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We set up a generalized Solow-Swan model to study the exogenous impact of population, saving rate, technological change, and
labor participation rate on economic growth. By introducing generalized exogenous variables into the classical Solow-Swanmodel,
we obtain a nonautomatic differential equation. It is proved that the solution of the differential equation is asymptotically stable if
the generalized exogenous variables converge and does not converge when one of the generalized exogenous variables persistently
oscillates.

1. Introduction

In the classical Solow-Swan model, saving rate, technological
level, capital depreciation, and population growth rate are
assumed to be fixed positive constants [1–3]. However, they
vary in the process of the economic growth and appear in
different forms in the different periods. The growth rate of
population presents an inverted-U form in the demographic
transition [4–9], the growth of technology appears in the S-
shape in some periods [10], and the saving rate varies with the
age structure [11, 12].

In this paper, a generalized Solow-Swanmodel is set up by
introducing generalized exogenous variables into the classical
Solow-Swan model, which is described by a nonautomatic
differential equation. We use this model to inquire the effect
of exogenous short-term shocks and long-termfluctuation on
the economic growth.

Firstly, we analyze the dynamics of the generalized Solow-
Swan model. It is proved that the right maximal interval
of the nonautomatic differential equation is [0,∞) and a
comparison theorem is provided. The solution of the differ-
ential equation is Lyapunov asymptotically stable when the
generalized exogenous variables converge, which implies that
the short-term exogenous shocks have no substantial impact
on the long-term economic growth.

The case that the differential equation has oscillational
solution is also discussed in this paper. It is obtained that
the solution of the equation does not converge when one

of the generalized exogenous variables persistently oscillates.
Therefore, the economy presents fluctuation when one of the
generalized exogenous variables is persistent oscillation.

Secondly, we inquire the impact of the main three
factors on the economic growth. The first one is the change
of the population and we mainly study the effect of the
variable population growth rate and labor participation on
the economic growth. It is obtained that the economy with
low population growth rate has higher per capita capital
than that with high population growth rate and the economy
tends stable if the population growth rate tends to a stable
level. On the other hand, we obtain that the economy with
high labor participation rate has higher per capita capital
than that with low labor participation rate. This implies
that there exists “demographic dividend” in the late stage of
the demographic transition in which the population growth
rate declines and the labor force participation rate increases
and the population aging will slow down the economic
growth. If the population growth or labor participation
rate is persistent oscillation, the economic fluctuation will
appear.

In the classical Solow-Swan model, the saving rate is a
fixed parameter and the shock of the saving rate change on the
economic growth is studied by Romer [2]. The saving rate is
assumed to be a variable of time in this paper and it is proved
that the economy with higher saving rate will grow faster
than that with lower saving rate and the economy presents
fluctuation when the saving rate is persistent oscillation.
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The effect of different types of technological change on
the economic growth is inquired by using the generalized
Solow-Swanmodel. It is proved that the economywith higher
technological level has higher per capita capital than that
with lower technological level under the Hicks or Solow
neutral technology. For the Harrod neutral technology, we
obtain that the per capita capital of the economy with higher
final technological growth rate will exceed that with lower
final technological growth whatever how high the initial
per capita capital or technological level the latter has. This
implies that a developing economy can catch up a developed
economy if it keeps a higher technological growth rate.
When the technological level (under Hicks or Solow neutral
technology) or the technological growth rate (under Harrod
neutral technology) is persistent oscillation, the economy
presents long-term fluctuation.

Finally, a brief summery is given in Section 6.

2. The Generalized Solow-Swan Model

2.1. Set up the Model. The classical Solow-Swan model is
given by

�̇� = 𝑠𝑓 (𝑘) − (𝛿 + 𝑛 + 𝑔) 𝑘, (1)

where 𝑠, 𝑛, and 𝑔 are saving rate, population growth rate, and
the technological change rate, respectively, and 𝑓(𝑘) is the
intensive production function satisfying

𝑓 (0) = 0, 𝑓 (∞) = ∞, 𝑓


(0) = ∞,

𝑓


(∞) = 0, 𝑓


(𝑘) > 0, 𝑓


(𝑘) < 0,

𝑘 > 0.

(2)

In this paper, we consider the following nonautomatic
differential equation:

�̇� = 𝑎 (𝑡) 𝑓 (𝑘) − 𝑏 (𝑡) 𝑘, (3)

where 𝑎(𝑡), 𝑏(𝑡) are continuous functions on [−𝑐,∞) and
satisfy 𝑎

1
≤ 𝑎(𝑡) ≤ 𝑎

2
, 𝑏
2
≤ 𝑏(𝑡) ≤ 𝑏

1
, 𝑎
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, and 𝑐

are positive constants.

2.2. The Comparison Theorem

Theorem 1. If 𝑘(𝑡), �̃�(𝑡) are the solution of (3) and

�̇� = 𝑎 (𝑡) 𝑓 (𝑘) − �̃� (𝑡) 𝑘 (4)

with the initial values 𝑘(0), �̃�(0), �̃�(0) > 𝑘(0) > 0, then

(1) 𝑘(𝑡) < �̃�(𝑡), 𝑡 > 0 on a common interval of existence
when 𝑎

1
≤ 𝑎(𝑡) < 𝑎(𝑡) ≤ 𝑎

2
, 𝑏
2
≤ �̃�(𝑡) ≤ 𝑏(𝑡) ≤ 𝑏

1
or

𝑎
1
≤ 𝑎(𝑡) ≤ 𝑎(𝑡) ≤ 𝑎

2
, 𝑏
2
≤ �̃�(𝑡) < 𝑏(𝑡) ≤ 𝑏

1
;

(2) 𝑘(𝑡) ≤ �̃�(𝑡), 𝑡 > 0, on the common interval of existence
when 𝑎

1
≤ 𝑎(𝑡) ≤ 𝑎(𝑡) ≤ 𝑎

2
, 𝑏
2
≤ �̃�(𝑡) ≤ 𝑏(𝑡) ≤ 𝑏

1
.

Proof. (1) It is only to prove that there exits 𝛿 > 0 such that

�̃� (𝑡) > 𝑘 (𝑡) , 𝑡 ∈ (0, 𝛿) . (5)

Let 𝜙(𝑡) = �̃�(𝑡) − 𝑘(𝑡); then 𝜙(0) ≥ 0 and 𝜙(0) > 0. Therefore,
(5) holds.

(2) It is directly derived by the differential inequality [13].

