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We study the oscillatory properties of the following even order delay dynamic equations with nonlinearities given by Riemann-

Stieltes integrals: (p(Olx" () " ()* + Ft,x0®) + [ kit lx(glt, NI Vsgn(x(glt, NAES) = 0, where ¢ €
[ty, 00)y = [ty 00) N T, T a time scale which is unbounded above, n > 2 is even, | f(t,u)| = q(t)|u®], « > 0 is a constant, and
0 : [a,bly, — Ris astrictly increasing right-dense continuous function; p,q : [t;,00)y — R,k : [t;,00)y X [a,b]ly, — R,
8 : [ty,00)p — [ty 00)y,and g : [ty, 00)y X [a, b]Tl — [t,, 00)y are right-dense continuous functions; & : [a, b]Tl — Ris strictly
increasing. Our results extend and supplement some known results in the literature.

1. Introduction

In this paper, we consider the following even order delay
dynamic equations with nonlinearities of the form:

(pol O "+ 0) + fexe0)

o® 0
+ J k(t,s) |x(g(t, )| sgn (x (g (t,5))) A& (s) = 0,
@
wheren > 2iseven, t € [t;,00)} = [tp,00)NT,andt, € T, T
is a time scale which is unbounded above, and the following
are satisfied:
(H,) a,b € T, T, is another time scale, C,;(D, S) denotes
the collection of all functions f: D — S which are
right-dense continuous on Dj

(H,) p(t) € Cyyllty,00)5,(0,00)), p°(t) = 0,P(t) :=
[1 p7*(s)As, lim, ,  P(t) = 00, and () € C,y([a,
b]om,(O, 00)) is a strictly increasing and satisfying
0 < 0(a) < a < 0(b), k(t,s) € C,;([ty,00)3 %
[a, by, [0, 00));

(H) 8(t) € Cy([tg, 00)y, [tg,00)1), 8(t) < t, fort €
£y, 00)y, lim, _, . 8(t) = 0o, 8°(t) > 0 is right-dense

continuous on [t;, 00)y, and T := §(T) ¢ Tis a time
scale, 8(o(t)) = 0(8(t)) forallt € [t,, c0)y, where o(t)
is the forward jump operator on [t,, 00)y;

(H4) g(t) S) € Crd([tor OO)'[T X [a’ b]Tl) [tO) OO)'IT)) g(t)s) 2
8(t), and lim, _, ., g(t, s) = 00, for any s € [q, b]Tl;

(Hs) f(t,u) € C([ty, 00) x R, R) is a continuous function
such that uf(¢t,u) > 0, for all u# 0 and there exist a
positive right-dense continuous function q(t) defined
on [t,, 00)y and a constant « > 0, such that | f(t, u)| >
q(t)|u®| for all t € [t,, 00)y and for all u € R;

(Hg) € : [a,b]y, — Risstrictly increasing. J:(b) f(s)A&(s)
denotes the Riemann-Stieltjes integral of the function
f on [a,o(b)]y, with respect to &

By a solution of (1), we mean a function x(t) such
-1

that x(t) € C"'[r,00)y and pOI O (1) e
Cllt,, c0)p, t, > t, and satisfying (1) for all t > t,, where
Cl,[t,, 00)y denotes the set of right-dense continuously A-
differentiable functions on [t,, 00)¢. In the sequel, we restrict
our attention to those solutions of (1) which exist on the half-
line [t,, co)t and satisfy sup{|x(t)| : t € (T, 00)} > 0 for any
T > t.. A nontrivial solution of (1) is called oscillatory if it
has arbitrary large zeros; otherwise, it is called nonoscillatory.
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Equation (1) is said to be oscillatory if all its solutions are
oscillatory.

If o is a quotient of odd positive integers, f(t,u) = g(t)u”,
k(t,s) = 0, then (1) simplifies to the even order dynamic
equation

(a(t) (xAH (t))"‘)A +q(t) (x () = 0. )

If f(t,u) = qO)ul*'u, T, = Nya = 1,b = kforn €
N, and &(s) = s;0(s) = a,, (s = 1,2,...,k) satisfying oy >
Oy > oo >, > o> o, > > oy k(ts) = pi(t), s =
1,2,...,k; g(t,s) = 6(t), then (1) reduces to
n-1 o— n-1 A
(ro [ o 7 0) +poxemIx e @)
k
+ 3P () 13O x (8 (1)) = 0.
i=1
3)

In recent years, more and more people have been inter-
ested in studying the oscillatory behavior of higher order
dynamic equations on time scales, see [1-13] and references
therein. For an introduction to time scale calculus and
dynamic equations, we refer the reader to the landmark
paper of Hilger [14] and the seminal book by Bohner and
Peterson [15] for a comprehensive treatment of the subject. In
particular, Grace [9] studied the even order dynamic equation
(2). By employing generalized Riccati techniques, he estab-
lished some new criteria which ensure that (2) is oscillatory.
Chen and Qu [8] investigated the even order advanced type
dynamic equation (3). They got some new oscillation criteria
for (3) by introducing parameter functions.

