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The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall
temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer
approximation, the two-dimensional momentum, heat, andmass transfer equations are transferred to nonlinear partial differential
equations form and solved numerically using a newmethod called spectral local linearisation method.The effects of the governing
parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.

1. Introduction

In recent years, nanofluids have attracted a considerable
amount of interest due to their novel properties that make
them potentially useful in a number of industrial applications
including transportation, power generation, micromanufac-
turing, thermal therapy for cancer treatment, chemical and
metallurgical sectors, heating, cooling, ventilation, and air-
conditioning. The term nanofluid is used to refer to a solid-
liquid mixture with a continuous phase in which nanoscale
particles are dispersed in conventional base fluids. The
nanofluid reference was first used by Choi [1]. The nanofluid
can be readily configured either in a low state, where it
conducts heat poorly, or in a high state, where the dissipation
is more efficient [2]. The nanoparticles are made of various
materials such as oxide ceramics, nitride ceramics, carbide
ceramics, metals, semiconductors, and composite materials
such as alloyed nanoparticles while the base fluids are usually
water, ethylene glycol, toluene, and oil [3, 4]. They are also
important for the production of nanostructured materials
for the engineering of complete fluids and for cleaning oil
from surfaces due to their excellent wetting and spreading
behaviour [4, 5]. Nanofluids can also be used as smart
materials working as a heat valve to control the flow of heat.

A good review of the literature on nanofluids can be found
in Buongiorno [6]. Kuznetsov and Nield [7] investigated
the problem of natural convective boundary-layer flow of
a nanofluid past a vertical plate. Their model considered
the nanoparticle Brownian motion and thermophoresis with
simple boundary conditions; namely, both the temperature
and the nanoparticle fraction were constant along the wall.
Using the Darcy model, Nield and Kuznetsov [8] studied
the Cheng-Minkowycz problem of natural convection past a
vertical plate in a porous medium saturated with a nanofluid.
Khan and Pop [9] considered the effects of Brownian motion
and thermophoresis in the laminar fluid flow from a stretch-
ing flat surface in a nanofluid. An experimental study of the
problem was made for flow in vertical square enclosures of
different sizes by Ho et al. [10]. Similar investigations have
been conducted by, among others, Khan andAziz [11], Rashad
et al. [12], Aziz et al. [13], Rana et al. [14], Hajipour andMolaei
Dehkordi [15], and Chanda and Rana [16].

The nonlinear temperature-density relationship in which
the flow is driven by buoyancy may exert a strong influ-
ence on the flow and heat transfer characteristics. It is of
practical importance in geothermal and engineering appli-
cations; for example, the residual warm water discharged
from a geothermal power plant is usually disposed off
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from wells through subsurface reinjection. Using a parabolic
temperature-density relationship, Korovkin and Andrievskii
[17] investigated a fully developed free-convective flow above
a horizontal linear heat source and on a flat imperme-
able vertical semi-infinite plate for three types of thermal
boundary conditions, namely, an adiabatic surface, a con-
stant temperature, and a constant heat flux on the surface.
Vajravelu et al. [18] studied the problem of free convection
flow at a vertical flat plate embedded in a saturated porous
medium in the presence of heat sources (or sinks) with
nonlinear density temperature variation. Fluid flow problems
involving the nonlinear density temperature variation have
been investigated by [19–22] among others. The recent study
by Motsa et al. [23] investigated the problem of unsteady
double diffusive convection flow over a stretching flat plate
with nonlinear density temperature variation using a new
version of the spectral homotopy analysis method.

The objective of this study is to consider the effects of
the nonlinear density temperature variations as well as the
Brownianmotion and thermophoresis on nanofluid flowover
heated vertical surfacewith a sinusoidalwall temperature. It is
well known that power law surface temperature distributions
give rise to self-similar boundary-layer flows (see [24, 25]).
To define the periodic array of heaters behind or within the
wall, Rees [26] proposed another form of surface temperature
variation with sinusoidal variations about themean tempera-
ture which is held above the ambient temperature of the fluid.
These types of boundary heating have been investigated by,
among others, Pop and Ingham [27], Roy and Hossain [28],
Saha et al. [29], Molla et al. [30], and Rana and Bhargava
[31]. The momentum, heat, and mass transfer equations
are reduced into nonlinear partial differential equations
form. The high nonlinear systems governing the model are
solved using a new method of solving systems of differential
equations called the local linearisation method (LLM). The
LLM is an innovative method that seeks to decouple systems
of nonlinear differential equation and applies the Chebyshev
spectral collocation in solving the resulting sequence of
decoupled equations. The LLM was introduced by Motsa
[32] for the solution of general nonlinear boundary-layer
flow equations defined as systems of ordinary differential
equations. The method has also been successfully used with
domain transformation techniques in [33] to solve natural
convection boundary-layer flow problem. In all the cited
works, where the LLM has previously been applied, the
governing equations were systems of ordinary differential
equations. In this work we extend the application of the LLM
to systems of nonlinear partial differential equations.