2.3. The Right Maximal Interval of the Solution. For the
classical Solow Model, we have the following lemma.

Lemma 2 (see [1]). The right maximal intervals of the solu-
tions, 𝑘

𝑖
(𝑡), 𝑖 = 1, 2, of the initial value problems

�̇�
𝑖
= 𝑎
𝑖
𝑓 (𝑘
𝑖
) − 𝑏
𝑖
𝑘
𝑖
, 𝑘
𝑖
(0) = 𝑘

0
> 0, 𝑖 = 1, 2 (6)

are [0,∞) and

lim
𝑡→∞

𝑘
𝑖
(𝑡) = 𝑘

∗

𝑖
, min {𝑘

0
, 𝑘
∗

𝑖
} ≤ 𝑘
𝑖
(𝑡) ≤ max {𝑘

0
, 𝑘
∗

𝑖
} ,

𝑖 = 1, 2,

(7)

where 𝑘∗
𝑖
, 𝑖 = 1, 2, are the nonzero solutions of the equations

𝑎
𝑖
𝑓(𝑘
𝑖
) − 𝑏
𝑖
𝑘
𝑖
= 0, 𝑖 = 1, 2.

Theorem 3. The solution of the initial value problem

�̇� = 𝑎 (𝑡) 𝑓 (𝑘) − 𝑏 (𝑡) 𝑘,

𝑘 (0) = 𝑘
0
> 0

(8)

exists on the interval [0,∞).

Proof. Let 𝑘(𝑡) be the solution of the initial value problem (8)
with the right maximal interval [0, 𝑏); then, by

𝑎
1
𝑓 (𝑘) − 𝑏

1
𝑘 ≤ 𝑎 (𝑡) 𝑓 (𝑘) − 𝑏 (𝑡) 𝑘 ≤ 𝑎

2
𝑓 (𝑘) − 𝑏

2
𝑘 (9)

andTheorem 1, we have 𝑘
1
(𝑡) ≤ 𝑘(𝑡) ≤ 𝑘

2
(𝑡), 𝑡 ∈ [0, 𝑏), and it

stays in the set Ω = {(𝑡, 𝑘) | 0 ≤ 𝑡 < 𝑏, 𝑘
1
(𝑡) ≤ 𝑘 ≤ 𝑘

2
(𝑡)} for

𝑡 > 0.
If 𝑏 < ∞, let 𝐸

𝜖
= {(𝑡, 𝑘) | −𝜖 < 𝑡 < 𝑏+𝜖,min{𝑘

0
, 𝑘
∗

1
, 𝑘
∗

2
}−

𝜖 < 𝑘 < max{𝑘
0
, 𝑘
∗

1
, 𝑘
∗

2
} + 𝜖}; then, for small enough 𝜖, the

function 𝑎(𝑡)𝑓(𝑘) − 𝑏(𝑡)𝑘 satisfies Lipschitz condition on 𝐸
𝜖
.

By ExtensionTheorem [13], the solution of (8) will reach the
boundary of 𝐸

𝜖
, which is a contradiction since Ω is a proper

subset of 𝐸
𝜖
and 𝑘(𝑡) ∈ Ω, 𝑡 > 0. Therefore, 𝑏 = ∞.

2.4. The Asymptotic Stability

Theorem4. If lim
𝑡→∞
𝑎(𝑡) = 𝑎, lim

𝑡→∞
𝑏(𝑡) = 𝑏, and 𝑎, 𝑏 are

two positive constants, then the solution of (8) converges to 𝑘∗,
where 𝑘∗ is the nonzero solution of the equation 𝑎𝑓(𝑘)−𝑏𝑘 = 0.

Proof. For any given 𝜖 > 0, there exist 𝑎
𝑖
, 𝑏
𝑖
, 𝑖 = 1, 2, such that

0 < 𝑎
1
< 𝑎 < 𝑎

2
, 0 < 𝑏

2
< 𝑏 < 𝑏

1
, and the nonzero solutions

of 𝑎
𝑖
𝑓(𝑘)−𝑏

𝑖
𝑘 = 0, 𝑘∗

𝑖
, 𝑖 = 1, 2, satisfy 𝑘∗

1
−𝜖/2 < 𝑘

∗
< 𝑘
∗

2
+𝜖/2,
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where 𝑘∗
𝑖
, 𝑖 = 1, 2, are the nonzero solutions of 𝑎

𝑖
𝑓(𝑘) − 𝑏

𝑖
𝑘 =

0, 𝑖 = 1, 2.
Since lim

𝑡→∞
𝑎(𝑡) = 𝑎, lim

𝑡→∞
𝑏(𝑡) = 𝑏, there exists 𝑇

1

such that 𝑎
1
< 𝑎(𝑡) < 𝑎

2
, 𝑏
2
< 𝑏(𝑡) < 𝑏

1
, 𝑡 ≥ 𝑇

1
. Let �̃�

𝑖
(𝑡),

𝑖 = 1, 2, and �̃�(𝑡) be the solutions of (6) and (8) with the initial
�̃�
1
(0) = �̃�

2
(0) = �̃�(0) = 𝑘(𝑇

1
); then, from lim

𝑡→∞
�̃�
1
(𝑡) =

𝑘
∗

1
, lim
𝑡→∞
�̃�
2
(𝑡) = 𝑘

∗

2
, and �̃�

2
(𝑡) < �̃�(𝑡) < �̃�

1
(𝑡), 𝑡 > 0, there

exists 𝑇
2
such that

𝑘
∗
− 𝜖 < 𝑘

∗

1
−
𝜖

2
< �̃�
1
(𝑡) ≤ �̃� (𝑡) ≤ �̃�

2
(𝑡)

< 𝑘
∗

2
+
𝜖

2
< 𝑘
∗
+ 𝜖, 𝑡 > 𝑇

2
;

(10)

that is, |�̃�(𝑡) − 𝑘∗| < 𝜖, 𝑡 > 𝑇
2
.

Let 𝑢(𝑡) = { 𝑘(𝑡), 0≤𝑡≤𝑇1 ,
�̃�(𝑡−𝑇

1
), 𝑇
1
≤𝑡<∞,

and then 𝑢(𝑡) is a solution of
(8) with the initial 𝑢(0) = 𝑘

0
and 𝑢(𝑡) = 𝑘(𝑡), 𝑡 > 0, by the

uniqueness of the solution of (8). Therefore, |𝑘(𝑡) − 𝑘∗| < 𝜖,
𝑡 > 𝑇
1
+ 𝑇
2
, and the theorem holds.

