F
𝑖0
+ F𝑇
𝑖0
P𝜂̂
𝑖

) e
𝑖

+ 2e𝑇
𝑖
P𝜂̂
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))))

=
𝜕𝑉 (x)
𝜕x

(f
𝑖
(x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x))

+
𝜕𝑉 (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)H
𝑖
(𝜂̂
𝑖
− r
𝑖
(x))

−
𝜕𝑉 (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)H
𝑖
(e
𝑖
+ 𝜂̂
𝑖
− r
𝑖
(x)) −

𝑚

∑

𝑖=1

e𝑇
𝑖
Q𝜂̂
𝑖

e
𝑖

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P𝜂̂
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

≤
𝜕𝑉 (x)
𝜕x

(f
𝑖
(x) +

𝑚

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
(x))

−

𝑚

∑

𝑖=1

𝜕𝑉 (x)
𝜕x

g
𝑖
(x)H
𝑖
e
𝑖
−

𝑚

∑

𝑖=1

𝜆min (Q𝜂̂
𝑖

)
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩

2

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P𝜂̂
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

≤ −𝑑
0
(‖x‖) +

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩H𝑖e𝑖
󵄩󵄩󵄩󵄩

−

𝑚

∑

𝑖=1

𝜆min (Q𝜂̂
𝑖

)
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩

2

+

𝑚

∑

𝑖=1

2e𝑇
𝑖
P𝜂̂
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) ,

(21)

where 𝜆min(⋅) denotes the minimum eigenvalue of a certain
matrix.

In terms of Assumption 6, we can obtain P𝜂̂
𝑖

G
𝑖
= −(J
𝑖
)
𝑇;

hence

𝑚

∑

𝑖=1

2e𝑇
𝑖
P𝜂̂
𝑖

G
𝑖
(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
)))

=

𝑚

∑

𝑖=1

(−2 (J
𝑖
𝜂
𝑖
− J
𝑖
(𝜂
𝑖
− e
𝑖
)))
𝑇

(𝛾
𝑖
(J
𝑖
𝜂
𝑖
) − 𝛾
𝑖
(J
𝑖
(𝜂
𝑖
− e
𝑖
))) ≤ 0.

(22)
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Applying permanent establishment inequality 2𝑎𝑏 ≤

𝑐𝑎
2

+ 𝑐
−1

𝑏
2 (choosing 𝑐 = 2) to the second term of (21), we

obtain
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩H𝑖e𝑖
󵄩󵄩󵄩󵄩

≤

𝑚

∑

𝑖=1

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉
𝑖
(x)

𝜕x
g
𝑖
(x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1

4

󵄩󵄩󵄩󵄩H𝑖
󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩

2

) .

(23)

Substitute (22) and (23) into (21) and combine (23) with
the application of Assumption 1; we obtain

𝑊̇ ≤ −

𝑚

∑

𝑖=1

(𝜆min (Q𝜂̂
𝑖

) −
1

4

󵄩󵄩󵄩󵄩H𝑖
󵄩󵄩󵄩󵄩

2

)
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩

2

. (24)

Choose appropriateQ𝜂̂
𝑖

andH
𝑖
to satisfy

𝑑
𝑖
= 𝜆min (Q𝜂̂

𝑖

) −
1

4

󵄩󵄩󵄩󵄩H𝑖
󵄩󵄩󵄩󵄩

2

> 0; (25)

namely,

𝑊̇ ≤ −

𝑚

∑

𝑖=1

𝑑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩

2

. (26)

By above knowable, all the variables are bounded. Com-
bine with the application of the invariant set theorem, it
can be obtained that lim

𝑡→∞
x(𝑡) = 0 and lim

𝑡→∞
e
𝑖
= 0.

Therefore, we give a theorem as follows.

Theorem 7. There exist positive definite matrices P𝜂̂
𝑖

and Q𝜂̂
𝑖

satisfying (13) and (16), nonzero vector K
𝑖
∈ R𝑞 makes F

𝑖0
=

F
𝑖
− K
𝑖
H
𝑖
be Hurwitz, and (25) holds as well. Hence, for the

multivariable nonlinear system (6) and multiclass exosystem
(7) satisfying Assumption 1 to Assumption 6, the multiclass
nonlinear internal models (15) and control inputs (19) are able
to make the close-loop system globally uniformly hounded, and
lim
𝑡→∞

x(𝑡) = 0.

