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By using the polynomial expansion in the even order Bernoulli polynomials and using the linear combinations of the shifts of
the function 𝑓(𝑥)(𝑥 ∈ R) to approximate the derivatives of 𝑓(𝑥), we propose a family of modified even order Bernoulli-type
multiquadric quasi-interpolants which do not require the derivatives of the function approximated at each node and can satisfy
any degree polynomial reproduction property. Error estimate indicates that our operators could provide the desired precision by
choosing a suitable shape-preserving parameter 𝑐 and a nonnegative integer 𝑚. Numerical comparisons show that this technique
provides a higher degree of accuracy. Finally, applying our operators to the fitting of discrete solutions of initial value problems, we
find that our method has smaller errors than the Runge-Kutta method of order 4 and Wang et al.’s quasi-interpolation scheme.

1. Introduction

Let𝑋 = {𝑥
0
, . . . , 𝑥

𝑛
} be a set of 𝑛 + 1 distinct points ofR and

let 𝑓 be a function defined on a domain [𝑎, 𝑏] containing 𝑋.
The standard formula for interpolating the function 𝑓, where

𝑎 = 𝑥
0
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏, (1)

has the following form:

L [𝑓; 𝑎, 𝑏] (𝑥) =
𝑛

∑
𝑗=0

𝜆
𝑗
X (𝑥 − 𝑥

𝑗
) , (2)

s.t.

L [𝑓; 𝑎, 𝑏] (𝑥
𝑗
) = 𝑓 (𝑥

𝑗
) , (3)

for all 𝑗 = 0, . . . , 𝑛, where X(⋅) is an interpolation ker-
nel. Many investigators use radial basis functions to solve
the interpolation problems (2)-(3). In particular, the multi-
quadrics presented by Hardy [1],

𝜙
𝑗
(𝑥) = 𝜙 (𝑥 − 𝑥

𝑗
) = √(𝑥 − 𝑥

𝑗
)
2

+ 𝑐2, 𝑗 = 0, . . . , 𝑛, (4)

are of especial interest because of their special convergence
property, see [2, 3]. Throughout this paper, let the nota-
tions 𝜙

𝑗
(⋅) and 𝑐 denote the multiquadrics and their shape-

preserving parameter as in (4), respectively. A review by
Franke [4] indicated that the multiquadric interpolation is
one of the best schemes among some 29 interpolation meth-
ods in terms of accuracy, efficiency, and easy implementation.
Although the multiquadric interpolation is always solvable
when the scattered points {𝑥

𝑗
}𝑛
𝑗=0

are distinct [5], the resulting
matrix in (2)-(3) quickly becomes ill-conditioned as the
number of the scattered points increases. In this paper, we
will use the quasi-interpolation technique to overcome the ill-
conditioning problem.

A weaker form of (3), well-known as quasi-interpolation,
holds for all polynomials of degree no more than𝑚, where𝑚
is nonnegative integer; that is,

L [𝑝; 𝑎, 𝑏] (𝑥
𝑗
) = 𝑝 (𝑥

𝑗
) , 𝑗 = 0, . . . , 𝑛, 𝑝 ∈ P

𝑚, (5)

where P𝑚 = {𝑝 : deg(𝑝) ⩽ 𝑚}. Beatson and Powell
[6] first proposed a univariate quasi-interpolation operator
L
𝐵

which reproduces constants, where X(𝑥) in (2) is
a linear combination of the multiquadrics, see (46)-(47).
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Afterwards, Wu and Schaback [7] proposed another quasi-
interpolation operatorL

𝐷
which possesses shape-preserving

and linear reproducing properties. They showed that the
error of the operator L

𝐷
is O(ℎ2| ln ℎ|), when the shape

parameter 𝑐 = O(ℎ), where ℎ = max
1⩽𝑗⩽𝑛

{|𝑥
𝑗
− 𝑥
𝑗−1

|}.
Using the operator L

𝐷
, Ling [8] constructed a multilevel

quasi-interpolation operator and proved that its convergence
order is O(ℎ2.5| ln ℎ|) when 𝑐 = O(ℎ). Using the shifts of the
cubic multiquadrics, Feng and Li [9] constructed a shape-
preserving quasi-interpolation operator. They showed that
the operator reproduces all polynomials of degree 2 or less
and proved that the convergence rate is O(ℎ3) as 𝑐 = O(ℎ1.5).
Combining the operator L

𝐵
with Hermite interpolation

polynomials, Wang et al. [10] proposed a kind of improved
quasi-interpolation operators L

𝐻
2𝑚−1

which reproduce all
polynomials of degree ⩽2𝑚−1.They proved that it converges
with a rate of O(ℎ2𝑚) at most. However, the operators
L
𝐻
2𝑚−1

require values of the derivatives at endpoints, which
are not convenient for practical purposes. Further, many
authors offered some examples using multiquadric quasi-
interpolation operator to solve differential equations, see [11–
15] for details.

Based on CAIRA-DELL’ACCIO’s idea [16], we first define
a family of even order Bernoulli-type multiquadric quasi-
interpolants L̃V

𝑚

by combining the multiquadric quasi-
interpolation operatorL

𝐵
in [6] with the polynomial expan-

sion in even order Bernoulli polynomials V
𝑚
(𝑥) in [17]. For

practical purposes, applying the divided difference formula in
[18] to the operators L̃V

𝑚

, we construct a family of modified
even order Bernoulli-type multiquadric quasi-interpolants
LV
𝑚

which do not require values of the derivatives at nodes.
Weprove that the operatorsLV

𝑚

reproduce all polynomials of
degree ⩽2𝑚 and have the convergence rate ofO(ℎ2𝑚+1) under
a suitable assumption on the shape parameter 𝑐. Therefore,
our operators LV

𝑚

can provide the desired smoothness and
precision in the practical applications.

The organization of the remainder of this paper is as
follows. In Section 2, we briefly recall the definition of
Bernoulli polynomials and even order Bernoulli polynomials
giving some useful properties. We also obtain three useful
theorems for the error in the even order Bernoulli poly-
nomials expansion. In Section 3, we apply previous results
to derive a family of modified even order Bernoulli-type
multiquadric quasi-interpolants and get their convergence
rate. In Section 4, numerical examples are shown to compare
the approximation capacity of our new operators with that of
CAIRA-DELL’ACCIO’s interpolants and Wang et al.’s quasi-
interpolants. In Section 5, we apply our operators to the
fitting of discrete solutions of initial value problems for
ordinary differential equations. In Section 6, we give the
conclusions.