From the above theorem, we have following lemma.

Lemma 5. If lim
𝑡→∞
𝑎(𝑡) = 𝑎, lim

𝑡→∞
𝑏(𝑡) = 𝑏, 𝑢

𝑖
(𝑡), 𝑖 =

1, 2, are the solution of (8)with the initial values 𝑢
10
> 𝑢
20
> 0,

then lim
𝑡→∞
|𝑢
1
(𝑡) − 𝑢

2
(𝑡)| = 0.

Theorem 6. If lim
𝑡→∞
𝑎(𝑡) = 𝑎, lim

𝑡→∞
𝑏(𝑡) = 𝑏, then the

solution of (8) is Lyapunov asymptotically stable.

Proof. For any given 𝜖 > 0, choose 𝑢
10
= 3𝑘
0
/2 and 𝑢

20
=

𝑘
0
/2; then, from Lemma 5, there exists 𝑇 > 0 such that the

solutions, 𝑢
𝑖
(𝑡), 𝑖 = 1, 2, with the initial values 𝑢

𝑖0
, 𝑖 = 1, 2, of

(8) satisfy |𝑢
1
(𝑡) − 𝑢

2
(𝑡)| < 𝜖, 𝑡 ≥ 𝑇.

Denote that

𝐺 (𝑡, 𝑘) = 𝑎 (𝑡) 𝑓 (𝑘) − 𝑏 (𝑡) 𝑘; (11)

then 𝜕𝐺/𝜕𝑘 is continuous on the compact set

M = {(𝑡, 𝑘) | 0 ≤ 𝑡 ≤ 𝑇, 𝑢
1
(𝑡) ≤ 𝑘 ≤ 𝑢

2
(𝑡)} . (12)

Let𝑀 = max
(𝑡,𝑘)∈M(𝜕𝐺(𝑘, 𝑡)/𝜕𝑘), 𝛿1 = min{𝜖𝑒−𝑀𝑇, 𝑘

0
/2},

and �̃�(𝑡) be the solution of (8) with the initial value �̃�
0
∈ (𝑘
0
−

𝛿
1
, 𝑘
0
+ 𝛿
1
); then, by the Gronwall inequality [13], we have


�̃� (𝑡) − 𝑘 (𝑡)


<

�̃�
0
− 𝑘
0


𝑒
𝑀𝑇
< 𝜖, 𝑡 ∈ [0, 𝑇] . (13)

Since 𝑢
2
(𝑡) < 𝑘(𝑡) < 𝑢

1
(𝑡), 𝑢
2
(𝑡) < �̃�(𝑡) < 𝑢

1
(𝑡), 𝑡 > 0, we

have |�̃�(𝑡) − 𝑘(𝑡)| < |𝑢
1
(𝑡) − 𝑢

2
(𝑡)| < 𝜖 for 𝑡 ≥ 𝑇. Therefore,

the solution of (8) is Lyapunov asymptotically stable [14] by
Lemma 5. This completes the proof of the theorem.

2.5. Oscillation

Definition 7. The generalized exogenous variables 𝑎(𝑡) (or
𝑏(𝑡)) are called persistent oscillation if, for any given 𝑇 > 0,
there exist 𝑐𝑖

𝑇
, 𝑑
𝑖

𝑇
, 𝑖 = 1, 2, 𝑐1

𝑇
< 𝑑
1

𝑇
< 𝑐
2

𝑇
< 𝑑
2

𝑇
, and 𝜖 > 0, 𝛿

1
>

such that 𝑑𝑖
𝑇
− 𝑐
𝑖

𝑇
> 𝛿
1
, 𝑖 = 1, 2, and one of the following

inequalities holds:

min
𝑐
1

𝑇
≤𝑡≤𝑑
1

𝑇

𝑎 (𝑡) − max
𝑐
2

𝑇
≤𝑡≤𝑑
2

𝑇

𝑎 (𝑡) > 𝜖,

min
𝑐
2

𝑇
≤𝑡≤𝑑
2

𝑇

𝑎 (𝑡) − max
𝑐
1

𝑇
≤𝑡≤𝑑
1

𝑇

𝑎 (𝑡) > 𝜖.
(14)

Lemma 8. If the generalized variables 𝑎(𝑡) are persistent
oscillation, then, for any given constants 𝑐, 𝑇, 𝑇 > 0, there exist
𝛿
1
> 0 and 𝑡

𝑇
> 𝑇 such that one of the following inequalities

holds:

𝑎 (𝑡) − 𝑐 >
𝜖

2
, 𝑐 − 𝑎 (𝑡) >

𝜖

2
(15)

on the interval [𝑡
𝑇
− 𝛿
1
/2, 𝑡
𝑇
+ 𝛿
1
/2].

Proof. Assume that the first inequality of (14) holds; then one
of the following inequalities holds:

min
𝑐
1

𝑇
≤𝑡≤𝑑
1

𝑇

𝑎 (𝑡) − 𝑐 >
𝜖

2
, − max

𝑐
2

𝑇
≤𝑡≤𝑑
2

𝑇

𝑎 (𝑡) + 𝑐 >
𝜖

2
. (16)

Without loss of the generality, we assume that the first
inequality above holds and we have

𝑎 (𝑡) − 𝑐 >
𝜖

2
, 𝑡 ∈ [𝑐

1

𝑇
, 𝑑
1

𝑇
] . (17)

Taking 𝑡
𝑇
= (𝑑
1

𝑇
+ 𝑐
1

𝑇
)/2, then (15) holds for [𝑡

𝑇
− 𝛿
1
/2, 𝑡
𝑇
+

𝛿
1
/2] ⊂ [𝑐

1

𝑇
, 𝑑
1

𝑇
].

Similarly, we can prove the case that the second inequality
holds. This completes the proof of the lemma.

Theorem 9. If one of the generalized variables is persistent
oscillation and the other converges, then the solution of the
differential equation (8) does not converge.

Proof. Assume that 𝑎(𝑡) is persistent oscillation and
lim
𝑡→∞
𝑏(𝑡) = 𝑏.

