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As today’s hardware architecture becomes more and more complicated, it is getting harder to modify or improve the
microarchitecture of a design in register transfer level (RTL). Consequently, traditional methods we have used to develop a design
are not capable of coping with complex designs. In this paper, we suggest a way of designing complex digital logic circuits with a
soft and advanced type of SystemVerilog at an electronic system level. We apply the concept of design-and-reuse with a high level of
abstraction to implement elliptic curve crypto-processor server farms. With the concept of the superior level of abstraction to the
RTL used with the traditional HDL design, we successfully achieved the soft implementation of the crypto-processor server farms
as well as robust test bench code with trivial effort in the same simulation environment. Otherwise, it could have required error-
prone Verilog simulations for the hardware IPs and other time-consuming jobs such as C/SystemC verification for the software,
sacrificing more time and effort. In the design of the elliptic curve cryptography processor engine, we propose a 3X faster GF(2m)
serial multiplication architecture.

1. Introduction

Electronic system level (ESL) design includes hardware and
software interactions with higher levels of abstraction for
system-level transactions. ESL methodologies have been
evolved from algorithmic modeling such as architectural
explorations and proving concepts as supplementary tech-
niques such as design of embedded systems, system-level test
bench development, hardware/software cosimulation, and
high-level synthesis of ASIC/FPGA designs. Efficient ESL
design includes the ability to proceed from the concept to
the optimal implementation of architectural functionality, as
well as verification. As one of themost evolved ESL languages,
Bluespec SystemVerilog (BSV) has introduced to the system
hardware architects a new way to simplify implementing
the complicated control logic while maintaining control over
the architecture and efficiency of the design at the same
time. According to [1], over 50% of reduction in time can
be achieved to verify a design and less than 50% of the
bugs can be found compared to traditional RTL design.
BSV differs from traditional Verilog or VHDL, or even from

SystemVerilog in many aspects. Instead of using the tradi-
tional procedural statements which is to implementhardware
concurrency such as always, BSVuses statements named rules
that mean atomic behaviors which are fully synthesizable.
BSV enables a good overall system generation since all
instances such as methods, rules, modules, interfaces and
functions are regarded as the first-class objects. This means
that an object can be used as an argument to another object.

In this work, we adopt a previous work of our elliptic
curve crypto-processor architecture [2], in which we propose
a 3X faster finite field multiplier. In order to reuse the
functional unit architecture, we implemented a wrapper
which enabled the functional unit to be used in BSV and
extracted a higher level of abstraction. Building a server farm
in the traditional way requires a complex hardware finite state
machine in HDL, which costs time and effort. By using a
high-level abstraction language such as BSV, however, it is
far easier to define the state machine logic and explore the
design. We experimentally implemented crypto-server farms
using BSV with existing Verilog IP logics such as an elliptic
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Figure 1: Basic structure of Mastrovito’s serial multiplication.

curve cryptoprocessor, a random number generator, to build
the elliptic curve crypto-processor server farms. We firstly
discuss the design of the elliptic curve crypto-processor and
then we discuss how to utilize and apply the IPs in BSV test
bench program. Next, after considering how we achieved the
higher level of abstraction, we present the random number
generator, the reorder buffer, and the architecture of the
server farms and finally discuss the result.

2. 193-Bit Elliptic Curve Cryptoengine

2.1. 3X Faster Finite Field Multiplication. The method is
based on the Mastrovito’s serial GF (Galois field) multiplier
architecture [3]. We represent the elements of the GF(2𝑚)
as polynomial basis. Suppose two elements of given GF(2𝑚)
are represented as 𝐴(𝑥) = ∑

𝑚−1

𝑖=0
𝑎
𝑖
𝑥
𝑖 and 𝐵(𝑥) = ∑

𝑚−1

𝑖=0
𝑏
𝑖
𝑥
𝑖,

respectively. Then the GF multiplication can be represented
as (1). Figure 1 shows the basic structure of Mastrovito’s serial
GF multiplier:
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Now,we can derive a group of expressions (2) for 3X faster
GF multiplier as follows:
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Analyzing the first equation of expression (2), the struc-
ture follows the basic scheme of Mastrovito’s serial multipli-
cation, except that the orders of 𝑥 are multiples of 3. The
second and the third equations of (2) are similar to the first,
except that the bases of the coefficients 𝑏 are different and
postmultiplication of 𝑥 and 𝑥