2. Some Remarks on
the Polynomial Expansion

2.1. The Generalized Taylor Polynomial. The generalized Tay-
lor polynomial is an expansion in Bernoulli polynomials

𝐵
𝑛
(𝑥), that is, the polynomials of the sequence defined

recursively by means of the following relations, see [19]:

𝐵
0 (𝑥) = 1,

𝐵󸀠
𝑛
(𝑥) = 𝑛𝐵

𝑛−1
(𝑥) , 𝑛 ⩾ 1,

∫
1

0

𝐵
𝑛 (𝑥) 𝑑𝑥 = 0, 𝑛 ⩾ 1.

(6)

Let function 𝑓(𝑥) be in the class 𝐶𝑚[𝑎, 𝑏](𝑎 < 𝑏); then

𝑓 (𝑥) = 𝑃
𝑚
[𝑓; 𝑎, 𝑏] (𝑥) + 𝑅

𝑚
[𝑓; 𝑎, 𝑏] (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (7)

where the polynomial approximation term is considered as
follows:

𝑃
𝑚
[𝑓; 𝑎, 𝑏] (𝑥)

= 𝑓 (𝑎) +
𝑚

∑
𝑘=1

𝐵
𝑘
((𝑥 − 𝑎) /ℎ) − 𝐵

𝑘
(0)

𝑘!

× ℎ𝑘−1 (𝑓(𝑘−1) (𝑏) − 𝑓(𝑘−1) (𝑎))

(8)

and the remainder term is defined by

𝑅
𝑚
[𝑓; 𝑎, 𝑏] (𝑥)

=
ℎ𝑚−1

𝑚!
∫
𝑏

𝑎

𝑓(𝑚) (𝑡)

× (𝐵
𝑚
(
𝑏 − 𝑡

ℎ
) − 𝐵

𝑚
(
𝑥 − 𝑡 − [𝑥 − 𝑡]

ℎ
))𝑑𝑡,

(9)

where [⋅] denotes the integer part of the argument and ℎ =
𝑏 − 𝑎. The polynomial approximant 𝑃

𝑚
[𝑓; 𝑎, 𝑏](𝑥) has the

following result:

lim
ℎ→0

𝑃
𝑚
[𝑓; 𝑎, 𝑏] (𝑥) = 𝑇

𝑚
[𝑓; 𝑎] (𝑥) , (10)

where 𝑇
𝑚
[𝑓; 𝑎](𝑥) is the 𝑟th Taylor polynomial of 𝑓 with ini-

tial point in 𝑎. According to (10), we denote by 𝑃
𝑚
[𝑓; 𝑎, 𝑏](𝑥)

the generalized Taylor polynomial.

2.2. The Polynomial Expansion in Even Order Bernoulli Poly-
nomials. Let us consider the polynomial sequence defined
recursively by the following relations, see [17]:

V
0 (𝑥) = 1,

V󸀠
𝑛
(𝑥) = ∫

𝑥

0

V
𝑛−1 (𝑡) 𝑑𝑡, 𝑛 = 1, 2, . . . ,

∫
1

0

V
𝑛
(𝑥) 𝑑𝑥 = 0, 𝑛 = 1, 2, . . . .

(11)

By (11), the polynomial sequence {V
𝑛
(𝑥)} is related to the

following Bernoulli polynomials of even degree, see [17]:

V
𝑛 (𝑥) =

22𝑛

(2𝑛)!
𝐵
2𝑛
(
1 + 𝑥

2
) , 𝑛 = 1, 2, . . . . (12)
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Wedenote by V
𝑛
(𝑥) the even order Bernoulli polynomials. For

any function 𝑓 in the class 𝐶2𝑚[𝑎, 𝑏] (𝑎 < 𝑏), this expansion
is realized by the following:

𝑓 (𝑥) = 𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) + 𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,
(13)

where the polynomial expansion 𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏](𝑥) in even
order Bernoulli polynomials is defined by

𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥)

= 𝑓 (𝑎) +
𝑚

∑
𝑗=1

[ℎ2𝑗−1𝑓(2𝑗−1) (𝑏) (V
𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗
(0))

−ℎ2𝑗−1𝑓(2𝑗−1) (𝑎) (V𝑗 (
𝑏 − 𝑥

ℎ
) − V
𝑗 (1)) ]

(14)

and the remainder 𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏](𝑥) in its Peano’s representa-
tion is given by

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) = ℎ2𝑚−1 ∫
𝑏

𝑎

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑚 (
𝑥 − 𝑎

ℎ
,
𝑡 − 𝑎

ℎ
) 𝑑𝑡,

(15)

where
𝐾
𝑎,𝑚

(𝑥, 𝑡)

=

{{{{{{{{{
{{{{{{{{{
{

−
𝑚

∑
𝑗=1

(V
𝑗
(𝑥) − V

𝑗
(0))

(1 − 𝑡)2𝑚−2𝑗

(2𝑚 − 2𝑗)!
, 𝑥 ⩽ 𝑡,

𝑡2𝑚−1

(2𝑚 − 1)!
+
𝑚

∑
𝑗=1

(V
𝑗 (1 − 𝑥) − V

𝑗 (1))

×
𝑡2𝑚−2𝑗

(2𝑚 − 2𝑗)!
, 𝑥 ⩾ 𝑡.

(16)

In order to get bounds for remainder (15) even in points
outside the interval [𝑎, 𝑏], we consider the operator

𝑓 󳨀→ 𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏] , (17)

where𝑓 ∈ 𝐶𝑚[𝑐, 𝑑]with 𝑐 < 𝑎 and 𝑏 < 𝑑. By applying Peano’s
kernel theorem [20], we give an integral expression for the
remainder (15) as follows.

