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The identification of protein coding regions (exons) plays a critical role in eukaryotic gene structure prediction. Many techniques
have been introduced for discriminating between the exons and the introns in the eukaryotic DNA sequences, such as the discrete
Fourier transform (DFT) based techniques, but these DFT-based methods rapidly lose their effectiveness in the case of short DNA
sequences. In this paper, a novel integrated algorithm based on autoregressive spectrum analysis and wavelet packets transform is
presented to improve the efficiency and accuracy of the coding regions identification. The experimental results show that the new
algorithm outperforms the conventional DFT-based approaches in improving the prediction accuracy of protein coding regions
distinctly by testing GENSCAN65, HMR195, and BG570 benchmark datasets.

1. Introduction

Deoxyribonucleicacid (DNA) sequence consists of genic and
intergenic regions. Identification of protein coding regions is
an elementary but very important problem in bioinformatics
because the exonic regions code for amino acids. So learning
the primary structure of a protein leads to studying and
analyzing the secondary and tertiary structures of a protein in
addition to protein function. Once we could clearly know the
structure and function of a protein, we can design drugs, cure
diseases, improve crop productivity, and synthesize biofuel.
In addition, coding regions represent the conserved part of
genomes. On the other hand, predicting conserved regions is
also important to study evolution and predict phylogenetic
trees [1, 2]. Nowadays, the rapid growth of raw genome
sequence data requires efficient biological interpretations,
but biological experiments for gene identification in DNA
sequences are costly to conduct, so there is still a real
demand for accurate and fast tools to analyze these sequences,
especially to find genes and determine their functions [3, 4].

All living organisms can be divided into two categories
according to their fundamental cell structures: prokaryotes
and eukaryotes. In prokaryotes, the coding genes, which are

in charge of protein synthesis, are long and continuous (that
is open reading frames (ORFs)). But in eukaryotes, genes
consist of coding segments interrupted by long noncoding
segments. These coding segments are termed as exons and
noncoding segments as introns (Figure 1). In case of human
eukaryotes only 3% of DNA sequence is coding [5, 6], so it
is a challenging task to identify the protein coding regions
(exons).

Genomic sequence processing has been an active area
of research for the past twenty years and has increasingly
attracted the attention of many researchers, and a number of
methods have been proposed to predict the protein coding
regions [2]. These methods can be divided into two groups
in comprehensive categorization [7–9]: model-dependent
methods and model-independent methods (or filter-based
methods). Model-dependent methods are built upon some a
priori information usually gathered from database of previ-
ously knownorganisms’ genomics, whilemodel-independent
methods do not assume such a priori information. Some
model-dependent methods such as hidden Markov model
(HMM) [10, 11], support vector machine (SVM), and neural
network [12] have been successfully used to find splice sites
and identify protein coding regions.
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Figure 1:TheDNA structure of eukaryotes and the splicing process.
This figure shows that eukaryotic DNA consists of genic and
intergenic regions, and the exon regions are interrupted by introns
in eukaryotic DNA. Generally, the introns are much longer than the
exons.

Though these model-dependent methods perform more
precisely by means of a priori information to train the classi-
fiers, nevertheless, the coding regionsmay not be represented
on the available datasets but exist in the sequenced organism
[7, 9]. In such situations, model-independent methods based
on digital spectral analysis, which convert sequences text
into numeric signal, have been proposed in recent years to
detect the coding regions [2]. For most of DNA sequences,
one of the principal features is the fact that the dominant
signal in coding regions of genomic sequences exhibits a
three-base periodicity (TBP) which is evidenced as a sharp
peak at frequency 𝑓 = 1/3 in the PSD [13–15], but this
behavior is not found in other parts of the DNA (including
the introns) (Figure 2). The origin of the TBP in protein
coding sequences derives from the triplet nature of the
codon, and the reasons for this distinction lie in the unequal
usage of codons (codon bias) in coding regions [14, 16].
Meanwhile this phenomenon caused lots of background
noise, which leads to more difficulty in finding exons in DNA
sequences [7, 17–19]. Using this property, several model-
independent techniques, mainly DFT-based methods, have
been mentioned in the recent literatures. Tiwari et al. [14]
firstly used the DFT to calculate the PSD; then a fixed-length
window was used to move on to the numerical sequence to
determine the exonic regions. This technique is also named
sliding discrete Fourier transform (SDFT). Rao et al. [20]
proposed an efficient sliding window strategy based on the
SDFT (also named the periodogram method) to identify the
accurate location of the protein coding regions, and their
algorithm could increase the location accuracy greatly than
Tiwari’s [14]. Digital filters such as antinotch filter [21] and
notch filter [19] with the central frequency of 2𝜋/3 were used
to remove the background noise, and then SDFT technique
was utilized to find exons.

The aforementioned DFT-based spectrum analysis tech-
niques may be roughly categorized as one kind of nonpara-
metric (also named classical spectrum estimation) methods,
that is, the periodogram method. This method has the
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Figure 2: The power spectrum density (PSD) calculated by Voss-
DFT of exon and intron from the gene F56F11.4. For the symmetry
characteristics, only the first half of PSD is presented. (a) The PSD
of an exon with the length of 330 basepair (bp), and the nucleotide
position from 2528 to 2857, and the three-base periodicity (TBP)
demonstrating peak at frequency 𝑘 = 𝑁/3, where𝑁 is the length of
the exon. (b)The PSD of an intronwith the length of 1612 bp, and the
nucleotide position from 5644 to 7255, but there is no remarkable
peak in the whole region.

advantage of possible implementation using the fast Fourier
transform (FFT) and has made obvious progress in exons
finding area [22]. But thesemethods rapidly lose effectiveness
in the case of shortDNA sequences because they lead tomany
false alarms and false dismissal errors [15]. So parametric
spectrum methods such as AR modeling were developed for
detection of coding regions in small DNA sequences [15, 23–
27]. And ARmodeling has been proved to be able to produce
stronger PSD and weaker artifacts than DFT-based methods
[26–28], especially performing well in finding the small size
coding regions.