If the solution 𝑘(𝑡) of the differential equation (8) con-
verges, then there exists a 𝑘∗ > 0 such that lim

𝑡→∞
𝑘(𝑡) = 𝑘

∗.
Therefore, for given 𝜖

1
> 0, there exists 𝑇

1
> 0 such that

|𝑓(𝑘(𝑡)) − 𝑓(𝑘
∗
)| < 𝜖

1
, |𝑐 − (𝑘(𝑡)/𝑓(𝑘(𝑡)))𝑏(𝑡)| < 𝜖

1
, 𝑡 > 𝑇

1
,

where 𝑐 = (𝑘∗/𝑓(𝑘∗))𝑏.
Let 𝑐
1
= min{𝑓(𝑘∗) − 𝜖

1
, 𝑓(𝑘
∗
) + 𝜖
1
}; then, from (8) and

Lemma 8, there exists 𝜖 > 0, such that

𝑘 (𝑡
𝑇
+
𝛿
1

2
) − 𝑘(𝑡

𝑇
−
𝛿
1

2
)


=


∫
𝑡
𝑇
+𝛿
1
/2

𝑡
𝑇
−𝛿
1
/2

𝑓 (𝑘 (𝑠)) [𝑎 (𝑠) − 𝑐] d𝑠

+ ∫
𝑡
𝑇
+𝛿
1
/2

𝑡
𝑇
−𝛿
1
/2

𝑓 (𝑘 (𝑠)) [𝑐 −
𝑘 (𝑠)

𝑓 (𝑘 (𝑠))
𝑏 (𝑠)] d𝑠



≥
𝑐
1
𝜖𝛿
1

2
− (𝑓 (𝑘

∗
) + 𝜖
1
) 𝜖
1
𝛿
1

≥
𝑐
1
𝜖𝛿
1

4

(18)

for 𝑇 > 𝑇
1
, provided 𝜖

1
< min{𝑐

1
𝜖/4(𝑓(𝑘

∗
) + 1), 1}.
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Since lim
𝑡
𝑇
→∞
|𝑘(𝑡
𝑇
+ 𝛿
1
/2) − 𝑘(𝑡

𝑇
− 𝛿
1
/2)| = 0, the

inequality above does not hold for big enough 𝑇
1
. This is a

contradiction and the theorem holds.

Lemma 10. If generalized variable 𝑎(𝑡) (or (𝑏(𝑡)) which does
not equal constant is a periodical function with the period 𝜔 >
0, then it is persistent oscillation.

Proof. Since 𝜔 > 0, there exists 𝑡
1
, 𝑡
2
∈ (0, 𝜔), 𝑡

1
< 𝑡
2
such

that 𝑎(𝑡
1
) ̸= 𝑎(𝑡

2
). Let 𝜖 = |𝑎(𝑡

1
) − 𝑎
2
(𝑡
2
)|/2; then there exists

𝛿 > 0 such that 0 < 𝑡
1
−𝛿/2 < 𝑡

1
+𝛿/2 < 𝑡

2
−𝛿/2 < 𝑡

2
+𝛿/2 < 𝜔

and one of the following inequalities holds:
min
𝑐
1
≤𝑡≤𝑑
1

𝑎 (𝑡) − max
𝑐
2
≤𝑡≤𝑑
2

𝑎 (𝑡) > 𝜖,

min
𝑐
2
≤𝑡≤𝑑
2

𝑎 (𝑡) − max
𝑐
1
≤𝑡≤𝑑
1

𝑎 (𝑡) > 𝜖,
(19)

where 𝑐
𝑖
= 𝑡
𝑖
− 𝛿/2, 𝑑

𝑖
= 𝑡
𝑖
+ 𝛿/2, 𝑖 = 1, 2.

For any given 𝑇 > 0, there exists positive integer𝑀
𝑇
such

that𝑀
𝑇
𝜔 > 𝑇. Let 𝑐𝑖

𝑇
= 𝑀
𝑇
𝜔+ 𝑡
𝑖
−𝛿/2, 𝑑

𝑖

𝑇
= 𝑀
𝑇
𝜔+ 𝑡
𝑖
+𝛿/2,

𝑖 = 1, 2; then, from (19), the conditions in Definition 7 hold
for 𝑎(𝑡) is the period function with period 𝜔. This completes
the proof of the lemma.

From Lemma 10, we have the following theorem.

Theorem 11. If one of the generalized variables is periodical
oscillation and the other converges, then the solution of the
differential equation (8) does not converge.

Example 12. If the intensive productive function is the Cobb-
Douglas productive function, then the differential equation
(3) becomes

�̇� = 𝑎 (𝑡) 𝑘
𝛼
− 𝑏 (𝑡) 𝑘. (20)

Let 𝑧(𝑡) = 𝑘1−𝛼; then the equation above is reduced by
�̇� = −𝑏

1
(𝑡) 𝑧 + 𝑎

1
(𝑡) (21)

which is a linear differential equation, where 𝑎
1
(𝑡) = (1 −

𝛼)𝑎(𝑡) and 𝑏
1
(𝑡) = (1 − 𝛼)𝑏(𝑡), and its solution is given by

𝑧 (𝑡) = 𝑒
−∫
𝑡

0
𝑏
1
(𝑠)d𝑠
[𝑧
0
+ ∫
𝑡

0

𝑎
1
(𝑠) 𝑒
∫
𝑠

0
𝑏
1
(𝜏)d𝜏d𝑠] . (22)

Therefore, the solution of (20) is

𝑘 (𝑡) = [𝑒
−∫
𝑡

0
𝑏
1
(𝑠)d𝑠
(𝑘
1−𝛼

0
+ ∫
𝑡

0

𝑎
1
(𝑠) 𝑒
∫
𝑠

0
𝑏
1
(𝜏)d𝜏d𝑠)]

1/(1−𝛼)

.

(23)
When 𝑎

1
(𝑡) = 𝑎

1
+ 𝑎
2
sin𝑥, 𝑏

1
(𝑡) = 𝑏, the solution of the

differential equation (20) is given by

𝑘 (𝑡) = [(𝑘
1−𝛼

0
−
𝑎
1
(1 + 𝑏

2
) − 𝑎
2
𝑏

𝑏 + 𝑏2
)𝑒
−𝑏𝑡

+
𝑎
1
+ 𝑎
1
𝑏
2
− 𝑎
2
𝑏 cos 𝑡 + 𝑎

2
𝑏
2 sin 𝑡

𝑏 + 𝑏3
]

1/(1−𝛼)

,

(24)

which approaches periodical oscillation.

3. Variable Population Growth

Suppose that𝑁(𝑡) and𝐿(𝑡) are the numbers of population and
labor of an economy at time 𝑡 and the labor force participation
rate is 𝜆(𝑡), 0 < 𝜆(𝑡) < 1; then, 𝐿(𝑡) = 𝜆(𝑡)𝑁(𝑡). We further
assume that the population growth rate, 𝑛(𝑡), is bounded; that
is, −𝑛
1
≤ 𝑛(𝑡) ≤ 𝑛

2
, where 𝑛

𝑖
≥ 0, 𝑖 = 1, 2.