Theorem 1. If 𝑓 ∈ 𝐶2𝑚[𝑐, 𝑑] and 𝑥 ∈ [𝑐, 𝑑], then for the
remainder

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) = 𝑓 (𝑥) − 𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) (18)

we have the following integral representations:

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥)

=

{{{{{{{{{
{{{{{{{{{
{

1

(2𝑚 − 1)!
∫
𝑏

𝑥

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡, 𝑐 ⩽ 𝑥 ⩽ 𝑎,

1

(2𝑚 − 1)!
∫
𝑏

𝑎

𝑓(2𝑚) (𝑡) 𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑑𝑡, 𝑎 ⩽ 𝑥 ⩽ 𝑏,

1

(2𝑚 − 1)!
∫
𝑥

𝑎

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡, 𝑏 ⩽ 𝑥 ⩽ 𝑑,

(19)

where
𝐾
𝑎,𝑏 (𝑥, 𝑡)

= (𝑥 − 𝑡)
2𝑚−1

+
− (𝑎 − 𝑡)

2𝑚−1

+

−
𝑚

∑
𝑗=1

[ℎ2𝑗−1
(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑏 − 𝑡)

2𝑚−2𝑗

+
(V
𝑗
(
𝑥 − 𝑎

ℎ
− V
𝑗
(0)))

− ℎ2𝑗−1
(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑎 − 𝑡)

2𝑚−2𝑗

+

×(V
𝑗
(
𝑏 − 𝑥

ℎ
) − V
𝑗
(1)) ]

(20)

and (⋅)𝑘
+
denotes the positive part of the 𝑘th power of the

argument; that is,

(𝑠)
𝑘

+
= max {𝑠𝑘, 0} . (21)

Proof. On one hand, there are evaluations of derivatives of
𝑓 up to the order 2𝑚 − 1 on points 𝑎 and 𝑏 of [𝑐, 𝑑] in the
approximation term (14); on the other hand, the exactness
of (14) on the set P2𝑚 denotes the exactness of the operator
𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏] on the subset P2𝑚−1. Applying Peano’s kernel
theorem, we then obtain

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) =
1

(2𝑚 − 1)!
∫
𝑑

𝑐

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡,

(22)

where (20) is given by applying the linear functional 𝑓 →

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏](𝑥) to a function (𝑥 − 𝑡)2𝑚−1
+

in 𝑥. Let 𝑥 ∈ [𝑐, 𝑎];
then

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) =
1

(2𝑚 − 1)!
∫
𝑥

𝑐

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡

+
1

(2𝑚 − 1)!
∫
𝑎

𝑥

𝑓(2𝑚) (𝑡) 𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑑𝑡

+
1

(2𝑚 − 1)!
∫
𝑏

𝑎

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡

+
1

(2𝑚 − 1)!
∫
𝑑

𝑏

𝑓(2𝑚) (𝑡) 𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑑𝑡.

(23)

Let 𝑡 ∈ [𝑐, 𝑥]; then

𝐾
𝑎,𝑏

(𝑥, 𝑡)

= (𝑥 − 𝑡)
2𝑚−1 − (𝑎 − 𝑡)

2𝑚−1

−[

[

𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑏 − 𝑡)

2𝑚−2𝑗ℎ2𝑗−1 (V
𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗 (0))

+
(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑎 − 𝑡)

2𝑚−2𝑗(V
𝑗
(
𝑏 − 𝑥

ℎ
− V
𝑗
(1)))]

]

=0,

(24)
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where (𝑥 − 𝑡)2𝑚−1 is considered a polynomial in 𝑥 of degree
2𝑚 − 1. By the expression of (⋅)𝑘

+
, (20) is equal to zero in the

interval 𝑏 < 𝑡 < 𝑑. Thus, we prove the first case of (19). The
remaining cases of (19) can be got in an analogous manner.

ByTheorem 1, we can get the following result.

Theorem 2. If 𝑓 ∈ 𝐶2𝑚[𝑐, 𝑑] and 𝑥 ∈ [𝑐, 𝑑], then for the
remainder (18) we get

󵄨󵄨󵄨󵄨𝑅𝑎,𝑚 [𝑓; 𝑎, 𝑏] (𝑥)
󵄨󵄨󵄨󵄨⩽

{{{{{{{
{{{{{{{
{

𝐶 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)󵄩󵄩󵄩󵄩󵄩∞(𝑏 − 𝑥)2𝑚, 𝑐 < 𝑥 < 𝑎,

𝐶 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)󵄩󵄩󵄩󵄩󵄩∞(𝑏 − 𝑎)2𝑚, 𝑎 < 𝑥 < 𝑏,

𝐶 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)󵄩󵄩󵄩󵄩󵄩∞(𝑥 − 𝑎)2𝑚, 𝑏 < 𝑥 < 𝑑,

(25)

where ‖ ⋅ ‖
∞

denotes the sup-norm on [𝑐, 𝑑] and

𝐶 (𝑚)

=
1

(2𝑚)!
[

[

22𝑚−1 +
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

2𝑘+1 − 2

2𝑚 − 2𝑗 + 1

× (
2𝑚
2𝑗

)(
2𝑗
𝑘
)
󵄨󵄨󵄨󵄨𝐵𝑘 (1)

󵄨󵄨󵄨󵄨
]

]

.

(26)

Proof. Let 𝑐 < 𝑥 < 𝑎; then we find from (19) that

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥) =
1

(2𝑚 − 1)!
∫
𝛼

𝑥

𝑓(2𝑚) (𝑡) 𝐾𝑎,𝑏 (𝑥, 𝑡) 𝑑𝑡

+
1

(2𝑚 − 1)!
∫
𝑏

𝑎

𝑓(2𝑚) (𝑡) 𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑑𝑡.

(27)

Let 𝑥 < 𝑡 < 𝑎; then

𝐾
𝑎,𝑏 (𝑥, 𝑡)

= −(𝑎 − 𝑡)
2𝑚−1 −

𝑚

∑
𝑗=1

[
(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑏 − 𝑡)

2𝑚−2𝑗ℎ2𝑗−1

× (V
𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗 (0))

−
(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑎 − 𝑡)

2𝑚−2𝑗ℎ2𝑗−1

× (V
𝑗
(
𝑏 − 𝑥

ℎ
) − V
𝑗
(1)) ]

(28)

so that

∫
𝑎

𝑥

𝐾
𝑎,𝑏 (𝑥, 𝑡) 𝑓

(2𝑚)
(𝑡) 𝑑𝑡

= −∫
𝑎

𝑥

(𝑎 − 𝑡)
2𝑚−1𝑓(2𝑚) (𝑡) 𝑑𝑡

−
𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
ℎ2𝑗−1

× ∫
𝑎

𝑥

[(𝑏 − 𝑡)
2𝑚−2𝑗 (V

𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗
(0))

−(𝑎 − 𝑡)
2𝑚−2𝑗(V

𝑗
(
𝑏 − 𝑥

ℎ
) − V
𝑗 (1))]𝑓

(2𝑚)
(𝑡) 𝑑𝑡.

