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We advise that the proof of Theorem 12 given by Borcut et al. (2014) is not correct, and it cannot be corrected using the same
technique. Furthermore, we present some similar results as an approximation to the opened question if that statement is valid.

1. Introduction

The definition of coupled fixed point was firstly given by Guo
and Lakshmikantham in [1]. This concept, in the context
of metric space, was reconsidered by Gnana Bhaskar and
Lakshmikantham [2] in 2006 and by Lakshmikantham and
Ciric [3] in the coincidence case. Later, Karapınar investigated
this notion in the context of cone metric space. After that,
Berinde and Borcut [4] presented the notion of tripled
fixed point obtaining similar results, and the same authors
extended their work to the coincidence case in [5] (see also,
e.g., [6–9]).

A coupled fixed point of 𝐹 : 𝑋×𝑋 → 𝑋 is a point (𝑥, 𝑦) ∈

𝑋
2 such that 𝐹(𝑥, 𝑦) = 𝑥 and 𝐹(𝑦, 𝑥) = 𝑦. In order to ensure

existence and uniqueness of coupled fixed points, Bhaskar
and Lakshmikantham introduced the concept of mapping
having the mixed monotone property. Henceforth, let ≼ be
a partial order on𝑋. Themapping 𝐹 is said to have themixed
monotone property (with respect to ≼) if 𝐹(𝑥, 𝑦) is monotone
nondecreasing in 𝑥 and monotone nonincreasing in 𝑦; that
is, for any 𝑥, 𝑦 ∈ 𝑋,

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
≼ 𝑥
2
⇒ 𝐹 (𝑥

1
, 𝑦) ≼ 𝐹 (𝑥

2
, 𝑦) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≼ 𝑦
2
⇒ 𝐹 (𝑥, 𝑦

1
) ≽ 𝐹 (𝑥, 𝑦

2
) .

(1)

Inspired by the previous notions, Berinde and Borcut
defined the concepts of tripled fixed point and mixed mono-
tone property as follows. A tripled fixed point of 𝐹 : 𝑋 × 𝑋 ×

𝑋 → 𝑋 is a point (𝑥, 𝑦, 𝑧) ∈ 𝑋
3 such that 𝐹(𝑥, 𝑦, 𝑧) = 𝑥,

𝐹(𝑦, 𝑥, 𝑦) = 𝑦, and 𝐹(𝑧, 𝑦, 𝑧) = 𝑧. The mapping 𝐹 is said
to have the mixed monotone property (with respect to ≼) if
𝐹(𝑥, 𝑦, 𝑧) is monotone nondecreasing in 𝑥 and 𝑧, and it is
monotone nonincreasing in 𝑦; that is, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
≼ 𝑥
2
⇒ 𝐹 (𝑥

1
, 𝑦, 𝑧) ≼ 𝐹 (𝑥

2
, 𝑦, 𝑧) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≼ 𝑦
2
⇒ 𝐹 (𝑥, 𝑦

1
, 𝑧) ≽ 𝐹 (𝑥, 𝑦

2
, 𝑧) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≼ 𝑦
2
⇒ 𝐹 (𝑥, 𝑦, 𝑧

1
) ≼ 𝐹 (𝑥, 𝑦

2
, 𝑧) .

(2)

The second equation that defines a tripled fixed point, that is,
𝐹(𝑦, 𝑥, 𝑦) = 𝑦, uses the point 𝑦 twice in the arguments of 𝐹.
This fact is necessary to ensure the existence of tripled fixed
points of a nonlinear contration because, in such a case, the
mixed monotone property is applicable.