In this paper, a novel technique based on Marple algo-
rithm of AR PSD and wavelet packets transform is presented
to identify the protein coding regions in eukaryotic DNA
sequences. This method firstly employs a mapping method
to convert the DNA sequences into numerical sequences;
then the sequences are passed through a bandpass filter
to enhance the TBP characteristics. After that, by taking
the numerical sequence as the observed signal of an AR
model, the efficient Marple algorithm is utilized to estimate
the PSD of the AR model by calculating the parameters of
the Yule-Walker equations. Then wavelet packets transform
(WPT) technique is employed to reduce the the background
noise of the PSD. Finally, similar to the SDFT [14], the
PSD at frequency 𝜃 = 2𝜋/3 is used to identify the protein
coding regions after denoising by WPT. We show that the
new algorithm yields comparable performance in improving
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the exonic identification accuracy than the conventional
approaches.

The remainder of the paper is organized as follows. In
Section 2, the datasets used are described, together with a
brief explanation of the methods that are involved in this
study. The principles of the Marple algorithm for AR PSD
estimation and the WPT for noise reduction are expressed
in detail. The numerical representations of a DNA sequence
and the bandpass filter are also detailed in this section, as well
as the evaluation criteria at nucleonic level. Section 3 presents
the results of the benchmark datasets tests that demonstrate
the performance of the proposed algorithm. Also the results
are analyzed in this section. Finally, the most significant
findings that emerge from this study are summarized in
Section 4.

2. Materials and Methods

2.1. Datasets. In this subsection, several widely used bench-
mark datasets will be described for the purpose of comparing
the performance of different algorithms in identifying exonic
regions. They are listed in the following paragraphs.

The gene sequence F56F11.4 (Genbank old number
AF009962, new number FO081497, http://www.ncbi.nlm.nih
.gov/nuccore/FO081497) is on chromosome III of Caenorha-
bditis elegans which is a free living nematode, about 1mm in
length, and lives in temperate soil environment. It has five
distinct exons with the nucleotide position in the complete
sequence: 7949–8059, 9548–9877, 11134–11397, 12485–12664,
and 14275–14625. As former literatures [7, 29], we select one
part from the complete sequence from nucleotide positions
7021 to 10580, so it just covers the aforementioned five exons.
For convenience, in the following analysis, we all use the
position that is relative to the first nucleotide position of
the selected part sequence, not to the real position in the
complete sequence.

In order to demonstrate the performance of our proposed
algorithm, we also apply it on three benchmark datasets
HMR195 [30], BG570 [31], and GENSCAN65 [32]. HMR195
consists of 195 mammalian (including human, mouse,
and rat) sequences, totally 2649 exons, with exactly one
complete either single-exon or multiexon gene. BG570
is a genomic test datasets of 570 single gene vertebrate
sequences, totally 948 exons, prepared by Burset and Guigó
[31]. Datasets HMR195 and BG570 can be available from
http://www.imtech.res.in/raghava/genebench/datasets.html.
GENSCAN65 contains 65 selected human genome sequences
which comprise 381 exons from 2 bp to 1210 bp [32]. For
convenience, all sequences contain exactly one gene which
starts with the “ATG” initial codon and end with a stop codon
(TAA, TAG, or TGA) [30]. GENSCAN65 dataset can be
available from http://www.imtech.res.in/raghava/geneben-
ch/datasets/Kulp-Reese/Human/.

2.2. Identification of Exonic Regions Based on Marple Algo-
rithm and Wavelet Packets Transform. In this section, a
novel integrated algorithm usingMarple algorithm andWPT
denoising technique is proposed for the identification of

protein coding regions. We divide the integrated algorithm
into five steps (Figure 3). The block diagram of our proposed
universal integrated algorithm is shown in Figure 3, and the
procedure of our algorithm is as follows.

(S1) Convert the DNA sequence into numerical sequence
using Code13 mapping method.

(S2) Enhance the TBP characteristics of the numerical
sequence using an FIR band pass filter.

(S3) Extract the TBP components using the Marple algo-
rithm with proper model order. Similar to the SDFT
[14], firstly, a sliding window with length N is deter-
mined, and in the window the Marple algorithm is
used to calculate the PSD of the windowed sequence.
Then the PSD at frequency 𝜃 = 2𝜋/3, that is, the PSD
at𝑁/3, is extracted and then divided by themeanPSD
of thewindowed sequence, so we obtain a ratio, which
is referred to as the signal to noise ratio (SNR). Sliding
the window along the sequence one by one (i.e., one
position by one time), this successive progression and
the plot of SNR exhibit the coding regions in DNA.

(S4) Remove the noise effect of SNR by wavelet packets
transform.

(S5) Classify (or predict) the protein coding regions
according to the optimal threshold.

The following subsections give the detailed presentation
of the aforementioned steps, respectively.

2.2.1. Numerical Representation of DNA Sequences. It is an
important foundation to convert the DNA sequences into
digital signals because it opens the possibility to employ all
kinds of powerful DSP techniques for analyzing of genomic
data and reveals features of chromosomes [7]. For example,
once theDNA sequence has been converted into digital signal
while retaining the biological meaning of the represented
information, we can utilize the spectral analysis technique
to find the exons. That is, coding regions exhibit the three-
base periodicity property in the spectral domain which is less
apparent in sequences other than exon sequences and can
therefore be used to detect exon sequences and to distinguish
exonic regions from intronic regions in genomic sequences
[33].

There are a number of representations for nucleotide
sequences [2, 33, 34]. Kwan et al. [33] reviewed the former
widely used numerical representation methods and devel-
oped several novel mapping methods. Totally 17 numerical
represented methods were compared for exon finding pur-
pose in [33], and they concluded that the Code13 (named
K-Quaternary Code I) method offered an attractive perfor-
mance. Abo-Zahhad et al. [34] also reviewed the published
mapping techniques and broadly classified them into two
major groups: fixed mapping techniques and physicochem-
ical property based mapping techniques. The former group
include the famousVossmethod [17] and the following devel-
oped methods, such as the tetrahedron [35], the complex
[36], and the integer [37] methods. And the latter group is
comprised of the electron-ion interaction potential (EIIP)
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Figure 3: Block diagram of the proposed algorithm.

[38], the paired numeric (PN) [39], the Z-curve [40], the
structure profile (SP) [41] representations, and so forth.

In this paper, we use the K-Quaternary Code I (denoted
as Code13) technique to convert sequence into numerical
signal. In the mean time, for comparison purpose, we select
four conventional mapping methods from the aforemen-
tioned methods for the following spectral analysis, that is,
in shorthand form, the Voss method, the EIIP method, the
SP method, and the PN method. The detailed representation
methods are described as follows.