(29)

In [21], we have the following known identity:

𝐵
𝑛
(𝑧 + 𝑤) =

𝑛

∑
𝑖=0

(
𝑛
𝑖
)𝐵
𝑖
(𝑧) 𝑤
𝑛−𝑖, 𝑛 = 0, 1, . . . . (30)

By the identities [17], using relations (30), we get

V
𝑛
(𝑥) =

22𝑛

(2𝑛)!
𝐵
2𝑛
(
1 + 𝑥

2
) =

22𝑛

(2𝑛)!
𝐵
2𝑛
(
1

2
+
𝑥

2
)

=
22𝑛

(2𝑛)!

2𝑛

∑
𝑖=0

(
2𝑛
𝑖
) 𝐵
𝑖
(
1

2
) (

𝑥

2
)
2𝑛−𝑖

, 𝑛 = 0, 1, . . . .

(31)

In [17], we have

𝐵
0
(1) = 𝐵

0
(
1

2
) = 1,

𝐵
1
(0) = −

1

2
, 𝐵

1
(1) =

1

2
,

𝐵
𝑛
(
1

2
) = − (1 − 21−𝑛) 𝐵

𝑛
(0) , 𝑛 = 1, 2, . . . ,

𝐵
𝑛 (0) = 𝐵

𝑛 (1) , 𝑛 = 2, . . . ,

𝐵
2𝑛+1

(0) = 0, 𝑛 = 1, 2, . . . .

(32)

Therefore, by applying (31), we obtain the following form
from (29):

V
𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗 (0)

=
22𝑗

(2𝑗)!

2𝑗−1

∑
𝑘=0

(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
) (

𝑥 − 𝑎

2ℎ
)
2𝑗−𝑘

, 𝑗 = 1, 2, . . . ,

V
𝑗
(
𝑏 − 𝑥

ℎ
) − V
𝑗 (1)

=
22𝑗

(2𝑗)!

2𝑗−1

∑
𝑘=0

(
2𝑗
𝑘
)𝐵
𝑘
(1) (

𝑎 − 𝑥

2ℎ
)
2𝑗−𝑘

, 𝑗 = 1, 2, . . . .

(33)
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Further, by applying the third case of (32) and the identities
(33), we have

∫
𝑎

𝑥

𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑓
(2𝑚)

(𝑡) 𝑑𝑡

= −∫
𝑎

𝑥

(𝑎 − 𝑡)
2𝑚−1𝑓(2𝑚) (𝑡) 𝑑𝑡

−
𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
(
𝑥 − 𝑎

2ℎ
)
2𝑗

ℎ2𝑗−1

× ∫
𝑎

𝑥

((𝑏 − 𝑡)
2𝑚−2𝑗− (𝑎 − 𝑡)

2𝑚−2𝑗)𝑓(2𝑚)(𝑡) 𝑑𝑡

−
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
𝐵
𝑘
(
1

2
) (

𝑥 − 𝑎

2ℎ
)
2𝑗−𝑘

ℎ2𝑗−1

× ∫
𝑎

𝑥

(𝑏 − 𝑡)
2𝑚−2𝑗𝑓(2𝑚) (𝑡) 𝑑𝑡

+
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
𝐵
𝑘
(1) (

𝑎 − 𝑥

2ℎ
)
2𝑗−𝑘

ℎ2𝑗−1

× ∫
𝑎

𝑥

(𝑎 − 𝑡)
2𝑚−2𝑗𝑓(2𝑚) (𝑡) 𝑑𝑡.

(34)

Note that the integrands are of type 𝑔(𝑡)𝑓(2𝑚)(𝑡) with a 𝑔(𝑡)
that does not change sign in [𝑥, 𝑎]. By applying the first mean
value theorem for integrals to (34), we find for some 𝜉, 𝜉

𝑗
, 𝜂
𝑗
,

𝜃
𝑗
∈ [𝑐, 𝑑], 𝑗 = 1, . . . , 𝑚 that

∫
𝑎

𝑥

𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑓
(2𝑚)

(𝑡) 𝑑𝑡

= −𝑓(2𝑚) (𝜉) ∫
𝑎

𝑥

(𝑎 − 𝑡)
2𝑚−1𝑑𝑡

−
𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
(
𝑥 − 𝑎

2ℎ
)
2𝑗

ℎ2𝑗−1𝑓(2𝑚)(𝜉
𝑗
)

× ∫
𝑎

𝑥

((𝑏 − 𝑡)
2𝑚−2𝑗− (𝑎 − 𝑡)

2𝑚−2𝑗) 𝑑𝑡

−
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
𝐵
𝑘
(
1

2
) (

𝑥 − 𝑎

2ℎ
)
2𝑗−𝑘

× ℎ2𝑗−1𝑓(2𝑚) (𝜂
𝑗
)∫
𝑎

𝑥

(𝑏 − 𝑡)
2𝑚−2𝑗𝑑𝑡

+
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!

22𝑗

(2𝑗)!
𝐵
𝑘 (1) (

𝑎 − 𝑥

2ℎ
)
2𝑗−𝑘

× ℎ2𝑗−1𝑓(2𝑚) (𝜃
𝑗
)∫
𝑎

𝑥

(𝑎 − 𝑡)
2𝑚−2𝑗𝑑𝑡.