Remark 8. Theorem 7 redescribes Definition 5 in essence;
furthermore, it provides a feasible way to find a state feedback
controller u

𝑖
to stabilize the close-loop system (6) to reference

trajectories. In addition, the selection of positive definite
matrices P𝜂̂

𝑖

and Q𝜂̂
𝑖

and nonzero vector K
𝑖
is to design

multiclass nonlinear internalmodels (see (15)) to simulate the
external nonharmonic disturbances produced by nonlinear
exosystem shown in (7). The control inputs (19) are the state
feedback controller described in Definition 5.

5. Numerical Simulation and Analysis

5.1. Description of Simulation Parameters. The verification of
the proposed algorithm in the paper is performed by means
of numerical simulation in a 0.018 kWh/1.1 kW PMSM based
MEES system. The specific parameters of the MEES system
are shown as follows: the rating torque of PMSM 𝑇m =

5.0N.m, number of pole-pairs 𝑝 = 4, flux linkage of rotor

𝜑
𝑓
= 0.18Wb, resistance of stator 𝑅

𝑠
= 1.95Ω, inductances

of d-axis and q-axis 𝐿
𝑑
= 𝐿
𝑞
= 0.0115H, moment of inertia

of rotor 𝐽
𝑚

= 0.008 kg⋅m2, ratio of gear case = 40 : 1, the
angular velocity of main shaft 𝜔

𝐿
= 15 r/min, and damping

coefficients of the motor 𝐵
𝑚
= 0.01N/rad/s.

5.2. Analysis and Discussion of Simulation Results. Consid-
ering the multiclass nonlinear disturbances, the mathemat-
ical model for the whole system of PMSM based MEES
system is converted into the form of (6), and the ultimate
result is shown in (27). Equation (27) indicates that the
nonlinear model of MEES system is a two-variable input
system, which is unable to be dealt with by a single-input
algorithm. In addition, (27) includes multiclass nonlinear
disturbances v

𝑖
(w), and the rejection algorithm handling a

single disturbance cannot address the problem of multiclass
disturbances rejection as well:

ẋ = f (x) +
2

∑

𝑖=1

g
𝑖
(x) (u

𝑖
− v
𝑖
(w)) , (27)

where x = [𝑥
1

𝑥
2

𝑥
3
]
𝑇

= [𝑖
𝑑

𝜔
𝑚

𝑖
𝑞
]
𝑇,

f (x) =

[
[
[
[
[
[
[

[

−
𝑅
𝑠

𝐿
𝑑

𝑥
1
+ 𝑝𝑥
2
𝑥
3

𝑝𝜑
𝑓

𝐽
𝑚

𝑥
3
−
𝐵
𝑚

𝐽
𝑚

𝑥
2
−

1

𝐽
𝑚

𝑇
𝑚

−
𝑅
𝑠

𝐿
𝑞

𝑥
3
− 𝑝𝑥
2
𝑥
1
−

𝑝𝜑
𝑓

𝐿
𝑞

𝑥
2

]
]
]
]
]
]
]

]

,

g
1
(x) = [

1

𝐿
𝑑

0]

𝑇

, g
2
(x) = [

1

𝐿
𝑞

] ,

(28)

and the control input u = [𝑢
1

𝑢
2
]
𝑇

= [𝑢
𝑑

𝑢
𝑞
]
𝑇.

If the nonlinear disturbances v
𝑖
(w) are ignored in (27),

the remaining system in (29) is the nominal system forMEES
system:

ẋ = f (x) +
2

∑

𝑖=1

g
𝑖
(x) u
𝑖
. (29)

For the sake of convenience, the inputs of nonlinear
external disturbances V

1
and V

2
are both generated by Van

der Pol circuit described in (10) with 𝜍 = 2, which produces
bounded limit cycles. Consequently, Assumption 2 holds.

Suppose that V
1
and V

2
are immersed in the current

components of d-axis and q-axis, respectively, and V
1

=

𝑤
1
, V
2

= 𝑤
1
− 𝑤
2
. Hence, the difference of the exter-

nal disturbances represents the fact that the original sys-
tem isimmersed in multiclass nonlinear disturbance signals.
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For V
1
, the matrix parameters appearing in (12) are chosen as

𝐹
1
= [

2 1

−1 0
] , 𝐺

1
= [

−2 1

0 1
] , 𝐽

1
= [

1 0

1 −1
] ,

𝐻
1
= [1 0] , 𝛾

1

1
(𝑠) =

1

3
𝑠
3

, 𝛾
2

1
(𝑠) = 0,

𝑃
𝜂1
= [

1

2
−
3

2
0 1

] ;