Voss Method. Perhaps the earliest and most popular map-
ping of DNA is the binary or Voss method [17, 39],
which represents DNA with four binary indicator sequences
𝑥
𝐴
[𝑛], 𝑥
𝐶
[𝑛], 𝑥
𝐺
[𝑛], and 𝑥

𝑇
[𝑛]. The presense of a nucleotide

at a particular base pair position is represented by 1, and the
absence of it is represented by 0. For example, the binary
representation of DNA sequence S = gctatctatc is given by
𝑥
𝐴
[𝑛] = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0}, 𝑥

𝐶
[𝑛] = {0, 1, 0, 0, 0, 1, 0, 0,

0, 1}, x
𝐺
[𝑛] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, and 𝑥

𝑇
[𝑛] = {0, 0,

1, 0, 1, 0, 1, 0, 1, 0}.

EIIP Method. In EIIP method [38], the electron-ion-
interaction potential associated with each nucleotide is used
for mapping of the DNA sequence. The EIIP values for the
nucleotides are 𝐴 = 0.1260, 𝐶 = 0.1340, 𝐺 = 0.0806, and
𝑇 = 0.1335.The aforementioned sequence 𝑆 can be converted
into one numerical sequence 𝑥[𝑛] = {0.0806, 0.1340, 0.1335,
0.1260, 0.1335, 0.1340, 0.1335, 0.1260, 0.1335, 0.1340}.

SPMethod. In the structure profilemethod [41, 42], the struc-
tural information of physical properties of DNA molecule
are utilized for mapping nucleotide sequence to numeri-
cal sequence. These properties are DNA-bending stiffness,
duplex-free energy, duplex disrupt energy, and propeller
twist, etc. These structural profiles are calculated according
to the conversion tables [42] with step size of one along the
DNA sequence, which transforms two nucleotides at a step.
So a DNA sequence can be converted into four numerical
sequences, but the lengths of the numerical sequences will be
one unit shorter than the DNA sequence. Also taking the 𝑆
sequence as an example, one of whose four profiles, the DNA-
bending stiffness profile, is given by x[n]={85, 60, 20, 20, 60,
60, 20, 20, 60}. The other three numerical sequences can be
obtained according to [42].

PN Method. The paired numeric method [39, 42] is based on
the statistical evidence that exons are rich in nucleotides 𝐶

and 𝐺, while introns are rich in nucleotides 𝐴 and 𝑇. The PN
technique assigns the values +1 and −1 to the presence of the
𝐴-𝑇 and 𝐶-𝐺 nucleotides. So the 𝑆 sequence is mapped into
a single sequence 𝑥[𝑛] = {−1, −1, 1, 1, 1, −1, 1, 1, 1, −1}.

Code13 Method. The Code13 method [33, 39, 42] is a kind
of 1-sequence complex-value numerical representations, and
in this representation, the features of the nucleotides have
been retained by translating them into numerical properties.
The Code13 method assigns the values 1, −1, −𝑗, and 𝑗 to the
presence of the four nucleotides 𝐴, 𝐶, 𝐺, and 𝑇, respectively,
where 𝑗 is the imaginary unit (𝑗2 = 1). Then according to
the Code13 method, the 𝑆 sequence is mapped into a single
sequence 𝑥[𝑛] = {−𝑗, −1, 𝑗, 1, 𝑗, −1𝑗, 1, 𝑗, −1}.

2.2.2. Emphasizing TBP of the Numerical Sequences by FIR
Bandpass Filter. In order to emphasize the three-base prop-
erty in the protein coding regions, the numerical sequences
are passed through an FIR bandpass filter with a Hamming
window, whose order is 8 and central frequency is 2𝜋/3. Lack
of distortions in FIR filters is one reason for their preferred
use over IIR filters in medical applications [22, 29].

2.2.3. Autoregressive Spectrum Estimation Using Marple Algo-
rithm. The spectrum estimation techniques available may be
categorized as nonparametric (also named classical spectrum
estimation) and parametric. The nonparametric methods
include the periodogram, the Bartlett and Welch modified
periodogram, and the Blackman-Tukey methods. All these
methods have the advantage of possible implementation
using the fast Fourier transform (FFT), but with the dis-
advantage in the case of short data lengths of limited
frequency resolution, and the requirement for windowing
to reduce the spectral leakage. Parametric methods on the
other hand can provide high resolution, applicability to short
data lengths, and avoidance of spectral leakage, scalloping
loss, spectral smearing, and window biasing effects [22].
Its disadvantage lies in being computationally efficient, and
parameter methods mainly include three methods, Yule-
Walker autoregressive method, Burg method, and theMarple
algorithm.

The idea of the AR spectrum analysis is that the digitized
signal is modeled as an AR time series plus a white noise
error term.The spectrum is then obtained from theARmodel
parameters and the variance of the error term. The model
parameters are found by solving a set of linear equations
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obtained by minimizing the mean squared error term (the
white noise power) over all the data.

The process of the AR spectrum analysis using Marple-
WPT method is described as follows. Firstly, an important
consideration is the choice of the number of terms in the
AR model. This is known as its order. If the order is too low
the power density estimate will be excessively smoothed, so
somepeaksmay be obscured. If the order is too high, spurious
peaksmay be introduced. Hence, it is important to determine
the appropriate model order for each set of data.

In an AR model of a time series the current value of
the series, 𝑥(𝑛), is expressed as a linear function of previous
values plus an error term, 𝑒(𝑛); thus

𝑥 (𝑛) = −𝑎 (1) 𝑥 (𝑛 − 1) − 𝑎 (2) 𝑥 (𝑛 − 2) − ⋅ ⋅ ⋅

− 𝑎 (𝑘) 𝑥 (𝑛 − 𝑘) − ⋅ ⋅ ⋅ − 𝑎 (𝑝) 𝑥 (𝑛 − 𝑝) + 𝑒 (𝑛) .