(35)

After some calculations in (35), we obtain

∫
𝑎

𝑥

𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑓
(2𝑚)

(𝑡) 𝑑𝑡

= −𝑓(2𝑚) (𝜉)
(𝑎 − 𝑥)2𝑚

2𝑚

− ℎ2𝑚
𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
𝑥 − 𝑎

ℎ
)
2𝑗

𝑓(2𝑚) (𝜉
𝑗
)

× [−1 +

2𝑚−2𝑗

∑
𝑟=0

(
𝑏 − 𝑥

ℎ
)
2𝑚−2𝑗−𝑟

(
𝑎 − 𝑥

ℎ
)
𝑟

]

− ℎ2𝑚
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!2𝑘

(2𝑚 − 2𝑗)! (2𝑗!)
(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
) (

𝑥 − 𝑎

ℎ
)
2𝑗−𝑘

× 𝑓(2𝑚) (𝜂
𝑗
) [1 − (

𝑏 − 𝑥

ℎ
)
2𝑚−2𝑗+1

]

+ ℎ2𝑚
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚 − 1)!2𝑘

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
2𝑗
𝑘
)𝐵
𝑘
(1)

× (
𝑎 − 𝑥

ℎ
)
2𝑗−𝑘

𝑓(2𝑚) (𝜃
𝑗
) (

𝑎 − 𝑥

ℎ
)
2𝑚−2𝑗+1

.

(36)

Let 𝑎 < 𝑡 < 𝑏; then we have

𝐾
𝑎,𝑏 (𝑥, 𝑡) = −

𝑚

∑
𝑗=1

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
(𝑏 − 𝑡)

2𝑚−2𝑗ℎ2𝑗−1

× (V
𝑗
(
𝑥 − 𝑎

ℎ
) − V
𝑗 (0)) ,

∫
𝑏

𝑎

𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑓
(2𝑚)

(𝑡) 𝑑𝑡

= −
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=0

(2𝑚 − 1)!

(2𝑚 − 2𝑗)!
ℎ2𝑗−1 (

2𝑗
𝑘
)𝐵
𝑘
(
1

2
)

× (
𝑥 − 𝑎

ℎ
)
2𝑗−𝑘

∫
𝑎

𝑥

(𝑏 − 𝑡)
2𝑚−2𝑗𝑓(2𝑚) (𝑡) 𝑑𝑡.

(37)

By the first mean value theorem for integrals, we can get after
some calculations

∫
𝑏

𝑎

𝐾
𝑎,𝑏

(𝑥, 𝑡) 𝑓
(2𝑚)

(𝑡) 𝑑𝑡

= −ℎ2𝑚
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=0

(2𝑚 − 1)!2𝑘

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
)

× (
𝑥 − 𝑎

ℎ
)
2𝑗−𝑘

𝑓(2𝑚) (𝜆
𝑗
) ,

(38)
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where 𝜆
𝑗
∈ [𝑐, 𝑑], 𝑗 = 1, . . . , 𝑚. By applying relations (36) and

(38) to (27), we have

𝑅
𝑎,𝑚

[𝑓; 𝑎, 𝑏] (𝑥)

= −𝑓(2𝑚) (𝜉)
(𝑎 − 𝑥)2𝑚

(2𝑚)!

−
ℎ2𝑚

(2𝑚)!

𝑚

∑
𝑗=1

(2𝑚)!

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
𝑥 − 𝑎

ℎ
)
2𝑗

𝑓(2𝑚) (𝜉
𝑗
)

× [−1 +

2𝑚−2𝑗

∑
𝑟=0

(
𝑏 − 𝑥

ℎ
)
2𝑚−2𝑗+𝑟

(
𝑎 − 𝑥

ℎ
)
𝑟

]

−
ℎ2𝑚

(2𝑚)!

𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚)!2𝑘

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
)

× (
𝑥 − 𝑎

ℎ
)
2𝑗−𝑘

𝑓(2𝑚) (𝜂
𝑗
)

× [1 − (
𝑏 − 𝑥

ℎ
)
2𝑚−2𝑗+1

]

+
ℎ2𝑚

(2𝑚)!

𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

(2𝑚)!2𝑘

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
2𝑗
𝑘
)𝐵
𝑘
(1)

× (
𝑎 − 𝑥

ℎ
)
2𝑚−𝑘+1

𝑓(2𝑚) (𝜃
𝑗
) −

ℎ2𝑚

(2𝑚)!

×
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=0

(2𝑚)!2𝑘

(2𝑚 − 2𝑗 + 1)! (2𝑗)!
(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
)

× (
𝑥 − 𝑎

ℎ
)
2𝑗−𝑘

𝑓(2𝑚) (𝜆
𝑗
) .

(39)

By identities (32), we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐵
0
(
1

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝐵0 (1)

󵄨󵄨󵄨󵄨 = 1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐵
𝑛
(
1

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
2𝑛 − 2

2𝑛
󵄨󵄨󵄨󵄨𝐵𝑛 (1)

󵄨󵄨󵄨󵄨 , 𝑛 = 1, 2, . . . .

(40)

By using (40) in (39), we have after some simplifications that

󵄨󵄨󵄨󵄨𝑅𝑎,𝑚 [𝑓; 𝑎, 𝑏] (𝑥)
󵄨󵄨󵄨󵄨

⩽

󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)󵄩󵄩󵄩󵄩󵄩∞
(2𝑚)!

((𝑎 − 𝑥)
2𝑚 + ℎ2𝑚

𝑚

∑
𝑗=1

(
2𝑚
2𝑗

)(
𝑏 − 𝑥

ℎ
)
2𝑚

+ ℎ2𝑚
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

2𝑘+1 − 2

2𝑚 − 2𝑗 + 1
(
2𝑚
2𝑗

)(
2𝑗
𝑘
)
󵄨󵄨󵄨󵄨𝐵𝑘 (1)

󵄨󵄨󵄨󵄨

× (
𝑏 − 𝑥

ℎ
)
2𝑚+1−𝑘

)

⩽ ℎ2𝑚
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)󵄩󵄩󵄩󵄩󵄩∞
(2𝑚)!

(1 +
𝑚

∑
𝑗=1

(
2𝑚
2𝑗

) +
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

2𝑘+1 − 2

2𝑚 − 2𝑗 + 1
(
2𝑚
2𝑗

)

× (
2𝑗
𝑘
)
󵄨󵄨󵄨󵄨𝐵𝑘 (1)

󵄨󵄨󵄨󵄨 )(
𝑏 − 𝑥

ℎ
)
2𝑚

.

(41)

Because

1 +
𝑚

∑
𝑗=1

(
2𝑚
2𝑗

) = 22𝑚−1, (42)

we obtain the first case of expression (25). Similarly, we can
prove the remaining cases.

Since the polynomials 𝑃
𝑎,𝑚

[𝑓; 𝑎, 𝑏](𝑥) of degree are not
greater than 2𝑚, we can obtain the desired bounds in an
analogous manner.