In the present paper, we will establish several oscillation
criteria for the more general equation (1). Our work is of sig-
nificance because (1) allows an infinite number of nonlinear
terms and even a continuum of nonlinearities determined by
the function &. Our results extend and supplement a number
of other existing results and handle the cases which are not
covered by known criteria.

2. Preliminaries

In the sequel, we denote by L¢[a,b] the set of Riemann-
Stieltjes integrable functions on [a, cr(b))wl with respect to &,

and we use the convention thatIn0 = —00,e™® = 0.

Lemma 1 (Kiguarde’s Lemma [16, Theorem 5]). Letn € N,
f € C(T,R), and supT = oo. Suppose that f is either

positive or negative and fAn is not identically zero and is
either nonnegative or nonpositive on [t,, 00)y for some t, €
T. Then there exist t; € [ty,,00)y, m € [0,n), such that

(—1)"7mf(t)fA”(t) > 0 holds for all t € [t,, c0)y with
Q) FOFY (&) > 0 holds for all t € [t,,00); and all j €
[0, m)z;

(i) (=1 £(t) £ (t) > 0 holds for all t € [t,,00); and
all j € [m,n)5.
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In order to present the next lemma, we use the Taylor
monomials (see [15, section 1.6]) {h,(t,s)},>, which are
defined recursively by

t

hn+1 (t’ S) = J‘ hn (T, 5) AT,

N

tbseT, n>1, (4)

where hy(t,s) = 1.

Lemma 2 (see [1]). LetsupT = oo and f € C,(T,R) (n >
2). Moreover, suppose that Kigurade’s theorem holds with m €

[0,1), and fAn(t) < 0 on T. Then there exists a sufficiently
large t, € T such that

A&z h,, (68) Y @) Veelt,00). )

Lemma 3 (see [1]). Assume that the conditions of Lemma 2
hold. Then

F@) =h, (6t) 2 @) Ve [t,00);. (6)

Lemma 4 (see [17]). Suppose that (H;) holds. Let x : T — R.
Ifo exists for all sufficiently large t € T, then (x(8@))A =
x(8(£))8%(t) for all sufficiently larget € T.

Lemma 5 (see [15]). Assume that x(t) is A-differentiable and
eventually positive or eventually negative; then

(x* )" =« “1 [(1-h)x(t) +hx (o0 ®)]*" dh} ().
0
(7)

Lemma 6 (see [18]). Suppose X and Y are nonnegative; then

PXY" XV < (y-1)YY, yp>1, (8)

where equality holds if and only if X =Y.

Lemma 7 (see [19]). Let u(t) € C,, ([a, b]Tl,IR) and y(t) €
LE[a, b] satisfy u(t) 2 0 (£0), n(t) > 0 on [a, b]mr and

a(b)
j n(s) AE(s) = 1. ©)

a

Then

a(b)

a(b)
j 0 (s) () AE(s) exp(j

a a

n(s)In[u(s)] A (S)) :
(10)
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3. Main Results

Theorem 8. Assume that (H,)-(Hg) hold. If there exist a
functzon o(t) € C d([to,oo)T, (0,00)) and a function y(t) €

Lgla, b] satisfyingn(s) > 0 on [a, b]m and for all't, € [t,, 00),
o(b)
[ nease -1, (1)
o(b)
[ neowase - (12)
0 0 a(b) 1/a
J [Pl (Y)I (q(() + I k(C,s) A& (S))AC] Ay
t, y a
= 00,

(13)

— (s 1
lim J M(t) - —————
s— 00 t0< () ((X+1)“+1

p®(¢° )"

At = oo,
B Oh 0@,6) (t)]“) OO
(14)

where

M(t)=¢(t)q(t)

o(b)
+¢(t)exp<j n(S)ln(n'l(S)k(t,s))AE(s)),
(¢" 1), = max{g® @), 0},

(15)
then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t),
then there exists Ty(e T) > ¢, such that x(¢)#0 for all
t € [Ty, 00)y. Without loss of generality, we assume that
x(t) > 0, x(8(t)) > 0, and x(g(t,s)) > 0 fort € [T, 00)y,
s € [a,bly, because a similar analysis holds for x(t) <
0, x(8(¢)) < 0 and x(g(t,s)) < 0. From (1) and (H,), (Hs),
we have