(1)

This equation incorporates 𝑝 previous terms and repre-
sents a model of order 𝑝. It is more compactly written as

𝑥 (𝑛) = −

𝑝

∑

𝑘=1

𝑎 (𝑘) 𝑥 (𝑛 − 𝑘) + 𝑒 (𝑛)

= −

𝑝

∑

𝑘=1

𝑎 (𝑘) 𝑧
−𝑘
𝑥 (𝑛) + 𝑒 (𝑛) ,

(2)

where 𝑧−𝑘 is the back-shift operator which denotes a delay of
𝑘 sampling intervals. So (2) can be rewritten as

𝑥 (𝑛) +

𝑝

∑

𝑘=1

𝑎 (𝑘) 𝑧
−𝑘
𝑥 (𝑛) = (1 +

𝑝

∑

𝑘=1

𝑎 (𝑘) 𝑧
−𝑘
)𝑥 (𝑛) = 𝑒 (𝑛) ,

𝑥 (𝑛) =
𝑒 (𝑛)

1 + ∑
𝑝

𝑘=1
𝑎 (𝑘) 𝑧

−𝑘
.

(3)

Then we obtain AR model

𝑥 (𝑛)

𝑒 (𝑛)
=

1

1 + ∑
𝑝

𝑘=1
𝑎(𝑘) 𝑧

−𝑘
= 𝐻 (𝑧) , (4)

where𝐻(𝑧) is interpretable as the 𝑧-transform of an all-pole
IIR digital filter with coefficients, 𝑎(𝑘). This filter is called
an AR filter. In (4) the 𝑥(𝑛) may be regarded as the output
of this filter caused by random inputs, 𝑒(𝑛). 𝑒(𝑛) represents
the error between the value predicted by the model, 𝑥(𝑛),
and the true datum value, 𝑥(𝑛). 𝑒(𝑛) is usually assumed to
have the properties of white noise; that is, it is assumed
to have a Gaussian probability density distribution and a
uniform power density spectrum.Thus 𝑥(𝑛)may be regarded
as having been generated by the AR filter from a white noise
source.

The power spectrum density, 𝑃
𝑥
(𝑓), of the AR series 𝑥(𝑛)

is as follows:

𝑃
𝑥
(𝑓) =

𝜎
2

𝑒
(𝑛)


1 + ∑

𝑝

𝑘=1
𝑎 (𝑘) 𝑒

−𝑗𝑘𝜔𝑇


2
. (5)

It can be found that the parameters in the right-hand side
of (5) and the autoregressive function of 𝑥(𝑛), 𝑅

𝑥𝑥
, have the

following relationship [22]:

(

𝑅
𝑥𝑥 (0) 𝑅

𝑥𝑥 (1) . . . 𝑅
𝑥𝑥
(𝑝 − 1)

𝑅
𝑥𝑥 (1) 𝑅

𝑥𝑥 (0) . . . 𝑅
𝑥𝑥
(𝑝 − 2)

...
...

...
...

𝑅
𝑥𝑥
(𝑝 − 1) 𝑅

𝑥𝑥
(𝑝 − 2) . . . 𝑅

𝑥𝑥 (0)

)(

𝑎 (1)

𝑎 (2)

...
𝑎 (𝑝)

)

= −(

𝑅
𝑥𝑥 (1)

𝑅
𝑥𝑥 (2)

...
𝑅
𝑥𝑥
(𝑝)

) .

(6)

The model parameters, 𝑎(𝑘), may now be obtained from
(6), which are the famous Yule-Walker (YW) equations. If we
obtain these parameters, then we can calculate the PSD of
𝑥(𝑛).

There are several methods to solve YW equation, such
as autocorrelationmethod (also named the Levinson-Durbin
algorithm) [43], the Burg method, and the Marple method.
Here we choose the Marple method because it can yield
statistically stable spectral estimates of high resolution. This
method minimizes the forward and backward prediction
errors in the least squares sense.

In the Marple method, the YW equations (6) have the
equivalent formulation

(

𝐶
𝑥𝑥 (1, 1) 𝐶𝑥𝑥 (1, 2) . . . 𝐶𝑥𝑥 (1, 𝑃)

𝐶
𝑥𝑥 (2, 1) 𝐶𝑥𝑥 (2, 2) . . . 𝐶𝑥𝑥 (2, 𝑝)

...
...

...
...

𝐶
𝑥𝑥
(𝑝, 1) 𝐶

𝑥𝑥
(𝑝, 2) . . . 𝐶

𝑥𝑥 (𝑃, 𝑃)

)(

𝑎 (1)

𝑎 (2)

...
𝑎 (𝑝)

)

= −(

𝐶
𝑥𝑥 (1, 0)

𝐶
𝑥𝑥 (2, 0)

...
𝐶
𝑥𝑥
(𝑝, 0)

) ,

(7)

where

𝐶
𝑥𝑥
(𝑗, 𝑘) =

1

2 (𝑁 − 𝑝)
{

𝑁

∑

𝑛=𝑝

𝑥 (𝑛 − 𝑗) 𝑥 (𝑛 − 𝑘)

+

𝑁−𝑝

∑

𝑛=1

𝑥 (𝑛 + 𝑗) 𝑥 (𝑛 + 𝑘)} .

(8)

The 𝑝 × 𝑝 matrix 𝐶
𝑥𝑥
(𝑗, 𝑘) is Hermitian and positive

semidefinite, and (8) may be solved using the Cholensky
decomposition method [44]. So we can obtain the PSD of
signal 𝑥(𝑛) after we solved the YW equations. And then
the spectral estimation for the AR model given from (8) at
frequency 𝜃 = 2𝜋/3 is utilized to predict the exons in the
eukaryotic DNA sequences.

Order Selection of AR Model. The order of the AR model
depends on the statistical properties of the data, so it should
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be carefully chosen for the data to fit well.Models of low order
are preferred on the ground that fewer parameters have to be
fitted. However, if the order is too small, the resulting spectral
estimate will be smoothed and will have poor resolution. On
the other hand, if the model order is too large, the spectral
estimate may contain spurious peaks and lead to spectral line
splitting. Two of the most commonly used order estimation
parameters were developed by Akaike. These are the final
prediction error, FPE(𝑝) [45], given by

FPE (𝑝) =
𝑁 + 𝑝

𝑁 − 𝑝
𝐸 (𝑝) (9)

and the Akaike information criterion, AIC(𝑝) [46], which is

AIC (𝑝) = 𝑁 ln (𝐸 (𝑝)) + 2𝑝, (10)

where 𝐸(𝑝) is the modeling error,𝑁 is the data record length,
and 𝑝 is the order of the model.