Theorem 3. If 𝑓 ∈ 𝐶2𝑚+1[𝑐, 𝑑] and 𝑥 ∈ [𝑐, 𝑑], then for the
remainder (18) we get
󵄨󵄨󵄨󵄨𝑅𝑎,𝑚 [𝑓; 𝑎, 𝑏] (𝑥)

󵄨󵄨󵄨󵄨

⩽

{{{{{
{{{{{
{

𝐶󸀠 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)󵄩󵄩󵄩󵄩󵄩∞(𝑏 − 𝑥)2𝑚+1, 𝑐 < 𝑥 < 𝑎,

𝐶󸀠 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)󵄩󵄩󵄩󵄩󵄩∞(𝑏 − 𝑎)2𝑚+1, 𝑎 < 𝑥 < 𝑏,

𝐶󸀠 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)󵄩󵄩󵄩󵄩󵄩∞(𝑥 − 𝑎)2𝑚+1, 𝑏 < 𝑥 < 𝑑,

(43)

where ‖ ⋅ ‖
∞

denotes the sup-norm on [𝑐, 𝑑] and

𝐶󸀠 (𝑚) =
1

(2𝑚 + 1)!

[
[

[

22𝑚 +
𝑚

∑
𝑗=1

2𝑗−1

∑
𝑘=1

2𝑘+1 − 2

2𝑚 − 2𝑗 + 2
(
2𝑚 + 1
2𝑗

)

× (
2𝑗
𝑘
)
󵄨󵄨󵄨󵄨𝐵𝑘 (1)

󵄨󵄨󵄨󵄨
]
]

]

.

(44)

3. The Modified Even Order Bernoulli-Type
Quasi-Interpolants

The multiquadric quasi-interpolant L
𝐵
[6] is defined by the

following:

L
𝐵
[𝑓; 𝑎, 𝑏] (𝑥) = 𝑓 (𝑥

0
) 𝜓
0
(𝑥) +

𝑛−1

∑
𝑖=1

𝑓 (𝑥
𝑖
) 𝜓
𝑖
(𝑥)

+ 𝑓 (𝑥
𝑛
) 𝜓
𝑛
(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

(45)
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where

𝜓
0
(𝑥) =

1

2
𝑐2 ∫
𝑥
0

−∞

1

[(𝑥 − 𝑡)2 + 𝑐2]
3/2

𝑑𝑡

+
1

2
𝑐2 ∫
𝑥
1

𝑥
0

(𝑥
1
− 𝑡) / (𝑥

1
− 𝑥
0
)

[(𝑥 − 𝑡)2 + 𝑐2]
3/2

𝑑𝑡

=
1

2
+
𝜙
1 (𝑥) − 𝜙

0 (𝑥)

2 (𝑥
1
− 𝑥
0
)

,

(46)

𝜓
𝑛
(𝑥) =

1

2
𝑐2 ∫
∞

𝑥
𝑛

1

[(𝑥 − 𝑡)2 + 𝑐2]
3/2

+
1

2
𝑐2 ∫
𝑥
𝑛

𝑥
𝑛−1

(𝑡 − 𝑥
𝑛−1

) / (𝑥
𝑛
− 𝑥
𝑛−1

)

[(𝑥 − 𝑡)2 + 𝑐2]
3/2

𝑑𝑡

=
1

2
−
𝜙
𝑛
(𝑥) − 𝜙

𝑛−1
(𝑥)

2 (𝑥
𝑛
− 𝑥
𝑛−1

)
,

𝜓
𝑖 (𝑥) =

1

2
𝑐2 ∫
𝑥
𝑖+1

𝑥
𝑖−1

𝐵
𝑖 (𝑡)

[(𝑥 − 𝑡)2 + 𝑐2]
3/2

𝑑𝑡

=
𝜙
𝑖+1 (𝑥) − 𝜙

𝑖 (𝑥)

2 (𝑥
𝑖+1

− 𝑥
𝑖
)

−
𝜙
𝑖 (𝑥) − 𝜙

𝑖−1 (𝑥)

2 (𝑥
𝑖
− 𝑥
𝑖−1

)

(47)

for 𝑖 = 1, . . . , 𝑛 − 1, where {𝐵
𝑖
(𝑡) : 𝑡 ∈ R} is the hat

function that has the nodes {𝑥
𝑖−1

, 𝑥
𝑖
, 𝑥
𝑖+1

}, that is identically
zero outside the interval 𝑥

𝑖−1
⩽ 𝑡 ⩽ 𝑥

𝑖+1
and that satisfies

the normalization condition 𝐵
𝑖
(𝑥
𝑖
) = 1. The operator L

𝐵

reproduces constants. Based on the operator L
𝐵
, we first

define a family of even order Bernoulli-type multiquadric
quasi-interpolants L̃V

𝑚

as follows:

L̃V
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) =
𝑛

∑
𝑖=0

𝜓
𝑖 (𝑥) 𝑃𝑥

𝑖
,𝑚
[𝑓; 𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] ,

(48)

where 𝑃
𝑥
𝑖
,𝑚
[𝑓; 𝑥
𝑖
, 𝑥
𝑖+1

](𝑥) is the natural extension of the
polynomial expansion defined in (14) and 𝑥

𝑛+1
= 𝑥
𝑛−1

. The
operators L̃V

𝑚

possess the polynomial reproduction property
as follows.

Theorem 4. The operators L̃V
𝑚

reproduce all univariate poly-
nomials of degree no more than 2𝑚.

Proof. The argument L̃V
𝑚

[𝑝; 𝑎, 𝑏](𝑥) = 𝑝 follows from the
well-known property

𝑛

∑
𝑖=0

𝜓
𝑖
(𝑥) = 1 (49)

since 𝑃
𝑥
𝑖
,𝑚
[𝑝; 𝑥
𝑖
, 𝑥
𝑖+1

](𝑥) = 𝑝 for 𝑖 = 0, . . . , 𝑛, where 𝑝 ∈ P2𝑚.

Although the quasi-interpolants L̃V
𝑚

reproduce all poly-
nomials of degree ⩽2𝑚, they require the derivative of 𝑓 at

every node, which are very difficult to measure in practice.
Therefore, we use divided difference operator 𝐷

2𝑗−1

𝐴
𝑓 in

following Definition 5 to approximate𝑓(2𝑗−1) in the operators
L̃V
𝑚

and then get a family of modified even order Bernoulli-
type multiquadric quasi-interpolantsLV

𝑚

.