Very recently, as a continuation of their pioneering works
in the tripled case, Borcut et al. announced in [10] the
following result.
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Theorem 1 (Borcut et al. [10], Theorem 12). Let (𝑋, ≼) be a
partially ordered set and suppose there is a metric 𝑑 on 𝑋 such
that (𝑋, 𝑑) is a complete metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a

mapping having the mixed monotone property on 𝑋. Assume
that there exists a 𝑘 ∈ [0, 1) such that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝑘

8
[𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))

+ 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) + 𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤))

+ 𝑑 (V, 𝐹 (V, 𝑢, V)) + 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))]

(3)

for all 𝑥 ≽ 𝑢, 𝑦 ≼ V, 𝑧 ≽ 𝑤. Also suppose that either

(a) 𝐹 is continuous, or
(b) 𝑋 has the following properties:

(i) if a nondecreasing sequence {𝑥
𝑚
} → 𝑥, then

𝑥
𝑚

≼ 𝑥 for all 𝑚;
(ii) if a nonincreasing sequence {𝑦

𝑚
} → 𝑦, then

𝑦
𝑚

≽ 𝑦 for all 𝑚.

If there exist 𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(4)

then𝐹 has a tripled fixed point in𝑋; that is, there exist 𝑥, 𝑦, 𝑧 ∈

𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(5)

This note is to advise that the proof given by the authors of
the previous result is not correct, and it cannot be corrected
using the same technique. Furthermore, we present some
similar results as an approximation to the opened question
if the previous theorem is valid.

2. A Review of the Incorrect Proof

Let us review the lines of their proof. Based on 𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝑋,

the authors defined, recursively, for all 𝑛 ≥ 0,

𝑥
𝑛+1

= 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) , 𝑦

𝑛+1
= 𝐹 (𝑦

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) ,

𝑧
𝑛+1

= 𝐹 (𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
) ,

(6)

and they proved that {𝑥
𝑛
} and {𝑧

𝑛
} were monotone nonde-

creasing sequences and {𝑦
𝑛
} was a monotone nonincreasing

sequence in (𝑋, ≼). Then, they defined, for all 𝑛 ∈ N,

𝐷
𝑥
𝑛+1

= 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) , 𝐷

𝑦
𝑛+1

= 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛
) ,

𝐷
𝑧
𝑛+1

= 𝑑 (𝑧
𝑛+1

, 𝑧
𝑛
) , 𝐷

𝑛+1
= 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

.

(7)

Using the contractivity condition (3), they proved that, taking
into account that 𝑥

𝑛
≽ 𝑥
𝑛−1

, 𝑦
𝑛
≼ 𝑦
𝑛−1

, and 𝑧
𝑛
≽ 𝑧
𝑛−1

,

𝐷
𝑥
𝑛+1

= 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝐹 (𝑥

𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) , 𝐹 (𝑥

𝑛−1
, 𝑦
𝑛−1

, 𝑧
𝑛−1

))

≤
𝑘

8
[𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)) + 𝑑 (𝑦

𝑛
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
))

+ 𝑑 (𝑧
𝑛
, 𝐹 (𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
))

+ 𝑑 (𝑥
𝑛−1

, 𝐹 (𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑧
𝑛−1

))

+ 𝑑 (𝑦
𝑛−1

, 𝐹 (𝑦
𝑛−1

, 𝑥
𝑛−1

, 𝑦
𝑛−1

))

+ 𝑑 (𝑧
𝑛−1

, 𝐹 (𝑧
𝑛−1

, 𝑦
𝑛−1

, 𝑥
𝑛−1

))]

=
𝑘

8
[𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) + 𝑑 (𝑧
𝑛
, 𝑧
𝑛+1

)

+ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑦

𝑛−1
, 𝑦
𝑛
) + 𝑑 (𝑧

𝑛−1
, 𝑧
𝑛
)]

=
𝑘

8
[𝐷
𝑥
𝑛

+ 𝐷
𝑦
𝑛

+ 𝐷
𝑧
𝑛

+ 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

] .