Generally, AIC(𝑝) is particularly recommended for short
data records, while FPE(𝑝) is recommended for longer data
records. A practical approach is to attempt to select 𝑝 to
minimize both FPE(𝑝) and AIC(𝑝). To guarantee a valid
output, Lang and McClellan [47] recommended to set the
estimation order parameter to be less than or equal to two-
thirds the input vector length. Zhao et al. [48] suggested
that the best order could be reached between 1 ∼ √𝑁. In
this paper, we will make a comprehensive consideration of
the aforementioned criterions and choose the best order to
improve the prediction accuracy.

2.2.4. Extracting the TBP Components Using the Marple
Algorithm. After the mapping and TBP enhancement steps,
the next critical step of our algorithm is to extract the TBP
components, which can be implemented similarly to the
SDFT [14]. As for a numerical sequence 𝑥(𝑛), 𝑛 = 1, 2, . . . , 𝑁,
firstly, a sliding window with length 𝑀 is determined; for
example,𝑀 = 351. In the 𝑘th 351-length window, the Marple
algorithm is used to calculate the PSD 𝑃

𝑘
(𝑓). Then the PSD

𝑃
𝑘
(𝑓) at frequency 𝜃 = 2𝜋/3; that is, the PSD at position𝑀/3

[14] is extracted, referred to as 𝑃
𝑘
(𝑀/3). In order to make

a fair comparison of the 𝜃 = 2𝜋/3 frequency spectrum in
different windows, we introduce the following signal to noise
ratio (SNR):

𝑃SNR (𝑘) =
𝑃
𝑘 (𝑀/3)

𝑃
𝑘

, (11)

where 𝑃
𝑘
= (1/(𝑀 − 1))∑

𝑀−1

𝑘=1
𝑃
𝑘
(𝑓), 𝑃

𝑘
is the mean of the

total PSD of the 𝑘th windowed sequence.
Sliding the window along the sequence one by one

position, this successive progression and the SNR curve
exhibit the coding regions in DNA. It is expected that in the
SNR curve, the protein coding regions have high SNR, while
the noncoding regions have low SNR. So we can identify
those exonic regions by proper threshold; that is, if the SNR
curve of a region is above the threshold horizonal line, this
region may be the exonic region while the region which is
under the threshold horizonal line may be noncoding region.

There are several assistant strategies for the identification
algorithm.

(1) The values on SNR curve will be normalized by
dividing by their max value, which contributes to the
following comparisons.

(2) Different mapping methods and the sliding window
technique will make the obtained SNRs have dif-
ferent lengths, so we will use the mirror-symmetric
boundary-extension method [49] to overcome this
and make the SNRs have the same length as the
numerical sequence.

(3) It should be noted that before we use SNR curve and
the threshold to determine the exons, the background
noise in SNR curve should be reduced. The noise
reduction technique byWPT and the optimal thresh-
old selection method are described in the following
two subsections in detail.

2.2.5. Noise Reduction Using Wavelet Packets Transform.
Wavelet packets transform (WPT) is a generalization of
wavelet decomposition that offers a richer signal analysis.
In the decomposition of a signal by using discrete wavelet
transform (DWT), only the lower frequency band is decom-
posed, giving a right recursive binary tree structure, where its
right lobe represents the lower frequency band. Its left lobe
represents the higher frequency band. In the corresponding
decomposition by using WPT, the lower, as well as the
higher, frequency bands are decomposed giving a balanced
binary tree structure [50–52]. That is, a single wavelet packet
decomposition gives a lot of bases from which you can look
for the best representation with respect to a design objective.
This can be done by finding the “best tree” based on an
entropy criterion. Such a tree is given in Figure 4 (MATLAB
R2011a Wavelet Toolbox).

Denoising is an important application of WPT and its
main idea is to reconstruct the useful frequency contents
after the decomposition. The WPT denoising procedure
of MATLAB toolbox (MATLAB R2011a Wavelet Toolbox)
involves four steps.

Decomposition. For a given wavelet, compute the wavelet
packet decomposition of signal 𝑥 at level𝑀.

Computation of the Best Tree. For a given entropy, compute
the optimal wavelet packet tree.

Threshold of Wavelet Packet Coefficients. For each packet
(except for the approximation), select a threshold and apply
threshold to coefficients. The graphical tools from MATLAB
toolbox automatically provide an initial threshold based on
balancing the amount of compression and retained energy.
This threshold is a reasonable first approximation for most
cases. However, in general you will have to refine your
threshold by trial and error so as to optimize the results
to fit your particular analysis and design criteria. The tools
facilitate experimentationwith different thresholds andmake
it easy to alter the tradeoff between amount of compression
and retained signal energy.

Reconstruction. Compute wavelet packet reconstruction
based on the original approximation coefficients at level 𝑀
and the modified coefficients.
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Figure 5: Measures of prediction accuracy at the nucleotide level.

2.2.6. Threshold Selection. Threshold selection plays an im-
portant role in discriminating between coding and noncod-
ing regions based on the SNR curve. The proper threshold
can help to optimize the accuracy of the identification. Xu et
al. [28, 53] developed a novel method based on the bootstrap
algorithm and Rao’s sliding window strategy [20] to infer
organism-specific optimal thresholds for different eukary-
otes, and this integrate algorithmhas improved the prediction
accuracy than the conventional universal threshold based
methods. In this paper, we use the threshold selectionmethod
developed by Kwan et al. [29, 54]. The mean and standard
deviations of theTBP values determined froma training set of
exon and intron sequences are used to calculate the threshold
level 𝑇, which is defined as

𝑇 =
sd𝑃
3𝑒
∗mean𝑃

3𝑖
+ sd𝑃

3𝑖
∗mean𝑃

3𝑒

sd𝑃
3𝑒
+ sd𝑃

3𝑖

, (12)

where mean 𝑃
3𝑒

and sd𝑃
3𝑒

represent the mean and stan-
dard deviations of the TBP values obtained from the exon
sequences of a training set, respectively, and mean 𝑃

3𝑖
and

sd𝑃
3𝑖
represent, respectively, the mean and standard devia-

tions of the TBP values obtained from the intron sequences
of the same training set.