(30)

for V
2
= 𝑤
1
−𝑤
2
, the matrix parameters appearing in (12) are

selected as

𝐹
2
= [

2 1

−1 0
] , 𝐺

2
= [

−2 1

0 1
] , 𝐽

2
= [

1 0

1 −1
] ,

𝐻
2
= [1 −1] , 𝛾

1

2
(𝑠) =

1

3
𝑠
3

, 𝛾
2

2
(𝑠) = 0,

𝑃
𝜂2
= [

1

2
−
3

2
0 1

] ,

(31)

and hence Assumption 6 is satisfied.
Assume that 𝑐

1
, 𝑐
2
, and 𝑐

3
all are certain positive constants;

the control law for the nominal system (29) is designed as

𝛼 (x) = [
𝛼
1
(x)
𝛼
2
(x)]

=

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝐿
𝑑
(𝑐
1
𝑥
1
+

𝐿
𝑞

𝐿
𝑑

𝑝𝑥
2
𝑥
3
)

𝐿
𝑞
(−

𝑝𝜑
𝑓

𝐽
𝑚

𝑐
2
(𝑥
2
− 𝜔ref) +

𝑅
𝑠

𝐿
𝑞

𝑥
3
+
𝐿
𝑑

𝐿
𝑞

𝑝𝑥
2
𝑥
1

+

𝑝𝜑
𝑓

𝐿
𝑞

𝑥
2

−𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
)))

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(32)

where 𝜔ref denotes the angular velocity reference of rotor for
PMSM. It can be verified that 𝛼(x) can stabilize the nominal
system (29) without disturbances, owing to the fact that the
stabilization process of (29) is not the emphasis of the paper;
hence the detailed deductions are omitted.

Let

V (x) = 1

2
𝑥
2

1
+
1

2
𝑐
2
(𝑥
2
− 𝜔ref)

2

+
1

2
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

;

(33)

after calculations and arrangements, we obtain

𝜕V (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
)

= −(𝑐
1
+

𝑅
𝑠

𝐿
𝑑

)𝑥
2

1
−

𝜑
𝑓

𝐽
𝑚

𝑐
2
(𝑥
2
− 𝜔ref)

2

− 𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

= − (𝑐
1
+ 169.5652) 𝑥

2

1
− 225𝑐

2
(𝑥
2
− 𝜔ref)

2

− 𝑐
3
(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

2

,

(34)

𝜕V (x)
𝜕x

2

∑

𝑖=1

g
𝑖
(x)

=
1

𝐿
𝑑

𝑥
1
+

1

𝐿
𝑞

(𝑥
3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))

= 86.9565𝑥
1
+ 86.9565(𝑥

3
−

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
)) .

(35)

Supposing that

x󸀠 = [𝑥
1
(𝑥
2
− 𝜔ref) (𝑥3 −

𝐽
𝑚

𝑝𝜑
𝑓

(

𝜑
𝑓

𝐽
𝑚

𝜔ref +
1

𝐽
𝑚

𝑇
𝑚
))]

𝑇

,

(36)

according to (33), (34), and (35), and choosing 𝑐
1
= 8000,

𝑐
2
= 40, and 𝑐

3
= 8000, we obtain

1

2

󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

≤ V (x) ≤ 20
󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

, (37)

𝜕V (x)
𝜕x

(f (x) +
2

∑

𝑖=1

g
𝑖
(x)𝛼
𝑖
) ≤ −7562

󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

, (38)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V (x)
𝜕x

𝑚

∑

𝑖=1

g
𝑖
(x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 7562
󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩
2

. (39)

Hence, Assumption 1 holds.
Choose

𝑟
1
(x) = [9𝐿

𝑑
𝑥
1

0]
𝑇

, 𝑟
2
(x) = [9𝐿

𝑞
𝑥
3

0]
𝑇

. (40)

Consequently,

𝐾
1
=
𝜕𝑟
1
(x)

𝜕x
g
1
(x) = [9 0]

𝑇

,

𝐾
2
=
𝜕𝑟
2
(x)

𝜕x
g
2
(x) = [9 0]

𝑇

.

(41)
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Figure 2: Nonlinear disturbance inputs V and their estimates.
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Figure 3: System control inputs 𝑢.

Therefore, Assumption 4 is satisfied. In addition, with the
application of (41), F

𝑖0
andQ𝜂̂

𝑖

in (16) can be shown as follows
by means of some calculations:

𝐹
10

= [
−7 1

−1 0
] , 𝑄

𝜂1
=
[
[

[

11

2
−10

1

2

3

2

]
]

]

,

𝐹
20

= [
−7 10

−1 0
] , 𝑄

𝜂2
= [

11

2
−
29

2
−4 15

] .