Let 𝑘 = 𝐾/𝑁; then

�̇� = (
�̇�

𝐾
−
𝑁

𝑁
)𝑘 = (

�̇�

𝐾
− 𝑛 (𝑡)) 𝑘 =

�̇�

𝑁
− 𝑛 (𝑡) 𝑘. (25)

From �̇� = 𝑠𝐹(𝐾, 𝐿) − 𝛿𝐾, we obtain the Solow-Swan
model with the variable population growth rate and labor
participation rate below:

�̇� = 𝑠𝐹 (𝑘, 𝜆 (𝑡)) − [𝛿 + 𝑛 (𝑡)] 𝑘. (26)

3.1. Changeable Population Growth Rate. Assume that the
labor participation is positive constant, that is, 𝜆(𝑡) = 𝜆

0
, and

let 𝑓(𝑘) = 𝐹(𝑘, 𝜆
0
); then, from (26), we obtain the Solow-

Swan model with variable population growth rate

�̇� = 𝑠𝑓 (𝑘) − [𝛿 + 𝑛 (𝑡)] 𝑘,

𝑘 (0) = 𝑘 (0) > 0.
(27)

Let 𝑎(𝑡) = 𝑠, 𝑏(𝑡) = 𝛿 + 𝑛(𝑡); then, from Theorems 4 and
6, we have the following theorem.

Theorem 13. If 𝑛
1
+ 𝛿 > 0, then, the extension interval

of the solution of the differential equation (27) is [0, +∞);
furthermore, if lim

𝑡→+∞
𝑛(𝑡) = 𝑛

0
, then the solution of the

differential equation (27) is Lyapunov asymptotically stable
and converges to the nonzero equilibrium of the differential
equation

�̇� = 𝑠𝑓 (𝑘) − [𝛿 + 𝑛
0
] 𝑘. (28)

Remark 14. Theorem 19 provided by Guerrini [15] is a special
case of the above theorem (there, 𝑛(𝑡) is required to be a
monotone decreasing function).

One of the most distinct characteristics in population
change is the demographic transition, which has occurred in
almost all developed countries and most developing coun-
tries [11]. The population growth rate in demographic tran-
sition appears in an inverted-U form and can be described by
a function of time 𝑡, satisfying

𝑛 (0) = 𝑛
0
> 0, 𝑛



(𝑡) > 0,

0 < 𝑡 < 𝑡
1
, 𝑛


(𝑡) < 0, 𝑡 > 𝑡
1
,

lim
𝑡→∞

𝑛 (𝑡) = 0.

(29)

Corollary 15. The growth of the economy which has under-
gone the demographic transition is stable and its per capita
capital converges to the steady state of the economy with the
zero population growth rate.
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FromTheorems 1 and 9, we have the following.

Corollary 16. If 𝑘
𝑖
(𝑡), 𝑖 = 1, 2, are the solution of following

equations:

�̇� = 𝑠𝑓 (𝑘) − [𝛿 + 𝑛
𝑖
(𝑡)] 𝑘, 𝑖 = 1, 2, (30)

with same initial value 𝑘
1
(0) = 𝑘

2
(0) = 𝑘

0
> 0 and 𝑛

1
(𝑡) >

𝑛
2
(𝑡) > 𝑛

1
, then 𝑘

2
(𝑡) > 𝑘

1
(𝑡), 𝑡 > 0.

Corollary 16 implies that an economywith higher popula-
tion growth rate has lower per capita capital and consumption
than that with lower population growth rate.

Theorem 17. If 𝑛
1
+ 𝛿 > 0 and 𝑛(𝑡) is persistent oscillation,

then the solution of (27) does not converge.

Corollary 18. If the population growth is persistent oscillation
of an economy, then its economic growth is not stable.

3.2. Changeable Labor Force Participation. There are two
major reasons that result in the change of the labor force
participation: one is the changes in the age structure and the
other is the population aging [16]. Here, we suppose that the
aggregate population is stable; that is, 𝑁(𝑡) is a constant and
𝐹(𝐾, 𝐿) is the Cobb-Douglas production function 𝐴𝐾𝛼𝐿1−𝛼;
then 𝑛(𝑡) = 0 and (26) turns into

�̇� = 𝜆
1−𝛼

(𝑡) 𝑓 (𝑘) − 𝛿𝑘, (31)

where 𝑓(𝑘) = 𝑠𝐴𝑘𝛼.
FromTheorems 1, 3, 4, 6, and 9, we have the following.

Theorem 19. The extension interval of the solution of
the differential equation (31) is [0, +∞); furthermore, if
lim
𝑡→+∞

𝜆(𝑡) = 𝜆
0
> 0, then the solution of the differential

equation (31) is Lyapunov asymptotically stable and converges
to the nonzero equilibrium of the differential equation

�̇� = 𝜆
1−𝛼

0
𝑓 (𝑘) − 𝛿𝑘. (32)

Theorem 20. If 𝑘
𝑖
(𝑡), 𝑖 = 1, 2, are the solutions of the

differential equations

�̇� = 𝜆
1−𝛼

𝑖
(𝑡) 𝑓 (𝑘) − 𝛿𝑘, 𝑖 = 1, 2 (33)

with the same initial 𝑘
0
and 𝜆

2
(𝑡) > 𝜆

1
(𝑡), 𝑡 ≥ 0, then 𝑘

2
(𝑡) >

𝑘
1
(𝑡), 𝑡 > 0.

Corollary 21. The economy with higher labor force partic-
ipation has higher per capita capital than that with lower
labor force participation under the same other conditions;
furthermore, the per capita capital of an economy with higher
labor force participation tends stably to a higher steady state
when the labor force participation tends to a stable level.

One of the distinct characteristics in population aging is
the decline of the labor force participation [16] and we have
the following.

Corollary 22. The economic growth of an economy is slowed
down by population aging.

Theorem 23. If 𝜆(𝑡) is persistent oscillation, then the solution
of (31) does not converge.

Corollary 24. If the labor participation of an economy is
persistent oscillation, then its economic growth is not stable.

Remark 25. For the variable population growth rate, (31)
becomes

�̇� = 𝜆
1−𝛼

(𝑡) 𝑓 (𝑘) − [𝛿 + 𝑛 (𝑡)] 𝑘. (34)

From Theorems 1, 3, 4, 6, and 9, we derive that the eco-
nomic growth speeds up when the labor force participation
rate increases and the population growth rate declines.There-
fore, there exists “demographic dividend” in the late stage of
demographic transition, in which the population growth rate
declines and labor force participation rate increases.