2.2.7. Evaluation Criteria at Nucleotide Level. In these eval-
uations, results of different methods are compared at the
nucleotide level. At this level, we evaluate the accuracy of
a prediction on a test sequence by comparing the predicted
coding value (coding or noncoding) with the true coding

value for each nucleotide along the test sequence [31]. For this
purpose, the following measures are employed [55].

Sensitivity, Specificity, and AC. Sensitivity and specificity
are probably the most widely used measures for prediction
accuracy evaluation. Similar to [31], a figure of the two
measures is utilized to explain them (Figure 5). In Figure 5
true positive (TP) is the number of coding nucleotides
correctly predicted as coding, false negative (FN) is the
number of coding nucleotides predicted as noncoding, true
negative (TN) is the number of noncoding nucleotides
correctly predicted as noncoding, and false positive (FP) is
the number of noncoding nucleotides predicted as coding.
Based on the aforementioned four quantities, sensitivity (𝑆𝑛)
and specificity (𝑆𝑝) are defined as

𝑆𝑛 =
TP

TP + FN
,

𝑆𝑝 =
TP

TP + FP
.

(13)

That is, 𝑆𝑛 gives the measure of the proportion of coding
nucleotides that have been correctly predicted as coding, and
𝑆𝑝 is the proportion of coding nucleotides that are actually
coding.

Neither 𝑆𝑛 nor 𝑆𝑝 is sufficient by itself because perfect
sensitivity of 1 can be obtained if all the nucleotides were
predicted as coding, and perfect specificity can be obtained if
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all nucleotides were predicted as noncoding [30]. So accuracy
defined as

accuracy =
(𝑆𝑛 + 𝑆𝑝)

2
, (14)

is a widely used compound measure which considers both
sides of 𝑆𝑛 and 𝑆𝑝 from the global perspective [28].

Here we introduce several other global measures as the
previous researchers [30, 31]. Correlation coefficient (CC) is
a single scalar value summarizing both 𝑆𝑛 and 𝑆𝑝 as ameasure
of global accuracy, with the definition

CC = (TP × TN − FN × FP)

× ((TP + FN) × (TN + FP) × (TP + FP)

× (TN + FN))−1/2 .

(15)

CC appears to be particularly appropriate as a measure of
overall prediction accuracy, but CC has many shorcomings
[31], as an ideal alternative measure of CC. Approximate
correlation (AC) was firstly proposed by Burset and Guigó
[31]. Its definition is as follows:

AC = (ACP − 0.5) ∗ 2, (16)

where average conditional probability (ACP) is

ACP = 1
4
(

TP
TP + FN

+
TP

TP + FP
+

TN
TN + FN

+
TN

TN + FP
) .

(17)

According to Burset and Guigó [31], AC can be used
to measure the association between prediction and reality
appropriately. AC is not only a measure of gene structure
prediction accuracy, but also a measure to optimize when
developing gene structure prediction programs. Unlike the
CC, it has a probabilistic interpretation, and it can be
computed in any circumstances. As ACP is the average of
four conditional probabilities [31], it ranges from 0 to 1, so
AC ranges from −1 to 1, which can be compared to CC. So
AC can be looked upon as approximate measure of CC. And
according to [31], if an algorithm has the larger AC value
(strictly speaking, the absolute value of AC), that means this
algorithm has the better accuracy. So we will calculate the
three measures 𝑆

𝑛
, 𝑆
𝑝
, and AC in the algorithm evaluation.

Receiver Operating Characteristics (ROC) Curves. The ROC
curves were developed in the 1950s as a technique for visu-
alizing, organizing, and selecting classifiers based on their
performance [55, 56]. In the exon identification problems, an
ROC curve can help to explore the effects on TP and FP as
the position of an arbitrary decision threshold is varied. Also,
the curve can be characterized as a single number using the
area under the ROC curve (AUC). The larger AUC leads to
the better performance of the tested technique.

3. Results and Discussion

In this section, the results of the proposed algorithm are
compared with those of existing techniques, such as sliding
Fourier transform spectrum (SDFT) (referred to asVossDFT)
[14], and those improved techniques are based on DFT, such
as EIIPDFT [38], PNDFT [39], and SPDFT [41, 42].

The outline of this section is as follows. Firstly, the denois-
ing performance ofWPT technique is given by comparing the
SNRof a short benchmark data.Thenwe compare ourCode13
mapping method with four widely used mapping methods
selected from the aforementioned mapping approaches, that
is, Voss, EIIP, SP, and PN mapping methods. It should be
noted that in the comparison only the mapping method is
different; that means in Figure 3 procedures only the first step
is different, the following steps are totally identical. Finally,
we compare our proposed algorithm with other existing
techniques, and three widely used benchmark datasets will
be utilized for comparison purpose. To evaluate and compare
the results, the aforementioned measures such as 𝑆𝑛, 𝑆𝑝, AC,
ROC, and AUC are calculated.

Firstly, we use the DNA sequence F56F11.4 to test the
noise reduction performance of WPT. The SNR curve of
sequence F56F11.4 calculated by our algorithm is shown in
Figure 6. During the calculation process, we determine the
window length as 351 [14]; the order of the AR model is 9
according to the order selection strategy (see Section 2.2.3).
The soft threshold function is utilized to process the data,
entropy is sure criterion, and symlets wavelet is selected as the
orthogonal wavelet which will be decomposed into 5 levels
according to the signal. It can be seen that the burrs shape
noise in original SNR (Figure 6(a)) is distinctly reduced by
WPT technique, and the “smoothed” SNR (Figure 6(b)) will
contribute to the following exonic identification accuracy.

Secondly, the Code13 and the other four aforementioned
mapping methods (Voss, EIIP, SP, and PN) are, respectively,
utilized to map the F56F11.4 sequence into five different
numerical sequences. Then according to the procedure of
our proposed algorithm (Figure 3), the following techniques
of the integrated algorithm, including the Marple algorithm
and WPT, are used to identify the exons with the same
parameters settings in the whole calculate process. So it can
be looked upon as five different algorithms whose difference
only lies in the mappingmethods, and we compare their final
identification performance. Similar to the aforementioned
WPT denoising section, we determine the following settings:
the window length is 351, the order of the AR model is 9,
and the soft threshold function, sure entropy criterion, and
symlets wavelet with 5-level decomposition are utilized to
reduce the noise of the SNR.