(p )]

Therefore p(t) IxAn

—1 a—1 APl A
o x (t)> <0, te[Tyc0),. (16)

-1 a-1 ,n1
o«

tion and x*" (t) is eventually of one sign on [T}, 00)y.
We claim that

(t) is a nonincreasing func-

An*l

x> (t)>0or £ (t)=0, te[Ty00);. (17)

Otherwise, if there exists at; (€ T) = T, such that Pt t)<o0
fort € [t;,00)y, then from (16), for some positive constant K,
we have

O (" ) <K telto0)s  08)

that is

Al K 1/«
x (t)><m> . telthoo), (9

integrating the above inequality from ¢, to ¢, we have

AT <A () -k (P @) - P(1)). (20)

(1) = ~co.
Analogously, we have limt_,ooxAH @) = limtqooxAH(t) =
- =lim, , x"(t) = lim, , x(t) = —0o, which contradicts

the fact that x(t) > 0 for [T}, 00). Thus, we have proved (17).
So from (16) and (17) and Lemma 5, we obtain

(pr(+" )
o (" 0) o (=" o))
=0 o)

+p° (D {L [(-mx" @

Lettingt — oo, from (H,), we get limt_moxAn

(21)

e (o (t))]aildh} A )
<0.

Therefore, it follows from the fact pA(t) > 0, we have x* ) <
0, and from Lemma 1, there exists an integer m € {1,3,...,n—
1} such that (i) and (ii) hold on [T}, c0)y. Thus, we have
x2(t) > 0 and then we conclude

x®)=2x(8()=x(Ty) :=c>0,
x(g(ts) 2 x@ @) >

forany s € [a,b]y .

x(Ty) ==¢c>0, (22)

For the case n = 2, from Lemmas 1 and 2, we get m = 1. For
the case n > 4, we claim that m = n— 1. Otherwise, we obtain
m < n — 3, Therefore, it follows from (ii) of Lemma 1 that

P (t) <0, P (t) > 0 on [T}, 00). From (1), we have

(p (+*

-1 « a(b)
®) )A <-q(t)c* - J k(t,s) O AE (s)

4 (q @+ [ k0 <s)),
' (23)
where
min {c¢*, ™}, 0<c<1
a= {min {¢, @}, > 1 24



Integrating (23) from t > T}, to v > t and from (17) we obtain
PO (= ®) 2pm (" M)

v a(b)
‘e j (q(() " j k(Cs) A&(s)) AL

a

v a(b)
> ¢ j (q(mj k(C,s) Af(s))Ac.
(25)

Letting v — 00, we have

—1

P t) = (cl)l/oc

0 a(b) 1/«
x[p“(t)jt (q(mj k«*,s)A«s(s))A(] .
(26)

Integrating both sides of the last inequality from T, to t and
from xAH(t) < 0, we get

- xAH (To)

> ™7 (1) - ™" (T))

2(51)1/a
t 0o a(b) 1/e
xj [pl(y)j (q(é)+j k(&s)AE(s))AC] Ay.
Ty Y a
(27)

Lettingt — o0, we get

o) o) a(b) 1/a
J [P_l (V)J (q(() +J k(C,s) Af(S))M] Ay
Ty y a

<" (1) (&) " < oo,
(28)

which contradicts (13). Thus, we have m = n — 1, so from
Lemma 2, there exists a sufficiently large t,(e T) > T, such
that

LB E) = h, (8(),t) %Y (B(6) >0 Vet 00).
(29)

Define

P (=" )
x*(8(1))

for t € [t;,00);. (30)

w(t) = ¢ ()
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Obviously, w(t) > 0. From (1), (Hs), (30) and XA > 0, it
follows that

0 SR
xchz(st(t)) ( »(®) ( P (t)) )

RRCENCIOEIOICHE )"
X (8(£) x* (8 (a (£)))

wh (t) =

xp@®) (x*" (0 1))

¢ ()
x*(8(1) (3D

<-¢()q(t) -

o(b)
x j k(t,s) (x (g (1) AE (s)

a

0]
¢ (0 ()

p0) (0 1) p@®) (" @)
- X (8 (1)) x* (8 (0 (1))

w (0 ()

+

Now we consider the following two cases.
In the first case « > 1. By (H,) and Lemmas 4 and 5, we
have

(x* (6 (1)))"
1
—« {jo (1= 1) x () +hx B (@ (t)))]“‘ldh} (x (6 (1)