2. Mathematical Formulation

We consider nonlinear convection from a vertical flat surface
embedded in a nanofluid of ambient temperature 𝑇

∞
. We

assume that the surface is kept at a steady temperature

𝑇 = 𝑇
∞

+ (𝑇
𝑤

− 𝑇
∞

) (1 + 𝐴 sin(
𝜋𝑥

𝐿
)) , (1)

where 𝐴 is the relative amplitude of the surface temperature
variations and 2𝐿 is the wavelength of the variations, 𝑇

𝑤
>

𝑇
∞

for a heated surface and 𝑇
𝑤

< 𝑇
∞

corresponding to
a cooled surface. The temperature between the surface and
the medium is assumed to be sufficiently large; hence the
convection region is thick. In the buoyancy driven flow it is
assumed that the density of the fluid 𝜌 depends nonlinearly
on the temperature 𝑇 of the fluid. In presence of Boussinesq’s
approximation the governing equations for the problem can
be written in the form
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where 𝑢 and V are the velocity components along the
𝑥- and 𝑦-directions, respectively, 𝑇 and 𝜙 are the local
fluid temperature and nanoparticle volume fraction, 𝜌

∞
is

the constant fluid density, 𝜙
∞

is the nanoparticle volume
fraction, 𝛽

0
, 𝛽
1
are thermal expansion coefficients, 𝜇 is the

fluid viscosity, 𝛼
𝑚

is the effective thermal diffusivity, 𝐷
𝐵

is the Brownian diffusion coefficient, 𝐷
𝑇
is thermophoresis

diffusion coefficient, 𝜌
𝑓
∞

is the fluid density, 𝜌
𝑃
is particle

mass density, 𝑔 is the acceleration due to the gravity, 𝜌𝑐
𝑃
is

the effective heat capacity of the nanoparticle material, and 𝜏

is a parameter defined by 𝜌𝑐
𝑓
/𝜌𝑐
𝑃
.

We introduce the following nondimensional variables:
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(3)

The governing equations (2) can be presented as

𝜕𝑢

𝜕𝑥
+

𝜕V
𝜕𝑦

= 0, (4)

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
=

𝜕
2

𝑢

𝜕𝑦2
+ 𝜃 + 𝜎𝜃

2

− Nr𝜙, (5)



Abstract and Applied Analysis 3
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subject to the boundary conditions

𝑢 = 0, V = 0, 𝜃 = 1 + 𝐴 sin𝜋𝑥, 𝜙 = 1

at 𝑦 = 0,

𝑢 → 0, 𝜃 → 0, 𝜙 → 0 as 𝑦 → ∞.

(8)

The various nondimensional parameters appearing in
(4)–(7) are the nanofluid Grashof number Gr, the nonlinear
temperature parameter 𝜎, the buoyancy ratio Nr, the Prandtl
number Pr, the Lewis number Le, the Brownian motion
parameter Nb, and the thermophoresis parameter Nt. These
parameters are defined as
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Introducing the stream function 𝜓(𝑥, 𝑦), where 𝑢 = 𝜕𝜓/𝜕𝑦

and V = −𝜕𝜓/𝜕𝑥, the two-dimensional equations (5)–(7) will
take the form
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The boundary conditions in (8) can be written in terms of the
stream function as

𝜕𝜓

𝜕𝑥
= 0,

𝜕𝜓

𝜕𝑦
= 0, 𝜃 = 1𝐴 sin𝜋𝑥, 𝜙 = 1

at 𝑦 = 0,

𝜕𝜓

𝜕𝑦
→ 0, 𝜃 → 0, 𝜙 → 0 as 𝑦 → ∞.