(8)

Based on this inequality, the authors immediately announced
that

𝐷
𝑦
𝑛+1

≤
𝑘

8
[𝐷
𝑥
𝑛

+ 2𝐷
𝑦
𝑛

+ 𝐷
𝑥
𝑛+1

+ 2𝐷
𝑦
𝑛+1

] , (9)

𝐷
𝑧
𝑛+1

≤
𝑘

8
[𝐷
𝑥
𝑛

+ 𝐷
𝑦
𝑛

+ 𝐷
𝑧
𝑛

+ 𝐷
𝑥
𝑛+1

+ 𝐷
𝑦
𝑛+1

+ 𝐷
𝑧
𝑛+1

] (10)

(see [10, page 4, inequalities (2.4) and (2.5)]). However, these
last two inequalities are false. In fact, we can only prove that

𝐷
𝑦
𝑛+1

= 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛
) = 𝑑 (𝐹 (𝑦

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) , 𝐹 (𝑦

𝑛−1
, 𝑥
𝑛−1

, 𝑦
𝑛−1

))

≤
𝑘

8
[𝑑 (𝑦
𝑛
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
)) + 𝑑 (𝑥

𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
))

+ 𝑑 (𝑦
𝑛
, 𝐹 (𝑦
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
))

+ 𝑑 (𝑦
𝑛−1

, 𝐹 (𝑦
𝑛−1

, 𝑥
𝑛−1

, 𝑦
𝑛−1

))

+ 𝑑 (𝑥
𝑛−1

, 𝐹 (𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑥
𝑛−1

))

+ 𝑑 (𝑦
𝑛−1

, 𝐹 (𝑦
𝑛−1

, 𝑥
𝑛−1

, 𝑦
𝑛−1

))]

≤
𝑘

8
[2𝑑 (𝑦

𝑛
, 𝑦
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
))

+ 2𝑑 (𝑦
𝑛−1

, 𝑦
𝑛
) + 𝑑 (𝑥

𝑛−1
, 𝐹 (𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑥
𝑛−1

))]

≤
𝑘

8
[2𝐷
𝑦
𝑛+1

+ 𝑑 (𝑥
𝑛
, 𝐹 (𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
))

+ 2𝐷
𝑦
𝑛

+ 𝑑 (𝑥
𝑛−1

, 𝐹 (𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑥
𝑛−1

))] .

(11)

However, comparing (9) with (11), we notice that 𝐷
𝑥
𝑛+1

=

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)) does not necessarily coin-

cide with 𝑑(𝑥
𝑛
, 𝐹(𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
)) and, similarly, 𝐷

𝑥
𝑛

= 𝑑(𝑥
𝑛−1

,

𝑥
𝑛
) = 𝑑(𝑥

𝑛−1
, 𝐹(𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑧
𝑛−1

)) is not necessarily equal to
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𝑑(𝑥
𝑛−1

, 𝐹(𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑥
𝑛−1

)). Therefore, inequality (9) cannot
be ensured.

Exactly in the same way, it can be possible to see that
(10) cannot be proved using the contractivity condition (3). In
such a case, the proof given by the authors, which decisively
used inequalities (9) and (10), is false.

3. Some Berinde and Borcut’s Type Tripled
Fixed Point Theorems

For the moment, the question about whether Theorem 1 is
valid is opened. The following results are some approxima-
tions to this problem, using contractivity conditions that are
inspired in (3). The main aim of this section is to show some
results in this line of research using a well-known result by
Ćirić [11]. Our technique is based on some very recent works
which showed that most of coupled/tripled/quadrupled fixed
point results can be reduced to their corresponding uni-
dimensional theorems in different frameworks (see, for
instance, [12–18]). Before that, let us introduce some notation
and basic results.

Given a binary relation ≼ on 𝑋, let us define

(𝑥, 𝑦, 𝑧) ⊑ (𝑢, V, 𝑤) ⇐⇒ [𝑥 ≼ 𝑢, 𝑦 ≽ V, 𝑧 ≼ 𝑤] . (12)

If ≼ is a partial order on 𝑋, then ⊑ is also a partial order on
𝑋
3.
Given a metric 𝑑 on 𝑋, let us define 𝑑

𝑠

3
, 𝑑
𝑚

3
: 𝑋
3
× 𝑋
3

→

[0,∞), for all (𝑥, 𝑦, 𝑧), (𝑢, V, 𝑤) ∈ 𝑋
3, by

𝑑
𝑠

3
((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤) ,

𝑑
𝑚

3
((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) = max {𝑑 (𝑥, 𝑢) , 𝑑 (𝑦, V) , 𝑑 (𝑧, 𝑤)} .