The performance measures of five mapping methods for
gene sequence F56F11.4 are represented in Table 1. Here, the
sensitivities, specificities, and approximate correlation are
calculated under the use of optimal threshold according to
(14), and the results show that the Code13 method has the
largest measures (𝑆𝑛 = 0.8262, 𝑆𝑝 = 0.3011, and AC =
0.4233). Figure 7 shows the exonic regions identification per-
formance of sequence F56F11.4 using five mapping methods
combing with the Marple-WPT technique. As can be seen,
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Figure 6:Denoising performance results ofWPT forDNAsequence F56F11.4. (a)Theoutput SNRof sequence F56F11.4 based on the proposed
algorithm before WPT is utilized. (b) The output SNR based on the proposed algorithm using WPT. Both methods employ the Code13
mapping method and all the other procedures are identical except whether denoising or not.

Table 1: Performance measures of five mapping methods for
sequence F56F11.4 based on Marple-WPT technique.

Mapping method Sn Sp AC Optimal threshold
Voss 0.7810 0.2270 0.3087 0.6338
EIIP 0.4661 0.1402 0.0656 0.3862
SP 0.5079 0.1095 −0.0235 0.6656
PN 0.6411 0.1539 0.1265 0.6690
Code13 0.8262 0.3011 0.4233 0.5062

there are five exonic regions with the relative positions 928–
1039, 2528–2857, 4114–4377, 5465–5644, and 7255–7605 in
sequence F56F11.4 to be identified (red bold line segments).
The Code13 mapping based algorithm (Figure 7(e)) is able
to produce distinct SNR peaks for all the exonic regions,
and the SNR in noncoding regions is restricted well. So it
plays a critical role in the following identification, and the
optimal threshold helps to determine the exact start and
end position of the predicted exonic regions; the black thin
line segments represent the predicted candidate exons. It is
worthmentioning that the first exon of sequence F56F11.4 is a
typical short sequence, whose length is 112 bp, and it is hard to
be identified in many conventional techniques [2]. But in our
Code13 based algorithm, it is easy to be identified. However,
the first four mapping methods produce poor performance,
either miss the true exon (those square shadows in Figures
7(a), 7(b), 7(c), and 7(d)) or give a false forecast (rectangle
shadows in Figures 7(c) and 7(d)). So it means that the
Voss, EIIP, SP, and PN methods based algorithms cannot
distinguish the exonic regions from the noncoding regions
precisely. The advantage of Code13 mapping method may lie
in the fact that it is a kind of complex number representation,
and it reflects the complementary nature of nucleotide 𝐶-𝐺
and 𝐴-𝑇 pairs relationship [33].

Finally, our proposed algorithm is applied to the three
widely used benchmark datasets: GENSCAN65, HMR195,
and BG570. For comparison purpose, several conventional
exonic identification techniques are employed on the afore-
mentioned datasets in the mean time, and the performance
criteria measures such as AC, ROC curves, and AUC are
utilized in the comparison process.

Taking HMR195 as an example, this benchmark datasets
contains 195 sequences with exactly one complete either
single-exon or multiexon gene (including 43 single-exon
genes and 152multiexon genes) [30]. HMR195 has the follow-
ing characteristics: the ratio of human :mouse : rat sequences
is 103 : 82 : 10; the mean length of the sequences in the set is
7096 bp; there are 948 exons in the datasets with the total
length 199176 bp; the minimum exon length is 12 bp; the
mean length of the exons is 208 bp; and the mean intron
length is 678 bp. Figure 8 shows the distribution of exonic
regions length in HMR195, and most exonic regions length
concentrate about 210 bp.

Five identification techniques are utilized for the afore-
mentioned three datasets, that is, VossDFT [14], EIIPDFT
[38], SPDFT [41, 42], PNDFT [39], and our proposedCode13-
Marple. The output results are represented in Table 2 and
Figure 9. As can be seen, the proposed Code13-Marple
method achieves the largest AC values for all the three
datasets (that is, 0.2324, 0.2508, and 0.2131), which means
that this method outperforms the other four traditional DFT-
based methods in general. From Table 2 and Figure 9, it
also can be found that the Code13-Marple algorithm has
the largest AUC values for the three test datasets, that is,
0.6801, 0.7179, and 0.6522. Also takingHMR195 datasets as an
example, our proposed algorithm achieves relative improve-
ments of 27.6%, 28.7%, 16.9%, and 16.8% over the VossDFT,
EIIPDFT, SPDFT, and PNDFT techniques, respectively, in
terms of the AUC values. That is, our proposed algorithm
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Figure 7: Exonic identification results of gene sequence F56F11.4 using five mapping methods and the proposed algorithm. (a) Voss method,
(b) EIIP method, (c) SP method, (d) PN method, and (e) Code13 method. The red bold line segments represent the true exons that must be
identified, the black thin line segments represent the predicted candidate exons, and the vertical heights of those line segments represent their
optimal thresholds. The square shadow represents the missing true exon; the rectangle shadow represents the false predicted exon.
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Figure 8: The distribution of exonic regions lengths in HRM195. The horizonal axis represents the exonic regions length, and the vertical
axis represents the number of exonic regions.

Table 2: Performance measures of five mapping methods for three benchmark datasets.

Datasets Measure VossDFT EIIPDFT SPDFT PNDFT Code13-Marple

GENSCAN65 AC 0.1533 0.1162 0.1850 0.2010 0.2324
AUC 0.6385 0.5754 0.6372 0.6283 0.6801

HMR195 AC 0.1045 0.0572 0.1300 0.1434 0.2508
AUC 0.5626 0.5113 0.5962 0.5971 0.7179

BG570 AC 0.1093 0.0599 0.1263 0.1356 0.2131
AUC 0.5329 0.4867 0.5470 0.5391 0.6522

achieves more accuracy than the other four methods. The
ROC curves of the proposed algorithm in Figure 9 are all
distinctly “close” to the top left corner which visually verifies
that the Code13-Marple-WPT method is more effective than
the other techniques. The reason of the aforementioned out-
put may lie in the fact that those conventional nonparametric
methods especially those DFT-based techniques have the
advantage of possible implementation using the FFT, but with
the disadvantage in the case of short data lengths of limited
frequency resolution, and the requirement for windowing to
reduce the spectral leakage. Parametric methods on the other
hand can provide high resolution, applicability to short data
lengths, and avoidance of spectral leakage, scalloping loss,
spectral smearing, and window biasing effects [22].