Definition 5 (see [18]). Let F = {𝑓 | 𝑓 : R → R} and let
𝐴 be a discrete subset of R, 𝑗 ∈ N. Suppose that 𝐷2𝑗−1 is the
order 2𝑗 − 1 derivative. An operator 𝐷2𝑗−1

𝐴
: F → F is said

to be a P
2𝑚
-exact 𝐴-discretization of𝐷2𝑗−1 if and only if

(i) there exists a real vector 𝜆 = (𝜆
𝑎
)
𝑎∈𝐴

s.t. for any 𝑓 ∈
F,

𝐷
2𝑗−1

𝐴
𝑓 (⋅) = ∑

𝑎∈𝐴

𝜆
𝑎
𝑓 (⋅ + 𝑎) , 𝑗 = 1, . . . , 𝑚; (50)

(ii) for any 𝑝 ∈ P
2𝑚
,

𝐷
2𝑗−1

𝐴
𝑝 = 𝐷2𝑗−1𝑝. (51)

In such situation, we also say that 𝐷2𝑗−1
𝐴

𝑓 is a P
2𝑚
-exact

𝐴-discretization of 𝐷2𝑗−1𝑓. Let the points be distinct in the
set A; then𝐷

2𝑗−1

𝐴
is determined uniquely.

Let |⋅| denote the number of elements in set. Let the points
in set𝐴 be distinct and |𝐴| = 2𝑚+1; then by Definition 5 and
[18], aP

2𝑚
-exact𝐴-discretization of the order 2𝑗−1derivative

𝑓(2𝑗−1) is

𝐷
2𝑗−1

𝐴
𝑓 (𝑥) = ∑

𝑎∈𝐴

𝜆
𝑎
𝑓 (𝑥 + 𝑎) , 𝑗 = 1, . . . , 𝑚, (52)

where

𝜆
𝑎
=
(−1)2𝑚+1−2𝑗 (2𝑗 − 1)! ∑

𝐴
󸀠
⊂𝐴\{𝑎},|𝐴

󸀠
|=2𝑚+1−2𝑗

∏
𝑐∈𝐴
󸀠 (𝑐)

∏
𝑐∈𝐴\{𝑎}

(𝑎 − 𝑐)
.

(53)

By virtue of the location of each pair𝑥
𝑖
,𝑥
𝑖+1

(𝑖 = 0, . . . , 𝑛),
we choose suitable sets𝐴

𝑥
𝑖

, 𝐴
𝑥
𝑖+1

and then replace𝑓(2𝑗−1)(𝑥
𝑖
)

and 𝑓(2𝑗−1)(𝑥
𝑖+1

) with 𝐷
2𝑗−1

𝐴
𝑥𝑖

𝑓(𝑥
𝑖
) and 𝐷

2𝑗−1

𝐴
𝑥𝑖+1

𝑓(𝑥
𝑖+1

), respec-
tively. Thus, the modification quasi-interpolants LV

𝑚

can be
expressed as follows:

LV
𝑚

[𝑓; 𝑎, 𝑏] (𝑥)

=
𝑛

∑
𝑖=0

𝜓
𝑖
(𝑥)

×
[
[

[

𝑓 (𝑥
𝑖
) +
𝑚

∑
𝑗=1

[
[

[

(𝑥
𝑖+1

− 𝑥
𝑖
)
2𝑗−1

𝐷
2𝑗−1

𝐴
𝑥𝑖+1

𝑓 (𝑥
𝑖+1

)
22𝑗

(2𝑗)!
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×

2𝑗−1

∑
𝑘=0

(
2𝑗
𝑘
)𝐵
𝑘
(
1

2
)(

𝑥 − 𝑥
𝑖

2(𝑥
𝑖+1

− 𝑥
𝑖
)
)
2𝑗−𝑘

− (𝑥
𝑖+1

− 𝑥
𝑖
)
2𝑗−1

𝐷
2𝑗−1

𝐴
𝑥𝑖

𝑓 (𝑥
𝑖
)

22𝑗

(2𝑗)!

×

2𝑗−1

∑
𝑘=0

(
2𝑗
𝑘
)𝐵
𝑘 (1) (

𝑥
𝑖
− 𝑥

2 (𝑥
𝑖+1

− 𝑥
𝑖
)
)

2𝑗−𝑘

]
]

]

]
]

]

,

𝑥
𝑛+1

= 𝑥
𝑛−1

.

(54)

Note that the expressions of 𝐷2𝑗−1
𝐴
𝑥𝑖

𝑓(𝑥
𝑖
) (𝑖 = 0, . . . , 𝑛, 𝑗 =

1, . . . , 𝑚) in the modification operatorsLV
𝑚

are provided by
the following theorem.

Theorem 6. For any 𝐴 ⊂ R and 𝑥 ∈ R, let 𝐴 be a P
2𝑚
-

unisolvent set and𝐴
𝑥
= 𝐴−𝑥 denote the set of points 𝑒 ∈ R of

the form 𝑒 = 𝑎 − 𝑥, where 𝑎 ∈ 𝐴. Let 𝐴 = {𝑥
𝑖
, . . . , 𝑥

𝑖+2𝑚
} (𝑖 =

0, . . . , 𝑚 − 1), {𝑥
𝑖−𝑚

, . . . , 𝑥
𝑖
, . . . , 𝑥

𝑖+𝑚
} (𝑖 = 𝑚, . . . , 𝑛 − 𝑚),

and {𝑥
𝑖−2𝑚

, . . . , 𝑥
𝑖
} (𝑖 = 𝑛 − 𝑚 + 1, . . . , 𝑛). Then, for each

𝑗 = 1, . . . , 𝑚, we have

𝐷
2𝑗−1

𝐴
𝑥𝑖

𝑓 (𝑥
𝑖
) = ∑
𝑎∈𝐴

𝜆
𝑎−𝑥
𝑖

𝑓 (𝑎) , 𝑖 = 0, . . . , 𝑛, (55)

where

𝜆
𝑎−𝑥
𝑖

=
(−1)2𝑚+1−2𝑗 (2𝑗 − 1)! ∑

𝐴
󸀠
⊂𝐴\{𝑎},|𝐴󸀠|=2𝑚+1−2𝑗∏𝑐∈𝐴󸀠 (𝑐 − 𝑥

𝑖
)

∏
𝑐∈𝐴\{𝑎}

(𝑎 − 𝑐)
.