(13)

Then 𝑑
𝑠

3
and 𝑑

𝑚

3
are metrics on 𝑋

3. In addition to this, if 𝑑 is
complete, then 𝑑

𝑠

3
and 𝑑

𝑚

3
are also complete.

Given a mapping 𝐹 : 𝑋
3

→ 𝑋, let us denote by 𝑇
3

𝐹
:

𝑋
3

→ 𝑋
3 the mapping

𝑇
3

𝐹
(𝑥, 𝑦, 𝑧) = (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (𝑧, 𝑦, 𝑥))

∀ (𝑥, 𝑦, 𝑧) ∈ 𝑋
3
.

(14)

Notice that a tripled fixed point of 𝐹 is nothing but a fixed
point of 𝑇3

𝐹
. If 𝐹 is 𝑑-continuous, then 𝑇

3

𝐹
is 𝑑
𝑠

3
-continuous.

Furthermore, if 𝐹 has the mixed monotone property with
respect to ≼, then 𝑇

3

𝐹
is nondecreasing with respect to ⊑ (see

[12]). We also recall the following result.

Definition 2. Let 𝑑 be a metric on 𝑋 and let ≼ be a partial
order on 𝑋. We will say that (𝑋, 𝑑, ≼) is regular if it verifies
the following two properties:

(i) if a nondecreasing sequence {𝑥
𝑛
} → 𝑥, then 𝑥

𝑛
≼ 𝑥

for all 𝑛;
(ii) if a nonincreasing sequence {𝑦

𝑛
} → 𝑦, then 𝑦

𝑛
≽ 𝑦

for all 𝑛.

Lemma 3. If (𝑋, 𝑑, ≼) is regular, then (𝑋
3
, 𝑑
𝑠

3
, ⊑) is also

regular.

The first version of the following theorem was given by
Ćirić in 1972 (see [11]) in the case of metric spaces that were
not necessarily partially ordered. A partially ordered version
can be found, for example, in [19]. Our main results will be
consequences of the next result.

Theorem 4 (see e.g., [19]). Let (𝑋, ≼) be a partially ordered set
and suppose that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a
complete metric space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing
mapping and let 𝑘 ∈ [0, 1) be such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘max(𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2
)

(15)

for all 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≼ 𝑦. Also assume that 𝐹 is
continuous or (𝑋, 𝑑, ≼) is regular. If there exist 𝑥

0
∈ 𝑋 such

that 𝑥
0
≼ 𝑇𝑥
0
, then 𝐹 has a fixed point.

In the following result, we found some terms that play an
important role in the contractivity condition (3).

Theorem 5. Let (𝑋, ≼) be a partially ordered set and suppose
there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete metric
space. Let 𝐹 : 𝑋

3
→ 𝑋 be a mapping having the mixed

monotone property on 𝑋. Suppose that there exists 𝑘 ∈ [0, 1)

such that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝑘

4
max (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤) ,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (V, 𝐹 (𝑤, V, 𝑢)) ,

(𝑑 (𝑢, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑤, 𝐹 (𝑧, 𝑦, 𝑥))

+ 𝑑 (𝑥, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (𝑧, 𝐹 (𝑤, V, 𝑢)))

× (2)
−1

)

(16)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 such that 𝑥 ≼ 𝑢, 𝑦 ≽ V, and 𝑧 ≼ 𝑤.
Also assume that 𝐹 is continuous or (𝑋, 𝑑, ≼) is regular. If there
exist 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(17)

then𝐹 has a tripled fixed point in𝑋; that is, there exist 𝑥, 𝑦, 𝑧 ∈

𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(18)
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Proof. As 𝐹 has the mixed monotone property on 𝑋 with
respect to ≼, it follows that 𝑇

3

𝐹
is ⊑-nondecreasing. Let us

define, for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋,

𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤))