(11)

Equations (10) can further be simplified by introducing the
following variables:

𝜓 = 𝑥
3/4

𝑓 (𝑥, 𝜂) , 𝜃 = 𝜃 (𝑥, 𝜂) , 𝜙 = 𝜙 (𝑥, 𝜂) ,

𝜂 = 𝑦𝑥
−1/4

.

(12)

Using the similarity variables defined in (12), equations
(10) along with the boundary conditions (11) reduce to the
following two-dimensional boundary value problem:
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−
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(15)

with the boundary conditions

𝑓 (𝑥, 0) = 0,
𝜕𝑓

𝜕𝜂
(𝑥, 0) = 0,

𝜃 (𝑥, 0) = 1 + 𝐴 sin𝜋𝑥, 𝜙 (𝑥, 0) = 1,

𝜕𝑓

𝜕𝜂
(𝑥,∞) = 0, 𝜃 (𝑥,∞) = 0, 𝜙 (𝑥,∞) = 0.

(16)

3. Numerical Solution

In this sectionwe present the numericalmethod used to solve
the governing nonlinear system of PDEs (13)–(16). The local
linearisationmethod (LLM) approach is used to decouple the
equations leading to a linear system which is subsequently
solved using the Chebyshev spectral collocationmethod.The
basic idea behind the LLM stems from the combination of
the Gauss-Seidel method for decoupling equations and the
Newton-Raphson based quasilinearisation. In this regard,
linearisation in the momentum equation (13) is applied only
in terms involving 𝑓(𝜂) and its derivatives. All other terms
are assumed to be known from previous iterations. In the
energy equation (14), linearisation is applied only to terms
involving 𝜃(𝜂) and its derivatives. The terms involving 𝜙(𝜂)

are assumed to be known from previous iteration while the
updated solution for f(𝜂) at the current iteration is used.
Similarly, in the mass transfer equation (15), only terms in
𝜙(𝜂) are linearised while terms in 𝑓(𝜂) and 𝜃(𝜂) are assumed
to be now known at the current iteration (denoted by 𝑟 + 1).
In each case, the quasilinearisation is applied by assuming
that the difference between the functions at the current and
previous iterations is small. For example, in the case of 𝑓(𝜂),



4 Abstract and Applied Analysis

this difference is denoted by𝑓
𝑟+1

−𝑓
𝑟
.Thus applying the LLM

on (13)–(16) gives
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where the primes denote partial derivatives with respect to 𝜂.
The boundary conditions are given by
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𝑟
.

(21)

To solve the linearised system of (17)-(18) we employ the
Chebyshev spectral collocationmethod to discretize in the 𝜂-
direction and use an implicit finite difference method in the
𝑥-direction. To this end, we define the grid points on (𝜂, 𝑥) as

𝜂
𝑗
= cos

𝜋𝑗

𝑁
𝑥

, 𝑥
𝑛

= 𝑛Δ𝑥,

𝑗 = 0, 1, . . . , 𝑁
𝑥
; 𝑛 = 0, 1, . . . , 𝑁

𝑡
,

(22)

where 𝑁
𝑥
, 𝑁
𝑡
are the total number of grid points in the

𝜂- and 𝑥-directions, respectively, and Δ𝑥 is the spacing
in the 𝑥-direction. The finite difference scheme is applied
with centering about a midpoint halfway between 𝑥

𝑛+1 and
𝑥
𝑛. This midpoint is defined as 𝑥

𝑛+1/2

= (𝑥
𝑛+1

+ 𝑥
𝑛

)/2.

The derivatives with respect with 𝜂 are discretized in terms
of the Chebyshev differentiation matrices. Applying the
centering about 𝑥

𝑛+1/2 to any function, say 𝑓(𝜂, 𝑥) and its
associated derivative, we obtain

𝑓 (𝜂
𝑗
, 𝑥
𝑛+1/2

) = 𝑓
𝑛+1/2

𝑗
=

𝑓
𝑛+1

𝑗
+ 𝑓
𝑛

𝑗

2
,

(
𝜕𝑓

𝜕𝑥
)

𝑛+1/2

=

𝑓
𝑛+1

𝑗
− 𝑓
𝑛

𝑗

Δ𝑥
.