> a(x (8 (1)) x* (3 (1) 8% (1).
(32)

From (H,), (29)-(32), x(£) > 0, x*"(t) < 0, and the fact that

P @) (w(t))l/“ . (M)lm, (33)

X8 (1) 0) (0 ()
we obtain
w® (1)
a(b)
<-$ (g - xfz ét()t)) | ks (g6 2
¢ (1) ¢ (1) ax™ (3 (1) 8° ()
e D e meway YW
a(b)
<-¢(t)qt) - szét()t)) J k(t,s) (x (g (t5) QAL (s)
¢* (1)
Yoo e

g ah, 5 (5(0),t)8 02 (1)

x@ D)@ (1) wie )




Abstract and Applied Analysis

o(b)
T P0a- x“%t()t)) | k9 (x(g @)k (o
) _aph,(5(1),1) 0% (1)
+ e (t))w(o () Sl (g (1)) pHle (1)

x WV (6 (1)),
(34)

In the second case 0 < « < 1. By (H,) and Lemmas 4 and 5,
we get

1
(x*@®))" =« {L [(1-h)x(8®)+hx(d (o (t)))]a_ldh}

x (x (8 (1)"

> a(x (8 (o (1)) %™ (8 (1) 8% (1).
(35)

From (H,), (29)-(31), (35), x*@®) > 0, x> (t) < 0,
n—-1 A
(p"*(t)x™" (1)) <0, and the fact that

PO 0 p @) @) <w (0 (1) >“‘*

x(@ (@) x (8 (0 (1)) ¢ (o (1))
(36)

we have
w® (1)

¢ (@)

AL AT

o(t) o(s)
j k(t,s) (x (g (£,9))) " AE (5)

ap (t) h,_, (8(t),t,) 8% (t)
¢(a+1)/0¢ (0' (t)) Pl/oc (t)

, 900
¢ (0 ()

x WV (g ().

w(o(t)) -

(37)

Therefore, for o > 0, from (34) and (37), we get

w® ()
o(b)
=0a0- x“ng()t)) J k(t,9) (x (g (5))" A8 ()
0) ad (£) 5 (8(8),4,) 8% (¢)
- e (t))w(a ) - Sl (g (1)) pHle (1)

x WV (g (1))
(38)

On the other hand, by (11) and (12), we have

a(b)
j 7 (s)[0(s) - a] AE (s) = 0. (39)

a

5

Therefore, by (H,), Lemma 7, (39), and x2() > 0, we have
that for t € [t;,00)

1
x% (8 (1))

a(b) 0(s)
J k(t,s)(x(g(t.s)))" A& (s)

@ x(g(t59)) ) 0(s) ot
-L k(t,s)[ x(a(t))] [x (8 ()"0 A (5)

a(b)
> j n()n " () k(t,s) [x (8 (1)]°O ™AL (s)

a

o(b)
> exp (j 7()In (77" () k (t,5) [x (8 ()))°9 ) A (s))

a

a(b) i
=exp<j n(s)In(y (s)k(t,s>)A£<s>)

a

a

a(b)
X exp (ln (x (8 (1)) J n(s)[0(s) —a] AE (5)>

a(b) o
= exp (J (&) (17" (5)k(t,5)) AL (s)).
(40)

Substituting (40) into (38) we obtain

¢" (1)

A
w” () < -M(t) + 5@ @)

w (0 (1))

ad (t) h,_y (81) 1) 8% () (weny/e
_ ¢(¢x+1)/°‘ (O' (f)) pl/a (t) w (0' (t))

(9" ®),
9@ (®)

<-M(t) + w (o (1))

(X¢) (t) hn—Z (6 (t) > tl) 8A (t) (a+1)/a
_ ¢((x+1)/(x (0 (t)) Pl/“ (t) w (0' (t)) 5

(41)

where M(t) and (gbA(t))Jr are defined by (15).

Taking a = ($°(1),/¢(c(t)), b = ap(t)h, ,(8(t),
t)0%(1)/¢ /(5 (t)) p'/*(£), by Lemma6 and (41), we
obtain

. p® (> 0)"

(@+ 1) [p () h,, (8(t),t,) 8 ()]
(42)

w® () < -M (1) +



Integrating above inequality (42) from ¢, to ¢t > ¢, we have

t

W(t)$W(t1)—Jt (M(S)—m

A o+l
P () >AS

0O (0).5) 8 )

<w(t)+ J-tl M (s) As

ty

t 1
- L, <M(S) T at D
A o+l
P)(¢" ()" > N

O (06, 0)8 O
(43)