= max (𝑑
𝑠

3
((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) ,

𝑑
𝑠

3
((𝑥, 𝑦, 𝑧) , 𝑇

3

𝐹
(𝑥, 𝑦, 𝑧)) ,

𝑑
𝑠

3
((𝑢, V, 𝑤) , 𝑇

3

𝐹
(𝑢, V, 𝑤)) ,

(𝑑
𝑠

3
((𝑥, 𝑦, 𝑧) , 𝑇

3

𝐹
(𝑢, V, 𝑤))

+ 𝑑
𝑠

3
((𝑢, V, 𝑤) , 𝑇

3

𝐹
(𝑥, 𝑦, 𝑧)))

× (2)
−1

)

= max (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤) , 𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧))

+ 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (V, 𝐹 (V, 𝑢, V))

+ 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢)) ,

(𝑑 (𝑥, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (𝑦, 𝐹 (V, 𝑢, V))

+ 𝑑 (𝑧, 𝐹 (𝑤, V, 𝑢)) + 𝑑 (𝑢, 𝐹 (𝑥, 𝑦, 𝑧))

+ 𝑑 (V, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑤, 𝐹 (𝑧, 𝑦, 𝑥)))

× (2)
−1

) .

(19)

Assume that 𝑥 ≼ 𝑢, 𝑦 ≽ V, and 𝑧 ≼ 𝑤; that is,
(𝑥, 𝑦, 𝑧) ⊑ (𝑢, V, 𝑤). In this case, the contractivity condition
(16) guarantees that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝑘

4
max (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑧, 𝑤) ,

𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (V, 𝐹 (𝑤, V, 𝑢)) ,

(𝑑 (𝑢, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑤, 𝐹 (𝑧, 𝑦, 𝑥))

+ 𝑑 (𝑥, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (𝑧, 𝐹 (𝑤, V, 𝑢)))

× (2)
−1

)

≤
𝑘

4
𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) .

(20)

Taking into account that 𝑧 ≼ 𝑤, 𝑦 ≽ V, and 𝑥 ≼ 𝑢, we also
find the same upper bound:

𝑑 (𝐹 (𝑧, 𝑦, 𝑥) , 𝐹 (𝑤, V, 𝑢))

≤
𝑘

4
max (𝑑 (𝑧, 𝑤) + 𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢) ,

𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) + 𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) ,

𝑑 (V, 𝐹 (𝑤, V, 𝑢)) + 𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) ,

(𝑑 (𝑤, 𝐹 (𝑧, 𝑦, 𝑥)) + 𝑑 (𝑢, 𝐹 (𝑥, 𝑦, 𝑧))

+ 𝑑 (𝑧, 𝐹 (𝑤, V, 𝑢)) + 𝑑 (𝑥, 𝐹 (𝑢, V, 𝑤)))

× (2)
−1

)

≤
𝑘

4
𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) .

(21)

Furthermore, as V ≼ 𝑦, 𝑢 ≽ 𝑥, and V ≼ 𝑦,

𝑑 (𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (V, 𝑢, V))

≤
𝑘

4
max (𝑑 (𝑦, V) + 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) ,

𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) ,

𝑑 (V, 𝐹 (V, 𝑢, V)) + 𝑑 (V, 𝐹 (V, 𝑢, V)) ,

(𝑑 (V, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (V, 𝐹 (𝑦, 𝑥, 𝑦))

+ 𝑑 (𝑦, 𝐹 (V, 𝑢, V)) + 𝑑 (𝑦, 𝐹 (V, 𝑢, V)))

× (2)
−1

)

=
𝑘

4
max (𝑑 (𝑥, 𝑢) + 2𝑑 (𝑦, V) ,

2𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) , 2𝑑 (V, 𝐹 (V, 𝑢, V)) ,

𝑑 (V, 𝐹 (𝑦, 𝑥, 𝑦)) + 𝑑 (𝑦, 𝐹 (V, 𝑢, V)))

≤
𝑘

4
2𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) =

𝑘

2
𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) .