4. Variable Saving Rate

Assume that the saving rate varies with time, the population
growth rate is a constant 𝑛

0
, and 0 < 𝑠

1
≤ 𝑠(𝑡) ≤ 𝑠

2
< 1; then

the classical Solow-Swan model changes into

�̇� = 𝑠 (𝑡) 𝑓 (𝑘) − (𝛿 + 𝑛
0
) 𝑘. (35)

FromTheorems 1, 3, 4, 6, and 9, we have the following.

Theorem 26. The extension interval of the solution of
the differential equation (35) is [0, +∞); furthermore, if
lim
𝑡→+∞

𝑠(𝑡) = 𝑠
0
> 0, then the solution of the differential

equation (35) is Lyapunov asymptotically stable and converges
to the nonzero equilibrium of the differential equation

�̇� = 𝑠
0
𝑓 (𝑘) − (𝛿 + 𝑛

0
) 𝑘. (36)

Theorem 27. If 𝑘
𝑖
(𝑡), 𝑖 = 1, 2, are the solutions of the

differential equations

�̇� = 𝑠
𝑖
(𝑡) 𝑓 (𝑘) − 𝛿𝑘, 𝑖 = 1, 2, (37)

with the same initial 𝑘
0
and 𝑠
2
(𝑡) > 𝑠

1
(𝑡), 𝑡 ≥ 0, then 𝑘

2
(𝑡) >

𝑘
1
(𝑡), 𝑡 > 0.

Corollary 28. The economy with higher saving rate has higher
per capita capital than that with lower saving rate under the
same other conditions; furthermore, the per capita capital of an
economy tends stably to a higher steady state when the saving
rate tends to a higher stable level.

Theorem 29. If 𝑠(𝑡) is persistent oscillation, then the solution
of (35) does not converge.

Corollary 30. If the saving rate of an economy is persistent
oscillation, then its economic growth is not stable.

5. Exogenous Technological Change

5.1. The Hicks Neutral Technology. TheHicks neutral techno-
logical production function [1] is given by

𝑌 = 𝐹 (𝐾, 𝐿, 𝑡) = 𝑇 (𝑡) 𝐹 (𝐾, 𝐿) , (38)
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where 𝑇(𝑡) is an index of the state of the technology, and �̇� ≥
0.

Under this production function, the Solow-Swan model
turns into

�̇� = 𝑠𝑇 (𝑡) 𝑓 (𝑘) − (𝛿 + 𝑛) 𝑘, (39)

which is a special case of the generalized Solow-Swan model
(3). Therefore, from Theorems 1, 3, 4, 6, and 9, we have the
following theorems and corollaries.

Theorem 31. If 𝑇(𝑡) is bounded and 𝑇(0) > 0, then the
extension interval of the solution of the differential equation
(39) is [0, +∞); furthermore, if lim

𝑡→+∞
𝑇(𝑡) = 𝑇 > 0,

then the solution of the differential equation (39) is Lyapunov
asymptotically stable and converges to the nonzero equilibrium
of the differential equation

�̇� = 𝑠𝑇𝑓 (𝑘) − (𝛿 + 𝑛) 𝑘, (40)

where 𝑇 = lim
𝑡→∞
𝑇(𝑡).

Theorem 32. If 𝑇
𝑖
(𝑡), 𝑖 = 1, 2, are bounded, 𝑇

2
(𝑡) > 𝑇

1
(𝑡), 𝑡 ≥

0, 𝑇
1
(0) > 0, and 𝑘

𝑖
(𝑡), 𝑖 = 1, 2, are the solutions of the

differential equations

�̇� = 𝑠𝑇
𝑖
(𝑡) 𝑓 (𝑘) − 𝛿𝑘, 𝑖 = 1, 2, (41)

with the same initial 𝑘
0
, then 𝑘

2
(𝑡) > 𝑘

1
(𝑡), 𝑡 > 0.

Corollary 33. The economywith higher technological level has
higher per capita capital than that with lower technological
level under the same other conditions; furthermore, the per
capita capital of an economy tends stably to a higher steady state
when its technological level tends to a higher stable level.

Theorem 34. If 𝑇(𝑡) is persistent oscillation, then the solution
of (39) does not converge.

Corollary 35. If the technological level of an economy is
persistent oscillation, then its economic growth is not stable.

Remark 36. In the case of Solow neutral technology (capital
augmenting technology) [1] and Cobb-Douglas production
function, that is, 𝐹(𝐾𝐵(𝑡), 𝐿) = (𝐾𝐵(𝑡))𝛼𝐿1−𝛼, the Solow-
Swan model turns into

�̇� = 𝑠𝐵
𝛼

(𝑡) 𝑘
𝛼
− (𝛿 + 𝑛) 𝑘 = 𝑎 (𝑡) 𝑓 (𝑘) − (𝛿 + 𝑛) 𝑘, (42)

where 𝑎(𝑡) = 𝑠𝐵𝛼(𝑡), 𝑓(𝑘) = 𝑘𝛼, andwe have similar theorems
and corollaries above.

5.2. The Harrod Neutral Technology. For the Harrod Neutral
technology [1], the production function is given by 𝑌 =
𝐹(𝐾, 𝐿𝐴(𝑡)), which is also called the labor-augmenting tech-
nological progress, and the Solow-Swan model becomes

�̇� = 𝑠𝑓 (𝑘) − [𝛿 + 𝑔 (𝑡) + 𝑛] 𝑘, (43)

where 𝑘 = 𝐾/𝐿𝐴(𝑡) is the capital stock per unit of effective
labor and 𝑔(𝑡) = �̇�/𝐴 is the technological growth rate.

FromTheorems 1, 3, 4, 6, and 9, we have the following.

Theorem 37. The extension interval of the solution of
the differential equation (43) is [0, +∞); furthermore, if
lim
𝑡→+∞

𝑔(𝑡) = 𝑔 > 0, then the solution of the differential
equation (43) is Lyapunov asymptotic stable and converges to
equilibrium of the differential equation

�̇� = 𝑠𝑓 (𝑘) − (𝛿 + 𝑔 + 𝑛) 𝑘. (44)

Remark 38. The special case of this theorem has been proved
by Zhou et al. [17]; there the function 𝑔(𝑡) is given by 𝑎 + 𝑔 −
𝑢(𝑡), and 𝑢(𝑡) is the solution of the logistic equation �̇� = 𝑢(𝑎−
𝑏𝑢).