(23)

In applying the Chebyshev spectral collocation method,
the continuous derivatives in the unknown functions are
approximated by matrix-vector products of the so-called
differentiation matrices at the collocation points. Before the
spectral method is applied, the domain 𝜂 ∈ [0, 𝜂

∞
] is

transformed to the domain 𝑌 ∈ [−1, 1] on which the spectral
method can be implemented. Thus, the derivatives, say 𝑓

,
𝑓
, at the collocation points 𝑌

𝑗
(𝑗 = 0, 1, . . . , 𝑁

𝑥
), are given

in matrix form in [34, 35] as a differentiation matrix 𝐷 that
maps a vector of the function valuesF = [𝑓(𝑌

0
), . . . , 𝑓(𝑌

𝑁
𝑥

)]
𝑇

at the collocation points to a vector F defined as

F =
𝑁
𝑥

∑

𝑘=0

𝐷
𝑗𝑘
𝑓 (𝑌
𝑘
) = DF, 𝑗 = 0, 1, . . . , 𝑁

𝑥
. (24)

In general, a derivative of order 𝑠 for the function𝑓(𝜂) can be
transformed as

𝑓
(𝑠)

(𝜂) → D𝑠F. (25)

Thus, applying the spectral method in 𝜂 and finite
difference method in 𝑥 gives

𝐴
1
F𝑛+1
𝑟+1

= 𝐵
1
F𝑛
𝑟+1

+ 𝐾
1
,

𝐴
2
Θ
𝑛+1

𝑟+1
= 𝐵
2
Θ
𝑛

𝑟+1
+ 𝐾
2
,

𝐴
3
Φ
𝑛+1

𝑟+1
= 𝐵
3
Φ
𝑛

𝑟+1
+ 𝐾
3
,

(26)

where

𝐴
1
=

1

2
(D3 + a𝑛+1/2

1,𝑟
D2 + a𝑛+1/2

2,𝑟
D + a𝑛+1/2

3,𝑟
)

−
a𝑛+1/2
5,𝑟

D
Δ𝜉

−
a𝑛+1/2
6,𝑟

Δ𝜉
,

𝐵
1
= −

1

2
(D3 + a𝑛+1/2

1,𝑟
D2 + a𝑛+1/2

2,𝑟
D + a𝑛+1/2

3,𝑟
)

−
a𝑛+(1/2)
5,𝑟

D
Δ𝜉

−
a𝑛+1/2
6,𝑟

Δ𝜉
,

𝐴
2
=

1

2
(

1

Pr
D2 + b𝑛+1/2

1,𝑟
D) −

b𝑛+1/2
3,𝑟

Δ𝜉
,

𝐵
2
= −

1

2
(

1

Pr
D2 + b𝑛+1/2

1,𝑟
D) −

b𝑛+1/2
3,𝑟

Δ𝜉
,
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Figure 1: Effect of the buoyancy ratio Nr on 𝑓(𝜂) and 𝑓


(𝜂) for 𝜉 = 0.5, Le = 10, Pr = 7, Nt = 0.1, Nb = 0.5, and 𝐴 = 0.1.
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Figure 2: Effect of the buoyancy ratio Nr on 𝜃(𝜂) and 𝜙(𝜂) for 𝜉 = 0.5, Le = 10, Pr = 7, Nt = 0.1, Nb = 0.5, and 𝐴 = 0.1.

𝐴
3
=

1

2
(

1

Le
D2 + c𝑛+1/2

1,𝑟
D) −

c𝑛+1/2
3,𝑟

Δ𝜉
,

𝐵
3
= −

1

2
(

1

Le
D2 + c𝑛+1/2

1,𝑟
D) −

c𝑛+1/2
3,𝑟

Δ𝜉
,

𝐾
1
= −a𝑛+1/2
4,𝑟

, 𝐾
2
= −b𝑛+1/2
2,𝑟

, 𝐾
3
= −c𝑛+1/2
2,𝑟

.

(27)

In the above equations Φ, Θ, and F correspond to the
approximate values of 𝜙(𝜂, 𝑥), 𝜃(𝜂, 𝑥), and 𝑓(𝜂, 𝑥) at the

collocation points. The approximate solutions for 𝑓, 𝜃, and 𝜙

are obtained by solving (26).The convergence and stability of
the iteration schemes are assessed by considering the norm
of the difference in the values of the approximate functions
between two successive iterations. Thus, for each iteration
scheme, we define the following maximum error 𝐸 at the
(𝑟 + 1)th iteration:

𝐸 = max (
F𝑟+1 − F

𝑟

∞,
Θ𝑟+1 −Θ𝑟

∞,
Φ𝑟+1 −Φ𝑟

∞) .