(22)

Joining the last three inequalities, we deduce that, for all
(𝑥, 𝑦, 𝑧), (𝑢, V, 𝑤) ∈ 𝑋

3 such that (𝑥, 𝑦, 𝑧) ⊑ (𝑢, V, 𝑤),

𝑑
𝑠

3
(𝑇
3

𝐹
(𝑥, 𝑦, 𝑧) , 𝑇

3

𝐹
(𝑢, V, 𝑤))

= 𝑑
𝑠

3
((𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (𝑧, 𝑦, 𝑥)) ,
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(𝐹 (𝑢, V, 𝑤) , 𝐹 (V, 𝑢, V) , 𝐹 (𝑤, V, 𝑢)))

= 𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤)) + 𝑑 (𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (V, 𝑢, V))

+ 𝑑 (𝐹 (𝑧, 𝑦, 𝑥) , 𝐹 (𝑤, V, 𝑢))

= (
𝑘

4
+

𝑘

4
+

𝑘

2
)𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤))

= 𝑘𝑀((𝑥, 𝑦, 𝑧) , (𝑢, V, 𝑤)) .

(23)

As (𝑥
0
, 𝑦
0
, 𝑧
0
) ⊑ 𝑇
3

𝐹
(𝑥
0
, 𝑦
0
, 𝑧
0
), Theorem 4 guarantees that 𝑇3

𝐹

has a fixed point; that is, 𝐹 has a tripled fixed point.

Theorem 6. Let (𝑋, ≼) be a partially ordered set and suppose
that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a mapping having the mixed

monotone property on 𝑋. Suppose that there exists 𝑘 ∈ [0, 1)

such that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤ 𝑘max {𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) , 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) , 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))}

(24)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 such that 𝑥 ≼ 𝑢, 𝑦 ≽ V, and 𝑧 ≼ 𝑤.
Also assume that 𝐹 is continuous or (𝑋, 𝑑, ≼) is regular. If there
exist 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(25)

then𝐹 has a tripled fixed point in𝑋; that is, there exist 𝑥, 𝑦, 𝑧 ∈

𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(26)

Proof. Following the lines of the previous proof, consider 𝑋3
provided with the metric 𝑑

𝑚

3
. Assume that 𝑥 ≼ 𝑢, 𝑦 ≽ V,

and 𝑧 ≼ 𝑤; that is, (𝑥, 𝑦, 𝑧) ⊑ (𝑢, V, 𝑤). In this case, the
contractivity condition (24) guarantees that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤ 𝑘max {𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) , 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) , 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))} ,

(27)

and the same upper bound is valid for
𝑑(𝐹(𝑧, 𝑦, 𝑥), 𝐹(𝑤, V, 𝑢)). Moreover, as V ≼ 𝑦, 𝑢 ≽ 𝑥,
and V ≼ 𝑦,

𝑑 (𝐹 (V, 𝑢, V) , 𝐹 (𝑦, 𝑥, 𝑦))

≤ 𝑘max {𝑑 (V, 𝐹 (V, 𝑢, V)) , 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦))} .

(28)

Therefore

𝑑
𝑚

3
(𝑇
3

𝐹
(𝑥, 𝑦, 𝑧) , 𝑇

3

𝐹
(𝑢, V, 𝑤))

= 𝑑
𝑚

3
((𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (𝑧, 𝑦, 𝑥)) ,

(𝐹 (𝑢, V, 𝑤) , 𝐹 (V, 𝑢, V) , 𝐹 (𝑤, V, 𝑢)))

= max {𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤)) ,

𝑑 (𝐹 (𝑦, 𝑥, 𝑦) , 𝐹 (V, 𝑢, V)) ,

𝑑 (𝐹 (𝑧, 𝑦, 𝑥) , 𝐹 (𝑤, V, 𝑢))}

≤ 𝑘max {𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) , 𝑑 (𝑦, 𝐹 (𝑦, 𝑥, 𝑦)) ,

𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) , 𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) ,

𝑑 (V, 𝐹 (V, 𝑢, V)) , 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))}

= 𝑘max {𝑑
𝑚

3
((𝑥, 𝑦, 𝑧) , 𝑇

3

𝐹
(𝑥, 𝑦, 𝑧)) ,

𝑑 ((𝑢, V, 𝑤) , 𝑇
3

𝐹
(𝑢, V, 𝑤))} .