Lemma 39. If 𝑔
𝑖
(0) ≥ 0, lim

𝑡→∞
𝑔
𝑖
(𝑡) = 𝑔

𝑖
, 𝑖 = 1, 2, and

𝑔
2
> 𝑔
1
, then, for any given positive constant 𝐵, there exists a

time 𝑇 such that ∫𝑡
0
[𝑔
2
(𝜏) − 𝑔

1
(𝜏)]d𝜏 > 𝐵, 𝑡 > 𝑇.

Proof. Let ℎ(𝑡) = ∫
𝑡

0
[𝑔
2
(𝑠) − 𝑔

1
(𝑠)]d𝑠; then, from

lim
𝑡→∞
ℎ(𝑡) = ∞, the lemma holds.

Theorem 40. Let 𝑘
𝑖
(𝑡), 𝑖 = 1, 2, be the solutions of the

differential equations

�̇� = 𝑠𝑓 (𝑘) − [𝛿 + 𝑔
𝑖
(𝑡) + 𝑛] 𝑘, 𝑖 = 1, 2, (45)

with the initial values 𝑘
𝑖0
, 𝑖 = 1, 2.

(1) If 𝑘
10
= 𝑘
20
and𝑔
2
(𝑡) > 𝑔

1
(𝑡), 𝑡 ≥ 0, then 𝑘

2
(𝑡) < 𝑘

1
(𝑡),

𝑡 > 0.
(2) If 𝑔

2
= lim
𝑡→∞
𝑔
2
(𝑡) > 𝑔

1
= lim
𝑡→∞
𝑔
1
(𝑡), then there

exists a time 𝑇, such that �̃�
2
(𝑡) > �̃�

1
(𝑡), where �̃�

𝑖
(𝑡), 𝑖 =

1, 2, are the per capita capital 𝐾
𝑖
(𝑡)/𝐿
𝑖
(𝑡), 𝑖 = 1, 2.

Proof. (1) It is directly deduced byTheorem 1.
(2) Since �̃�

𝑖
(𝑡) = 𝐴

𝑖
(𝑡)𝑘
𝑖
(𝑡) = 𝐴

𝑖0
𝑒
∫
𝑡

0
𝑔
𝑖
(𝜏)d𝜏
𝑘
𝑖
(𝑡), 𝑖 = 1, 2,

�̃�
2
(𝑡)

�̃�
1
(𝑡)
=
𝐴
20
𝑘
2
(𝑡)

𝐴
10
𝑘
1
(𝑡)
𝑒
∫
𝑡

0
[𝑔
2
(𝜏)−𝑔

1
(𝜏)]d𝜏

=
𝐴
20
𝑘
2
(𝑡)

𝐴
10
𝑘
1
(𝑡)
𝑒
ℎ(𝑡)
, (46)

where 𝐴
𝑖0
, 𝑖 = 1, 2, are initial technological levels.

Let 𝑘∗
𝑖
, 𝑖 = 1, 2, be the positive solutions of the following

equation:

𝑠𝑓 (𝑘) − [𝛿 + 𝑔
𝑖
+ 𝑛] 𝑘 = 0, 𝑖 = 1, 2, (47)

respectively; then, from lim
𝑡→∞
𝑘
𝑖
(𝑡) = 𝑘

∗

𝑖
, 𝑖 = 1, 2, there

exists𝑇
1
such that 𝑘

2
(𝑡) > 𝑘

∗

2
/2, 𝑘
1
(𝑡) < 3𝑘

∗

1
/2, 𝑡 > 𝑇

1
. Hence,

�̃�
2
(𝑡)/�̃�
1
(𝑡) > (𝐴

20
𝑘
∗

2
/3𝐴
10
𝑘
∗

1
)𝑒
ℎ(𝑡).

By Lemma 39, there is a time 𝑇 such that ℎ(𝑡) >
ln(3𝐴

10
𝑘
∗

1
/𝐴
20
𝑘
∗

2
), 𝑡 > 𝑇. Therefore, �̃�

2
(𝑡)/�̃�
1
(𝑡) > 1, 𝑡 >

max{𝑇, 𝑇
1
}. This completes the proof of the theorem.

Remark 41. This theorem implies that a developing economy
can catch up and surpass a developed economy provided it
maintains a higher technological growth rate than the latter
one.

Corollary 42. (1) An economy with lower technological
growth rate has higher per capita capital of effective labor than
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that with higher technological growth rate under the same other
conditions.

(2) The per capita capital of an economy with higher final
technological growth rate will excess that with lower final
technological growth rate.

Theorem 43. If 𝑔(𝑡) is persistent oscillation, then the solution
of (43) does not converge.

Corollary 44. If the technological growth rate of an economy
with the labor-augmenting technological progress is persistent
oscillation, then its economic growth is not stable.

6. Summary

From the analysis in Section 2, we see that the stability
of the nonautomatic differential equation depends on the
generalized exogenous variables. If they converge, then the
solution of the equation is Lyapunov asymptotically stable
and does not converge if one of the generalized exogenous
variables is persistent oscillation. Therefore, the economy
described by the model stably grows when the generalized
exogenous variables tend to a stable level and presents
fluctuation when one of the generalized exogenous variables
is persistent oscillation.

In Section 3, we analyze the effect of the demographic
factors on the economic growth. One demographic factor is
the change of population growth rate in the period of demo-
graphic transition. There does not exist substantial effect on
the economic growth in long term for the population growth
rate tends to zero after the demographic transition. However,
the economic growth speeds up in the later period of the
demographic transition inwhich the labor force participation
rate rises and the population growth rate decreases. This
implies that the “demographic dividend” appears in this
period and theoretically confirms the evidence provided by
Bloom et al. [11] through empirical analysis.

The other demographic factor affecting economic growth
that we inquired is population aging.The distinct characteris-
tic of population aging is that the labor force participation rate
declines when the total population is stable. From the analysis
in Section 3.2, we see that population aging slows down the
economic growth.

The third demographic factor is unstable population
growth rate and unstable labor force participation rate. If one
of them is persistent oscillation, then the economy presents
long-term fluctuation.

The effect of the saving rate change on economic growth is
discussed in Section 4. The per capita capital of the economy
with higher final saving rate will excess that with lower final
saving rate. Under the same initial per capita capital, the per
capita capital of the economywith higher saving rate is bigger
than that with lower saving rate in whole period of economic
growth. If the saving rate is persistent oscillation, then the
economy presents long-term fluctuation.