2 should be processed.
To realize the implementation of 3X faster GFmultiplica-
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Here, without losing generality, we can use trinomials
or pentanomials as the primitive polynomial in this finite
field [4], where both 𝑝

𝑚−1
and 𝑝

𝑚−2
are zero. Thus, applying

reduced version of (4) to (3), 𝑥
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𝐴(𝑥) can be derived as
expression (5):
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Expression (5) can be represented as circuits. Figure 2
shows the 𝑥

3-multiplying circuit which plays a key role in 3X
faster GF multiplier.
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Figure 2: Proposed 𝑥
3-multiplying circuit.
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Figure 3: Block diagram of GF(2𝑚) divider with half-iteration.

2.2. Finite Field Division. Division in GF(2𝑚) of 𝐴(𝑥)/𝐵(𝑥)

can be represented as 𝐴(𝑥) times the inverse of 𝐵(𝑥) (𝐴(𝑥) ⋅

𝐵(𝑥)
−1). There are two methods to find the inverse of an

element inGF(2𝑚).One is table lookupmethod, and the other
is algorithm-based method.

Table lookup method is efficient for small 𝑚, but the size
of the table is exponentially proportional to 𝑚, resulting in
gigantic circuit size.

Algorithm-based method is utilizing various mathemati-
cal algorithms such as Fermat’s theoremandEuclid’s theorem.

Since Fermat’s theorem is effective for only small 𝑚 [5], we
decided to adopt Euclid’s anddefined themicroarchitecture to
reduce the number of iterations to half of the original algorithm.

The block diagram of our half-iteration divider is shown
in Figure 3. For each R, S, U, and V cell, we designed
functional circuits corresponding to 19 possible combina-
tional operations. The divider consists of 𝑚 + 1 number of
R and S cells, 𝑚 number of U and V cells, a counter, and
a controller. The combinational operations are listed and
summarized in Table 1.
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Table 1: GF(2𝑚) divider combinational operations.

Number 𝑅
𝑚
𝑅
𝑚−1

𝑆
𝑚
𝑆
𝑚−1

𝐷 𝑅 𝑆 𝑈 𝑉 Delta
1 “00” xx 𝑋 𝑥

2

𝑅 𝑆 𝑥
2

𝑈 Equal Delta + 2
2 “01” “0x” 𝑋 𝑥𝑅 𝑥𝑆 Equal Equal Equal
3 “01” “1x” 𝑋 𝑥𝑅 𝑥(𝑆 − 𝑥𝑅) Equal 𝑉 − 𝑥𝑈 Equal
4 “10” “00” 0 𝑥

2

𝑆 𝑅 𝑥
2

𝑉 𝑈 2
5 “10” “00” 1 𝑅 𝑥

2

𝑆 𝑈/𝑥
2 Equal Delta − 2

6 “10” “01” 0 𝑥𝑆 𝑥(𝑥𝑆 − 𝑅) 𝑉 𝑈 − 𝑥𝑉 0
7 “10” “01” 1 𝑅 𝑥(𝑥𝑆 − 𝑅) 𝑈/𝑥

2

𝑉 − 𝑈/𝑥 Delta − 2
8 “10” “10” 0 𝑥

2

(𝑆 − 𝑅) 𝑅 𝑥
2

(𝑉 − 𝑈) 𝑈 2
9 “10” “10” 1 𝑅 𝑥

2

(𝑆 − 𝑅) 𝑈/𝑥
2

𝑉 − 𝑈 Delta − 2
10 “10” “11” 0 𝑥(𝑆 − 𝑅) 𝑥(𝑅 − 𝑥(𝑆 − 𝑅)) 𝑉 − 𝑈 𝑈 − 𝑥(𝑉 − 𝑈) 0
11 “10” “11” 1 𝑅 𝑥(𝑅 − 𝑥(𝑆 − 𝑅)) 𝑈/𝑥