Since w(t) > 0 for t > t;, we have

A a+l
p)(¢*(9), >AS

t 1
M —
L) < (s) @+ 1" [p(s)h, 5 (8(s),1,) % (5)]°

" M(s)As—w (@) <w(t) + Jtl M (s) As.

ty

<w(t1)+j

ty

(44)

Taking upper limit of both sides of the inequality (44) ast —
00, the right-hand side is always bounded, which contradicts
condition (14). This completes the proof of Theorem 8. [

Theorem 9. Assume that (H,)-(Hg) and (13) hold for all t, €
[ty, 00)y. If there exist a function ¢(t) € C:d([to, 00), (0, 00))
and a function n(t) € Lg[a,b] such that n(s) > 0 on [a, b]T1
and (11), (12) hold,

— [’ 1
i, <¢><t>q<t> S
(45)

L po(¢ )" N
= 00,
¢ ) h, ,(8(t),t,) 6" (t)]a

where ((pA(t)) = max{(pA(t), 0}, then (1) is oscillatory.

Proof. The proof is in fact a simpler version of the
proof of Theorem 8. We need only to note that (¢(t)/
xS [ ke, 9)(x(g(t, )’V AL(s) is positive in (37).

O

Theorem 10. Assume that (H,)-(Hg) and (13) hold for all t, €
[to, 00)7. If there exist a function ¢(t) € C:d([tm 00)7, (0, 00))
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and a function n(t) € Lg[a,b] such that n(s) > 0 on [a, b]T1
and (11) and (12) hold,

e P (¢°®),
slﬂgoj%(c)(t)——[hn_l Go.F )= (46)
where

Q(t) =¢()q(t)

o(b)
+ ¢ (t) exp <J- 7(s)In (,1*1 (s) Kk (¢, s)) A (5)) ,

a

(¢ ®), = max{$" (1),0},
(47)
then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 8 to have (30).
From (1) and (), (30), Lemmas 3-5, (p(t)(x*" (£))*)* <0,
xA"(t) < 0,and x2(¢) > 0, it follows that

w® (t)

(t) NN
= xaqi(;t(t))(P ®) (xA (t)> )

L $ O -0 (= )"
X (8 () x* (8 (0 (£)))

xp@®) (x*" 1))

¢ () I o

<-¢)q(t) - =06 0) k(t,s) (x (g (t:5) " AE (s5)

6 (1) NERY
* oo O )
$(t)
= 00)

o(®) o(s)
j k(t,9) (x (g (£,9)) g (s)

a

<-¢(t)q(t) -

(o),
x* (8 (1))

P (= @)

¢ (@) J o

<040 - L5y ), K69 969 Ak

(¢°®),p®)

T 00,0
(48)
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From (40), we obtain
w® (1) < -¢ (1) q (1)

o(b)
—¢<t)exp<j n(s)In (n”! (s)k(t,s>)A5<s>)

a

. (¢°®),p @)
(11 (81, 1)]"
L), p@)
- _Q (t) + M_
[hn—l (8 (t) > tl)]
(49)
Integrating this inequality from ¢, to ¢ > t;, we have
t (¢°()),p(s)
wit)<w(t)- L (Q(s) - —[hn_l TEENE As
<w(t)+ Jtl Q(s)As (50)
to

t 2(5)).p@s)
— J Q (S) — M AS
to [hn—l (6 (S) > tl )]
Taking upper limit of both sides of the inequality (50) ast —
0o and using (46) we obtain a contradiction to the fact that

w(t) > 0 on [t;, 00)y. This completes the proof of Theorem 9.
O

Theorem 11. Assume that (H,)-(Hg) and (13) hold for allt, €
[to, 00)1. If there exist a function ¢(t) € Cid([to, 00)7, (0, 00))
and a function n(t) € Lg[a,b] such that n(s) > 0 on [a, b]Tl
and (11), (12) hold,

I P (¢ ®),
ﬂ%L(“"‘”q‘”‘m Ao O

where ((pA(t)) .= max{(pA(t), 0}, then (1) is oscillatory.

Proof. The proof is in fact a simpler version of the
proof of Theorem10. We need only to note that

o(t) exp(j:(b) 17(5)ln(nfl(s)k(t,s))AE(s)) is positive in
(49). ]

Remark 12. If we let « be the ratio of positive odd integers,
ft,x(8(1))) = q(t)(x(t))", k(x,s) = 0,and 8(t) = t and use
the convention that In0 = —00, e™® = 0, then Theorem 8
reduces to [9, Theorems 2.3] and Theorem 10 reduces to [9,
Theorems 2.2].
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