Three types of variable neutral technology with time are
put into the model to analyze their effects on the economic
growth. It is obtained that the economy with higher tech-
nological level (Hicks neutral technology or Solow neutral

technology) grows faster than that with lower technological
level. The per capita capital of an economy tends to a stable
level if the technological level tends to a stable level and the
economy presents long-term fluctuation if the technologic
level is persistent oscillation.

For the Harrod neutral technology, we show that the per
capita of an economy with higher technological growth rate
will excess that with lower technological growth whatever
how high initial per capita capital the latter had and how
high technological growth rate in the early stage the latter
had. This result implies that a developing economy can catch
up a developed economy provided it maintains a higher
technological growth rate than the latter in long term.

If the technological growth rate is persistent oscillation,
the economic growth is not stable and the economy presents
long-term fluctuation.

Appendix

Some Cited Definitions, Theorems, and
the Details of the Proof

Theorem A.1 (differential inequality [13]). Let 𝑈(𝑡, 𝑢),
𝑢(𝑡
0
) = 𝑢

0
on an open (𝑡, 𝑢)-set 𝐸 and 𝑢 = 𝑢0(𝑡) the

maximal solution of �̇� = 𝑈(𝑡, 𝑢), 𝑢(𝑡
0
) = 𝑢

0
. Let V(𝑡) be a

continuous function on [𝑡
0
, 𝑡
0
+ 𝑎] satisfying the conditions

V(𝑡
0
) ≤ 𝑢
0
, (𝑡, V(𝑡)) ∈ 𝐸, and V(𝑡) has a right derivative 𝐷

𝑅
V(𝑡)

on 𝑡
0
≤ 𝑡 < 𝑡

0
+ 𝑎. Then, on a common interval of existence of

𝑢
0
(𝑡) and V(𝑡), V(𝑡) ≤ 𝑢0(𝑡).

Theorem A.2 (Extension Theorem [13]). Let 𝑓(𝑡, 𝑦) be con-
tinuous on an open (𝑡, 𝑦)-set 𝐸 and let 𝑦(𝑡) be a solution of
̇𝑦 = 𝑓(𝑡, 𝑦) on some interval. Then 𝑦(𝑡) can be extended (as a

solution) over a maximal interval of existence (𝜔
−
, 𝜔
+
). Also, if

(𝜔
−
, 𝜔
+
) is a maximal interval of existence, then 𝑦(𝑡) tends to

the boundary 𝜕𝐸 of 𝐸 as 𝑡 → 𝜔
−
and 𝑡 → 𝜔

+
.

Theorem A.3 (Gronwall’s inequality [13]). Let 𝑢(𝑡), V(𝑡) be
nonnegative, continuous functions on [𝑎, 𝑏]; 𝐶 ≥ 0 a constant;
and

V (𝑡) ≤ 𝐶 + ∫
𝑡

𝑎

V (𝑠) 𝑢 (𝑠) d𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏. (A.1)

Then

V (𝑡) ≤ 𝐶 exp(∫
𝑡

𝑎

𝑢 (𝑠) d𝑠) , 𝑎 ≤ 𝑡 ≤ 𝑏; (A.2)

in particular, if 𝐶 = 0, then V(𝑡) ≡ 0.

Definition A.4 (Lyapunov Stability [14]). Let 𝑥∗(𝑡) be a given
real or complex solution vector of the n-dimensional system
�̇� = 𝑋(𝑥, 𝑡). Then we have the following.

(i) 𝑥∗(𝑡) is Lyapunov stable for 𝑡 ≥ 𝑡
0
if and only if to

each value of 𝜖 > 0, however small, there corresponds
a value of 𝛿 > 0 (where 𝛿 may depend only on 𝜖 and
𝑡
0
) such that

𝑥 (𝑡0) − 𝑥
∗
(𝑡
0
)
 < 𝛿 ⇒

𝑥 (𝑡) − 𝑥
∗

(𝑡)
 < 𝜖 (A.3)
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for all 𝑡 > 𝑡
0
, where 𝑥(𝑡) represents any other

neighbouring solution.

(ii) If the given system is autonomous, the reference to 𝑡
0

in (i) may be disregarded; the solution 𝑥∗(𝑡) is either
Lyapunov stable or not, for all 𝑡

0
.

(iii) Otherwise the solution 𝑥∗(𝑡) is unstable in the sense
of Lyapunov.

Definition A.5 (uniform stability [14]). If a solution is stable
for 𝑡 ≥ 𝑡

0
, and the 𝛿 of Definition A.4 is independent of 𝑡

0
,

the solution is uniformly stable on 𝑡 ≥ 𝑡
0
.

Definition A.6 (asymptotic stability [14]). Let 𝑥∗ be a stable
(or uniformly stable) solution for 𝑡 ≥ 𝑡

0
. If additionally there

exists 𝜂(𝑡
0
) > 0 such that

𝑥 (𝑡0) − 𝑥
∗
(𝑡
0
)
 < 𝜂 ⇒ lim

𝑡→∞

𝑥 (𝑡) − 𝑥
∗

(𝑡)
 = 0, (A.4)

then the solution is said to be asymptotically stable (or
uniformly and asymptotically stable).

Derivation of Formula of (13). Since the solutions 𝑘(𝑡), �̃�(𝑡)
satisfy

𝑘 (𝑡) = 𝑘
0
+ ∫
𝑡

0

𝐺 (𝜏, 𝑘 (𝜏)) d𝜏, 𝑡 > 0,

�̃� (𝑡) = �̃�
0
+ ∫
𝑡

0

𝐺(𝜏, �̃� (𝜏)) d𝜏, 𝑡 > 0,
(A.5)

we have


�̃� (𝑡) − 𝑘 (𝑡)



≤

�̃�
0
− 𝑘
0


+ ∫
𝑡

0


𝐺 (𝜏, �̃� (𝜏)) − 𝐺 (𝜏, 𝑘 (𝜏))


d𝜏

≤

�̃�
0
− 𝑘
0


+ 𝑀∫

𝑡

0


�̃� (𝜏) − 𝑘 (𝜏)


d𝜏.

(A.6)

By Gronwall’s inequality, we obtain


�̃� (𝑡) − 𝑘 (𝑡)


<

�̃�
0
− 𝑘
0


𝑒
𝑀𝑇
< 𝜖, 𝑡 ∈ [0, 𝑇] . (A.7)
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