2

𝑉 − 𝑈 − 𝑈/𝑥 Delta − 2
12 “11” “00” 0 𝑥

2

𝑆 𝑅 𝑥
2

𝑉 𝑈 2
13 “11” “00” 1 𝑅 𝑥

2

𝑆 𝑈/𝑥
2

𝑉 Delta − 2
14 “11” “01” 0 𝑥𝑆 𝑥(𝑥𝑆 − 𝑅) 𝑉 𝑈 − 𝑥𝑉 0
15 “11” “01” 1 𝑅 𝑥(𝑥𝑆 − 𝑅) 𝑈/𝑥

2

𝑉 − 𝑈/𝑥 Delta − 2
16 “11” “10” 0 𝑥(𝑆 − 𝑅) 𝑥(𝑅 − 𝑥(𝑆 − 𝑅)) 𝑉 − 𝑈 𝑈 − 𝑥(𝑉 − 𝑈) 0
17 “11” “10” 1 𝑅 𝑥(𝑅 − 𝑥(𝑆 − 𝑅)) 𝑈/𝑥

2

𝑉 − 𝑈 − 𝑈/𝑥 Delta − 2
18 “11” “11” 0 𝑥

2

(𝑆 − 𝑅) 𝑅 𝑥
2

(𝑉 − 𝑈) 𝑈 2
19 “11” “11” 1 𝑅 𝑥

2

(𝑆 − 𝑅) 𝑈/𝑥
2

𝑉 − 𝑈 Delta − 2

The operation of the GF(2𝑚) divider is as follows.

(1) Input the value of dividend (𝐴(𝑥)) and divisor (𝐵(𝑥))
into U and R cells, respectively.

(2) Each cell performs its own operation according to the
control signals coming from CTL ROM, depending
on 5-bit cell output signals (R

𝑚
, R
𝑚−1

, S
𝑚
, S
𝑚−1

, and
zero).

(3) After 𝑚 cycles, the divider yields the output from U
cell.

2.3. 193-Bit Elliptic Curve Cryptography Engine IP. Putting 3X
faster GF multiplier and the GF divider with half number of
iterations together alongwith an algorithm for calculating 𝑘⋅𝑃
(scalar multiplication in elliptic curve cryptography where 𝑘

is the order of the base point and𝑃 is the point to encrypt), we
have implemented a 193-bit elliptic curve crypto-processor
engine for server farms. Required elliptic curve parameters
such as the order of the base point 𝑘, the irreducible prime
polynomial 𝑝(𝑥) = 𝑥

193

+ 𝑥
15

+ 1, and the base point 𝐺 are
given in SEG2 for the 193-bit wide GF(2193) [6].

Figure 4 depicts the 193-bit elliptic curve cryptography
processing engine.There are two parts of registers. In param-
eter registers part, elliptic curve parameters such as public key
𝑘, coefficients (𝑎, 𝑏, and𝑓), the point to be encrypted (𝑥

𝑝
,𝑦
𝑝
),

and the scalar multiple of two of the points to be encrypted
(𝑥
2𝑝
, 𝑦
2𝑝
) are preloaded to save time. Temporary registers

store intermediate results during the scalar multiplication.
Add block performs finite field addition and subtraction, with
simple XOR gates. 3X faster GF(2193) multiplier produces the
GF multiplication result in 65 cycles and 2X faster GF(2193)
divider accomplishes the function in 97 cycles.

The purpose of the cryptography engine is to calculate
𝑘 ⋅ 𝑃. In order to obtain fast calculation results, we applied
radix-4 redundant recoding to the binary presentation of
elliptic curve point 𝑃. Due to the characteristic of radix-4
redundancy recoding, the total number of steps decreases
down to ⌈193/2⌉−1 = 96. According to the result of the radix-
4 recoding of point 𝑃 in each step, one out of the Add block
outputs 0𝑃, ±𝑃, ±2𝑃 is chosen so that we can look up 2 bits
simultaneously as is done in the Booth’s algorithm [7]. Thus
we get the final scalar point multiplication result in 96 clock
cycles.