(42)

The above analysis has verified that MEES system (27)
and system (10) of the external disturbances satisfy all the
conditions required by Theorem 7. Consequently, based on
the multivariable disturbances rejection algorithm proposed
in the paper, the multiclass nonlinear internal models and
state feedback controller are designed as follows:

̇̂𝜂
1
= −7𝜂

1
+ 10𝜂
2
− 16.8255𝑥

1
+ 0.414𝑥

2
𝑥
3

−
2

3
(𝜂
1
− 0.1035𝑥

1
)
3

+ 9𝑢
1
,

̇̂𝜂
2
= −𝜂
1
+ 0.1035𝑥

1
,

̇̂𝜂
3
= −7𝜂

3
+ 𝜂
4
− 16.8255𝑥

3
− 6.48𝑥

2
− 0.414𝑥

2
𝑥
1

−
2

3
(𝜂
3
− 0.1035𝑥

3
)
3

+ 9𝑢
2
,

̇̂𝜂
4
= −𝜂
3
+ 0.1035𝑥

3
,

𝑢
1
= −0.2185𝑥

1
− 0.046𝑥

2
𝑥
3
+ 𝜂
1
,

𝑢
2
= −90.1535𝑥

3
+ 247251.84 + 0.046𝑥

2
𝑥
1

− 413.28𝑥
2
+ 127.7788𝑇

𝑚
+ 𝜂
3
− 𝜂
4
.

(43)

The numerical simulations are conducted in Matlab
environment. The whole simulation time is set as 60 s with
the sampling interval 0.001 s; let the initial condition of the
simulation be 𝑥(0) = [0.1 0 1.0], 𝜂(0) = [0 0 0 0],
and 𝑤(0) = [1 −1]. The reference values of the d-axis
current 𝑖

𝑑
and angular velocity of the motor 𝜔

𝑚
are selected

as 0 and 600 r/min, respectively. The q-axis current 𝑖
𝑞
tracks

the change of the torque of STS in energy storage. The
simulation results are shown in Figures 2, 3, and 4. Figure 2
demonstrates the multiclass nonlinear disturbance inputs
and their estimations, from which it can be seen that the
multiclass nonlinear disturbances acting on the different state
variables in a multivariable input system are successfully
estimated relying on the internal models designed. Figure 3
displays the control inputs of the system in dq axis under
the existence of multiclass nonlinear external disturbances.
Figure 4 describes the system states, which indicates that the
system achieves the asymptotical tracking for the reference
signals rapidly and the multiclass nonlinear disturbances are
completely suppressed. Hence, the multivariable controller
designed in the paper has a good control performance.
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Figure 4: System states 𝑥.

6. Conclusion

In light of the strong coupling andnonlinear characteristics of
PMSMbasedMEES system, a globalmulticlass nonharmonic
disturbances rejectionmethod for general multivariable non-
linear system under multiclasses nonlinear exosystems is
proposed in the paper. For multiclass nonlinear external
disturbances with different periodic bounded nonharmonic
characteristics, different nonlinear internal model equations
are designed. Based on design of control law for nominal
system, a state feedback controller for original system is
presented and a Lyapunov function is established to the-
oretically testify the global boundedness of all signals in
multivariable close-loop system.The simulation results show
that the multiclass different nonlinear disturbance inputs are
all completely rejected and the close-loop system can track
the reference signals promptly. Consequently, high accuracy
servo control for PMSM based MEES system is realized.

In addition to PMSM based MEES system, many other
practical engineering systems, including turbine motor, gen-
erator, power flexible manipulator, and communication cir-
cuit, are frequently affected by the nonharmonic disturbances
generated by the external nonlinear exosystems. As the
most famous and typical nonlinear circuit, Van der Pol
circuit researched in the paper will excite nonharmonic
disturbances and make the systemmentioned above produce
nonharmonic forced oscillation. The algorithm presented in
the paper can eliminate the harmful oscillation and improve
the stability for these practical systems.

The critical points of the output regulation problem
under nonharmonic disturbances are to model the nonlinear
exosystems and propose reasonable algorithm to stabilize the
closed-loop system. In the future, the proposed algorithm
in the paper can be able to be extended to uncertainly
multivariable systems and unknown external signals; corre-
spondingly, the innovative control technologies should be
researched to cope with the more complex and generalized
circumstances.
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