(29)

Theorem 4 guarantees that 𝑇3
𝐹
has a fixed point; that is, 𝐹 has

a tripled fixed point.

The following particularization is also inspired by some
Berinde and Borcut’s results.

Corollary 7. Let (𝑋, ≼) be a partially ordered set and suppose
that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a mapping having the mixed

monotone property on 𝑋. Suppose that there exists 𝑎, 𝑏, 𝑐, 𝑒 ∈

[0, 1) such that 𝑎 + 𝑏 + 𝑐 + 𝑒 < 1 and

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤ 𝑎𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑏𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))

+ 𝑐𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑒𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))

(30)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 such that 𝑥 ≼ 𝑢, 𝑦 ≽ V, and 𝑧 ≼ 𝑤.
Also assume that 𝐹 is continuous or (𝑋, 𝑑, ≼) is regular. If there
exist 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(31)

then𝐹 has a tripled fixed point in𝑋; that is, there exist 𝑥, 𝑦, 𝑧 ∈

𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(32)
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Proof. Let us define 𝑘 = 𝑎 + 𝑏 + 𝑐 + 𝑒 ∈ [0, 1). If
(𝑥, 𝑦, 𝑧), (𝑢, V, 𝑤) ∈ 𝑋

3 are such that (𝑥, 𝑦, 𝑧) ⊑ (𝑢, V, 𝑤), then

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤ 𝑎𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑏𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))

+ 𝑐𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑒𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))

≤ (𝑎 + 𝑏 + 𝑐 + 𝑒)max {𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) , 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥)) ,

𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) , 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))} ,
(33)

so the previous theorem is applicable.

The following result presents a contractivity condition
more similar to (3) than (16). It follows from the previous
result using 𝑎 = 𝑏 = 𝑐 = 𝑒 = 𝑘/4.

Corollary 8. Let (𝑋, ≼) be a partially ordered set and suppose
that there is a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝐹 : 𝑋

3
→ 𝑋 be a mapping having the mixed

monotone property on 𝑋. Suppose that there exists 𝑘 ∈ [0, 1)

such that

𝑑 (𝐹 (𝑥, 𝑦, 𝑧) , 𝐹 (𝑢, V, 𝑤))

≤
𝑘

4
[𝑑 (𝑥, 𝐹 (𝑥, 𝑦, 𝑧)) + 𝑑 (𝑧, 𝐹 (𝑧, 𝑦, 𝑥))

+ 𝑑 (𝑢, 𝐹 (𝑢, V, 𝑤)) + 𝑑 (𝑤, 𝐹 (𝑤, V, 𝑢))]

(34)

for all 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑋 such that 𝑥 ≼ 𝑢, 𝑦 ≽ V, and 𝑧 ≼ 𝑤.
Also assume that 𝐹 is continuous or (𝑋, 𝑑, ≼) is regular. If there
exist 𝑥

0
, 𝑦
0
, 𝑧
0
∈ 𝑋 such that

𝑥
0
≼ 𝐹 (𝑥

0
, 𝑦
0
, 𝑧
0
) , 𝑦

0
≽ 𝐹 (𝑦

0
, 𝑥
0
, 𝑦
0
) ,

𝑧
0
≼ 𝐹 (𝑧

0
, 𝑦
0
, 𝑥
0
) ,

(35)

then𝐹 has a tripled fixed point in𝑋; that is, there exist 𝑥, 𝑦, 𝑧 ∈

𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧) = 𝑥, 𝐹 (𝑦, 𝑥, 𝑦) = 𝑦, 𝐹 (𝑧, 𝑦, 𝑥) = 𝑧.

(36)
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Hierro has been partially supported by Junta de Andalućıa by
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