3. Higher Level of Abstraction

3.1. Strong Type System. Languages with higher levels of
abstraction such asHaskell suggest a strong “type” system [8].
Every type in every single expression is determined before
compiling time, or during static elaboration, which leads
to safe code. In such languages, for example, a program in
which a Boolean number is divided by an integer fails to be
compiled because “Boolean” type differs from “integer” type
and try to use the same operator “/”, causing type mismatch.
This characteristic is recommendable because it is better to
catch this kind of error during static elaboration, rather than
having a dead lock during execution time. BSV complies
with Haskell type system and every keyword belongs to a
specific type. So during the static elaboration, the compiler
determines such type-check errors, so that we can avoid so
many unnecessary error-prone situations.

3.2. Guarded Command Language. BSV also adopts the
characteristics of guarded commanded language invented by
Dijkstra [9]. Since this language is rather a theory than
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Figure 4: 193-Bit elliptic curve cryptography encryption processor engine.

a physical language, there is no specific compiler. The theory
makes the programming concept succinctly integrated, so
that we can easily determine the correctness of the program
using Hoare logic [10].

Guarded command means that commands used in a
program are guarded, as the name implies. Guard is a propo-
sition and it must be true before executing the commands.
If the guard is false, the command will not be executed.
Guarded command helps prove whether a program satisfies
a certain specification or not easily, as shown in the examples
in Algorithm 1.

3.3. IP Wrapping to BSV. Hardware circuits described in
Verilog use wires and registers to define the input and the
output signals of a module. BSV utilizes the object oriented
programming’s interface-based design to connect between
modules. We adopted the concept of interface used in BSV
that a method defines the input and output arguments with
strong types and return the value of the method as the
output with given type. As a result, no more error-prone
repetitive port declarations are necessary. Instead, succinct
manipulation of interfaces between modules is feasible.

First, we described the 193-bit elliptic curve cryptoengine
with Verilog HDL, which is shown in Algorithm2. In order

Example 1.
if 𝑎 < 𝑏 then 𝑐:= True
Else 𝑐:= False

is translated as

if 𝑎 < 𝑏 → 𝑐:= True
[] 𝑎 ≥ 𝑏→𝑐:= False
Fi

Example 2.
if error = True then 𝑥:= 0

is translated as

if error = True → 𝑥:= 0
[] error = False → skip
fi

Algorithm 1: Two examples of guarded command language.

to extract the highest level of abstraction existing in the state-
of-the-art programming languages, we created an appropriate
wrapper for the cryptoengine IP to be used in BSV simulator.
As is shown in Algorithm 3, we used the BSV feature of
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module ECC (encrypted point, ready ecc, serial in, encrypt, clock, reset);
output [385:0] encrypted point;
output ready ecc

input serial in, encrypt, clock, reset;
⋅ ⋅ ⋅

endmodule

Algorithm 2: Verilog description of the elliptic curve cryptoengine.

import GetPut::∗;
import ClientServer::∗;

interface ECC Server#(type req type, type resp type);
interface Put#(req type) request;
interface Get#(resp type) response;

endinterface
⋅ ⋅ ⋅

import “BVI” ECC =
module mkECC (ECC Server#(req type, resp type))

provisos(Bits#(req type, s req), Bits#(resp type, s resp));

default clock clk clock;
⋅ ⋅ ⋅

interface Put request;
method put (serial in )
enable(encrypt) clocked by(clk clock) reset by(rst reset);

endinterface
interface Get response;

method encrypted point get( ) /∗ 385:0 ∗/
ready(ready ecc) clocked by(clk clock) reset by(rst reset);

endinterface
schedule request put CF response get;
⋅ ⋅ ⋅

endmodule

Algorithm 3: BSV wrapper including the interfaces, modules, and methods.

“import BVI” mechanism to create the wrapper around the
RTL module so that the IP behaves like a BSV module.
Instead of using ports, the wrappedmodule usesmethods and
interfaces.