4. Conclusions

In this paper, we propose a new technique based on Marple
algorithm and wavelet packets transform with the Code13
numerical mapping approach to improve the accuracy of
identification of the protein coding regions in the eukaryotic
DNA sequences. The outputs of the test by many benchmark
datasets show that the proposed algorithm outperforms some
well-known DFT-based methods. There are several reasons
attributed to the improvement of the identification accuracy:
first, the FIR filters help to enhance the TBP characteristics

of the numerical sequences before PSD calculation; second,
the Marple algorithm can calculate the PSD more efficiently
and accurately than those conventional methods because
it can yield statistically stable spectral estimates of high
resolution; third, the WPT can reduce the noise in SNR
curves, which attributes to the following identification of
exonic regions distinctly; finally, those assistant strategies
such as threshold selection, normalization of SNR curves, the
mirror-symmetric boundary-extensionmethod also can help
to improve the final accuracy of the whole algorithm.

In the same time, it should be noted that there are
still some shortcomings in our proposed algorithm, such as
the order selection of the AR model when using Marple
algorithm and the Marple algorithm being a little more time-
consuming.

Also there are still two important and challengeable prob-
lems which deserve further study. First, how can we obtain
the precise exons location information [14, 20]? Second, how
can we utilize the algorithm to identify the dual coding genes
in eukaryote? The dual coding genes are the phenomenon
where there are two overlapped open reading frames (ORFs)
in the same direction of a protein coding region (such as three
known humans GNAS1, XBP1, and INK4a) [57, 58]. And
whether or not we can take the original overlapped sequence
as two equal length sequences with partial overlapped signal,
and convert it into a blind signal separation problem, is



12 Abstract and Applied Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive (FP)

Tr
ue

 p
os

iti
ve

 (T
P)

VossDFT
PNDFT
SPDFT

EIIPDFT
Code13-Marple (proposed)

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 (T
P)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive (FP)

VossDFT
PNDFT
SPDFT

EIIPDFT
Code13-Marple (proposed)

(b)

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 (T
P)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive (FP)

VossDFT
PNDFT
SPDFT

EIIPDFT
Code13-Marple (proposed)

(c)

Figure 9: ROC curves of different techniques for three benchmark datasets. (a)TheROC curves of fivemethods (VossDFT, EIIPDFT, SPDFT,
PNDFT, and Code13-Marple) for GENSCAN65 datasets. (b) The ROC curves of five methods for HMR195 datasets. (c) The ROC curves of
five methods for BG570 datasets.

unknown and deserves further study in the future. So it is
our next target to overcome the aforementioned tasks for
more effective and accuracy algorithm and to help the related
biologists to identify the DNA structure more clearly.
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Peer, “Large-scale structural analysis of the core promoter in
mammalian and plant genomes,”Nucleic Acids Research, vol. 33,
no. 13, pp. 4255–4264, 2005.

[42] W. F. Zhang andH. Yan, “Exon prediction using empiricalmode
decomposition and Fourier transform of structural profiles of
DNA sequences,” Pattern Recognition, vol. 45, no. 3, pp. 947–
955, 2012.

[43] S. M. Kay,Modern Spectral Estimation: Theory and Application,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1988.

[44] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1974.

[45] H. Akaike, “Fitting autoregressive models for prediction,”
Annals of the Institute of StatisticalMathematics, vol. 21, pp. 243–
247, 1969.

[46] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, pp. 716–723,
1974.

[47] S. W. Lang and J. H. McClellan, “Frequency estimation with
maximum entropy spectral estimator,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 28, no. 6, pp. 716–
724, 1980.

[48] L. C. Zhao, J. J. Ma, S. Q. Fan, and Z. Z. Si, “Research on
AR model in vibration analysis of rolling bearings,” Chinese
Mechanical Engineering, vol. 15, no. 3, pp. 210–213, 2004.

[49] L. T. Guan, “Wavelet interpolation and decomposition in a
finite interval with boundary conditions,” Chinese Journal of
Engineering Mathematics, vol. 12, no. 3, pp. 1–9, 1995.

[50] X. Wang, C. Liu, F. Bi, X. Bi, and K. Shao, “Fault diagnosis of
diesel engine based on adaptive wavelet packets and EEMD-
fractal dimension,” Mechanical Systems and Signal Processing,
vol. 41, no. 1-2, pp. 581–597, 2013.

[51] C. M. Vong and P. K. Wong, “Engine ignition signal diagnosis
with Wavelet Packet Transform and Multi-class Least Squares
Support Vector Machines,” Expert Systems with Applications,
vol. 38, no. 7, pp. 8563–8570, 2011.

[52] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way,
Academic Press, 3rd edition, 2009.

[53] S. Xu, Research on the thresholds selection based on the bootstrap
algorithm in gene-prediction [M.S. thesis], University of Elec-
tronic Science andTechnology ofChina, Chengdu,China, 2008.

[54] J. Y. Y. Kwan, B. Y. M. Kwan, and H. K. Kwan, “Spectral anal-
ysis of numerical exon and intron sequences,” in Proceedings
of the IEEE International Conference on Bioinformatics and
Biomedicine Workshops (BIBMW ’10), pp. 876–877, Hongkong,
China, December 2010.

[55] M. Akhtar, J. Epps, and E. Ambikairajah, “Signal processing
in sequence analysis: advances in eukaryotic gene prediction,”
IEEE Journal on Selected Topics in Signal Processing, vol. 2, no.
3, pp. 310–321, 2008.

[56] T. Fawcett, ROC Graphs: Notes and Practical Considerations
for Researchers, HP Laboratories, Palo Alto, Calif, USA, 2003,
http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf.

[57] Z.-F. Li, C.-G. Zhang, Z.-Y. Shen, and X.-Y. Hang, “Dual coding
genes in eukaryote,”Progress in Biochemistry andBiophysics, vol.
36, no. 5, pp. 536–540, 2009.

[58] W. Y. Chung, S. Wadhawan, R. Szklarczyk, S. K. Pond, and
A. Nekrutenko, “A first look at ARFome: dual-coding genes
in mammalian genomes,” PLoS Computational Biology, vol. 3,
article e91, no. 5, 2007.