(28)
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Figure 3: Effect of the 𝜎 on 𝜃(𝜂) and 𝜙(𝜂) for 𝑥 = 0.5, Le = 10, Pr = 7, 𝐴 = 0.1, Nr = 0.1, Nt = 0.1, and Nb = 0.5.
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Figure 4: Effect of the Nt on 𝑓


(𝜂) for 𝜉 = 0.5, Le = 10, Pr = 7, 𝜎 = 0.3, Nr = 0.1, and 𝐴 = 0.1.

The unknowns 𝑓, 𝜃, and 𝜙 were iteratively calculated, for a
given number of collocation points 𝑁

𝑥
, until the following

criteria for convergence was satisfied at iteration 𝑟:

𝐸 ≤ 𝜖, (29)

where 𝜖 is the convergence tolerance level which was chosen
to be 10

−7 in this work. The results are given in the next
section.

4. Results and Discussions

In this section we present solutions of (13)–(15) along with
the boundary conditions (16) which were generated using
the local linearisation method described in the previous
section. In order to obtain clear insights into the physics of
the problem of nanofluid flow over heated vertical surface
with sinusoidal wall temperature variations in presence of the
nonlinear temperature-density relationship, analysis has been
carried out for different values of our governing parameters,
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Figure 6: Effect of the Nb on 𝜃(𝜂) and 𝜙(𝜂) for 𝜉 = 0.5, Le = 10, Pr = 7, 𝜎 = 0.3, Nr = 0.1, Nt = 0.1, and 𝐴 = 0.1.

namely, the nonlinear temperature parameter 𝜎, the Buoy-
ancy ratio Nr, the Prandtl number Pr, the Lewis number Le,
the Brownianmotion parameter Nb, and the thermophoresis
parameter Nt at some streamwise positions 𝑥. Table 1 gives a
comparison between the present results and Rees [26] for the
skin-friction and the heat transfer coefficient, respectively.
Firstly we note a remarkable agreement between the two sets
of results, and secondly as the Prandtl Pr increases, the skin-
friction coefficient decreases and the rate of heat transfer
increases with increasing Prandtl number.

Figure 1 shows the effect of increasing the buoyancy ratio
and the nonlinear temperature parameter 𝜎 on the velocity
component 𝑓



(𝜂). Increasing the buoyancy ratio parameter
leads to increased thickness of the momentum boundary
layer. We also observe that the velocity decelerates at the
surface with an increase in the buoyancy ratio parameter.
In addition, as 𝜎 increases, the velocity tends to increase
very closely to the surface near the edge of boundary layer
in a narrow region. The nonlinear temperature parameter
is expected to alter the momentum boundary layer; hence
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Table 1: Comparisons of wall skin-friction coefficient 𝑓(0) and local Nusselt number −𝜃


(0) with those of Rees [26] for various values of
Prandtl number Pr with Nt = 0, Nb = 0, Nr = 0, and𝜎 = 0.

Pr Rees [26] Present results
𝑓


(0) −𝜃


(0) 𝑓


(0) −𝜃


(0)

0.50 1.0086 0.3120 1.00855006 0.31195217
0.70 0.9601 0.3532 0.96012412 0.35320776
1.00 0.9082 0.4010 0.90819121 0.40103314
1.50 0.8492 0.4607 0.84923678 0.46070468
2.00 0.8079 0.5066 0.80788807 0.50661849
3.00 0.7508 0.5767 0.75076470 0.57667739
4.00 0.7113 0.6304 0.71128220 0.63042597
5.00 0.6814 0.6746 0.68135380 0.67458252
6.00 0.6574 0.7123 0.65739280 0.71234690
7.00 0.6375 0.7455 0.63749977 0.74551232
8.00 0.6206 0.7752 0.62054992 0.77519223
10.00 0.5928 0.8268 0.59283303 0.82684396
20.00 0.5119 1.0052 0.51189002 1.00519108
40.00 0.4392 1.2146 0.43918933 1.21460776
70.00 0.3866 1.4104 0.38663181 1.41042858
100.00 0.3559 1.5495 0.35594693 1.54953322