4. Implementation

4.1. Elliptic Curve Cryptography Processor Server Farms. A
server farm or server cluster is a collection of computer
servers with an arbiter to accomplish the server needs far
beyond the capability of one machine. The arbiter allocates
incoming jobs to any server, which becomes available, and
sends the result back to its caller. We implemented two server
farms, each of which is equipped with four elliptic curve
cryptography processor engines (Figure 5). In the test bench,
the arbitration controller sends the same random jobs to each
farm and checks to see if corresponding results returned from
each crypto-server farm are matched. For both servers, the
time required to complete each job depends on the value of
the point to be encrypted on the elliptic curve, so we cannot

be sure that results will be available in the order the jobs were
started. However, the arbiter should return the results to its
caller in the order the jobs were received. So a reorder buffer
is required, which fits this specification.

4.2. Reorder Buffer. Reorder buffers are required for orga-
nizing the order from out-of-order job executions. In BSV,
the reorder buffer is implemented in the library package
as a reusable parameterized IP [11]. The IP named Com-
pletionBuffer provides the function of reorder buffers. The
interface of the IP offers three methods (Algorithm 4). The
reservemethod allows the caller to reserve a slot in the buffer,
returning a token holding the identity of the slot.

When a job finishes, the complete method allows the
result to be stored in the reorder buffer. The drain method
returns the results in the order where the tokens were
assigned from the first. In this way, the results of out-of-
orderly completed jobs can wait in the buffer until a time-
consuming job ahead of them finishes.
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interface CompletionBuffer #(numeric type 𝑛, type element type);
interface Get#(CBToken#(𝑛)) reserve;
interface Put#(Tuple2 #(CBToken#(𝑛), element type)) complete;
interface Get#(element type) drain;

endinterface: CompletionBuffer

Algorithm 4: Interface of the reorder buffer.

Farm 1 

ECC
ECC

ECC
ECC

Input 
buffer

Reorder 
buffer

Farm 2 

ECC 
BoothECC

ECC
ECC

Input 
buffer

Reorder 
buffer

Random number generator

Compare

Figure 5: Top level block diagram of the elliptic curve cryptography
processor server farm and the test bench.

4.3. Random Number Generator. We reused the public
advanced encryption standard (AES) cryptographic algo-
rithm to achieve a NIST-recommended secure random num-
ber generator [12] with Verilog HDL. Thanks to Drimer [13],
we could utilize the fastest AES Verilog HDL module to
make the random number generator. Complex and repetitive
permutations facilitate the ciphering algorithm to generate
random numbers. According to the cipher theory, encrypted
data with enough high security density behave as random
numbers because after the repetitive permutation, data retain
the characteristics of whitening. We then again created a
wrapper of the AES Verilog IP to fit in the BSV test bench
program.

The test bench program instantiates the 2 cryptography
processor server farms and dispatches the same jobs to each
farm. We used fully filled FIFOs to evenly distribute the
data elements one at a time as we did in [14]. As expected,
the test result showed matched values from two server
farms. The elliptic curve cryptography processor server farm
accomplished the consecutive jobs in the order the data were
received.

5. Conclusions

ESL methodologies have evolved from algorithmic mod-
eling such as architectural explorations and proving con-
cepts as supplementary techniques such as design of

embedded systems, system level test bench development,
hardware/software cosimulation, and high-level synthesis of
ASIC/FPGA designs. To rapidly prototype the server farms,
a 193-bit elliptic curve cryptography processor engine with a
new suggestion of 3X faster GF multiplier was implemented
together with input buffers and reorder buffers each for out-
of-order completion.AnAES cryptographic functionmodule
was reused to produce random number test vectors. Using
BSV, we could utilize a higher system level of abstraction
than that with traditional HDLs to implement two farms
with 4 crypto-processor engines. Since BSV description of
the server farms is at very high level, we can modify and
explore the architecture with ease. If we parameterize the
number of farms and the number of the processor engines,
we will get totally different server farms, which will take
order of magnitude much time and effort to build the same
implementation using Verilog or VHDL.

Due to increasing demand of new technology, the com-
plexity of hardware and software consisting embedded sys-
tems is rapidly growing. Now maybe the time that we should
shift the hardware/software design paradigm to languages
with a higher level of abstraction such as BSV.
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