the velocity decreases with the increase of 𝜎. The influence
of buoyancy parameter Nr on the local temperature and
nanoparticle profiles is displayed in Figure 2. It can be noticed
that both the thermal and the nanoparticle boundary layers
thicknesses increase with an increase in Nr, so the local
temperature and nanoparticle volume fraction profiles are
seen to increase when Nr increases. Figure 3 depicts the
influence of the nonlinear density temperature variation on
the temperature and the nanoparticle volume fraction profiles

in the boundary layer. From the graphical representation it
is apparent that the fluid is brought closer to the surface
and reduces the thermal and nanoparticle volume boundary-
layer thickness with increasing 𝜎. Hence, when 𝜎 increases
there will be a decrease in the temperature profile and in the
nanoparticle volume fraction.

Figure 4 illustrates the effects of the thermophoresis and
Brownian motion parameters on the fluid velocity 𝑓



(𝜂). We
observe that the velocity of the nanofluid decreases as the
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Figure 8: Le = 1, Pr = 1, 𝐴 = 0.1, Nr = 0.1, Nt = 0.1, and Nb = 0.5.

thermophoresis parameter Nt increases; however, the Brow-
nian motion parameter Nb makes the velocity component
𝑓


(𝜂) increase. As expected, the boundary-layer thickness
of the momentum decreases with increasing Nt, whereas
the opposite behaviour of the velocity component 𝑓



(𝜂) is
observed with increasing Nb. The effect of thermophoresis
parameter on the temperature and mass volume fraction
profiles is shown in Figure 5. The thermophoresis force
generated by the temperature gradient creates a fast flow away
from the surface; hence more fluid is heated away from the
surface, and, consequently, as Nt increases, the temperature
within the boundary layer increases. The flow from the
surface carries with it nanoparticles leading to increase in the
mass volume fraction boundary-layer thickness. The effect
of Brownian motion on the temperature and nanoparticle
volume fraction has been plotted in Figure 6. The Brownian
motion represents the random movement caused by the
nanoparticles that are suspended within the fluid. The local
temperature increases as the Brownian motion parameter
Nb increases; hence the Brownian motion is an important
mechanism for the enhancement of thermal conductivity of

nanofluids. However, Brownian motion leads to reposition-
ing of the nanoparticles away from the fluid regime which
causes a clustering near the surface. This leads to a decrease
in the mass volume fraction.

Figure 7 shows effects of the temperature wave amplitude
𝐴 on both the scaled surface shear stress and the rate
of surface heat transfer, respectively. As the temperature
wave amplitude increases, the thickness of the momentum
boundary layer increases; thus we can expect a decrease in
the scaled surface shear stress. However, the fast flow from
the surface increase leads to thinness in the boundary layer
and hence increases the heat transfer rate. Thus the local
temperature increases with increasing 𝐴; the same result has
been reported by Rees [26] for regular fluids.

It is clear from Figure 8 that, as the streamwise distance
𝑥 increases, there is an increase in the size of the inner
isotherms cells while there is no variation in the outer cells.
However increases in the nonlinear temperature parameter 𝜎
create more cells. This is because the thickness of the bound-
ary layer varies with increasing both 𝑥 and 𝜎. Figure 9 shows
the isotherms for several values of the temperature wave
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Figure 9: Le = 1, Pr = 1, 𝐴 = 0.1, Nr = 0.1, Nt = 0.1, and Nb = 0.5.

amplitude 𝐴. The variation of temperature wave amplitude
leads to an increase in boundary-layer thickness, so that the
inner isotherms cell size increases and more inner isotherms
cells are created.

5. Conclusions

In this investigation, the problem of nonlinear nanofluid
flow over heated vertical surface with sinusoidal wall tem-
perature variations has been considered. The model includes
the effects of Brownian motion and thermophoresis effects.
Numerical approximations for the coupled high nonlinear
partial differential equations governing were obtained using
the local linearisation method. The effects of various param-
eters on the fluid properties and on the scaled surface shear
stress and rate of surface heat transfer were determined. It was
found that as the nonlinear temperature parameter increases
the velocity tends to increase very closely to the surface and
then decreases. Moreover, it was observed that the boundary-
layer thickness of the momentum decreases with an increase
in the thermophoresis parameter. The random movement
caused by the nanoparticles enhanced the temperature within
the boundary layer when increased.
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