(56)

Proof. For each 𝑥 ∈ R, we set𝐴
𝑥
= {𝑥
𝑖
−𝑥, . . . , 𝑥

𝑖+2𝑚
−𝑥} (𝑖 =

0, . . . , 𝑚−1), {𝑥
𝑖−𝑚

−𝑥, . . . , 𝑥
𝑖
−𝑥, . . . , 𝑥

𝑖+𝑚
−𝑥} (𝑖 = 𝑚, ⋅ ⋅ ⋅ , 𝑛−

𝑚), and {𝑥
𝑖−2𝑚

−𝑥, . . . , 𝑥
𝑖
−𝑥} (𝑖 = 𝑛−𝑚+1, . . . , 𝑛). According

to (50) and (53), we get

𝐷
2𝑗−1

𝐴
𝑥

𝑓 (0) = ∑
𝑎∈𝐴

𝜆
𝑎−𝑥

𝑓 (𝑎 − 𝑥) , (57)

where

𝜆
𝑎−𝑥

=
(−1)2𝑚+1−2𝑗 (2𝑗 − 1)! ∑

𝐴
󸀠
⊂𝐴\{𝑎},|𝐴

󸀠
|=2𝑚+1−2𝑗

∏
𝑐∈𝐴
󸀠 (𝑐 − 𝑥)

∏
𝑐∈𝐴\{𝑎}

(𝑎 − 𝑐)
.

(58)

Therefore, we have

𝐷
2𝑗−1

𝐴
𝑥

𝑓 (𝑥) = ∑
𝑎∈𝐴

𝜆
𝑎−𝑥

𝑓 (𝑎) . (59)

Let us set 𝑥 = 𝑥
𝑖
; then we get the proof of theTheorem 6.

Remark 7. For 𝑚 = 1, we give the expression of the
modification operatorLV

1

as follows:

LV
1

[𝑓; 𝑎, 𝑏] (𝑥)

= [𝑓 (𝑥
0
) − (

1

2

(𝑥
0
− 𝑥)
2

𝑥
1
− 𝑥
0

+ (𝑥
0
− 𝑥))𝐷1

3
𝑓 (𝑥
0
)]𝜓
0
(𝑥)

+
𝑛−1

∑
𝑖=1

[𝑓 (𝑥
𝑖
) − (

1

2

(𝑥
𝑖
− 𝑥)
2

𝑥
𝑖+1

− 𝑥
𝑖

+ (𝑥
𝑖
− 𝑥))𝐷1

3
𝑓 (𝑥
𝑖
)]𝜓
𝑖
(𝑥)

+
𝑛−1

∑
𝑖=1

1

2

(𝑥 − 𝑥
𝑖−1

)
2

𝑥
𝑖
− 𝑥
𝑖−1

𝐷1
3
𝑓 (𝑥
𝑖
) 𝜓
𝑖−1

(𝑥)

+
1

2

(𝑥 − 𝑥
𝑛−1

)
2

𝑥
𝑛
− 𝑥
𝑛−1

𝐷1
3
𝑓 (𝑥
𝑛
) 𝜓
𝑛−1

(𝑥)

+ [𝑓 (𝑥
𝑛
) − (

1

2

(𝑥
𝑛
− 𝑥)
2

𝑥
𝑛−1

− 𝑥
𝑛

+ (𝑥
𝑛
− 𝑥))𝐷1

3
𝑓 (𝑥
𝑛
)]𝜓
𝑛
(𝑥)

+
1

2

(𝑥 − 𝑥
𝑛
)
2

𝑥
𝑛−1

− 𝑥
𝑛

𝐷1
3
𝑓 (𝑥
𝑛−1

) 𝜓
𝑛
(𝑥) ,

(60)

where

𝐷1
3
𝑓 (𝑥
0
) = −

𝑥
1
+ 𝑥
2
− 2𝑥
0

(𝑥
0
− 𝑥
1
) (𝑥
0
− 𝑥
2
)
𝑓 (𝑥
0
)

−
𝑥
2
− 𝑥
0

(𝑥
1
− 𝑥
0
) (𝑥
1
− 𝑥
2
)
𝑓 (𝑥
1
)

−
𝑥
1
− 𝑥
0

(𝑥
2
− 𝑥
0
) (𝑥
2
− 𝑥
1
)
𝑓 (𝑥
2
) ,

𝐷1
3
𝑓 (𝑥
𝑖
) = −

𝑥
𝑖+1

− 𝑥
𝑖

(𝑥
𝑖−1

− 𝑥
𝑖
) (𝑥
𝑖−1

− 𝑥
𝑖+1

)
𝑓 (𝑥
𝑖−1

)

−
𝑥
𝑖−1

+ 𝑥
𝑖+1

− 2𝑥
𝑖

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑥
𝑖
− 𝑥
𝑖+1

)
𝑓 (𝑥
𝑖
)

−
𝑥
𝑖−1

− 𝑥
𝑖

(𝑥
𝑖+1

− 𝑥
𝑖−1

) (𝑥
𝑖+1

− 𝑥
𝑖−1

) (𝑥
𝑖+1

− 𝑥
𝑖
)
𝑓 (𝑥
𝑖+1

) ,

𝑖 = 1, . . . , 𝑛 − 1,

𝐷1
3
𝑓 (𝑥
𝑛
) = −

𝑥
𝑛−1

− 𝑥
𝑛

(𝑥
𝑛−2

− 𝑥
𝑛−1

) (𝑥
𝑛−2

− 𝑥
𝑛
)
𝑓 (𝑥
𝑛−2

)

−
𝑥
𝑛−2

− 𝑥
𝑛

(𝑥
𝑛−1

− 𝑥
𝑛−2

) (𝑥
𝑛−1

− 𝑥
𝑛
)
𝑓 (𝑥
𝑛−1

)

−
𝑥
𝑛−2

+ 𝑥
𝑛−1

− 2𝑥
𝑛

(𝑥
𝑛
− 𝑥
𝑛−2

) (𝑥
𝑛
− 𝑥
𝑛−1

)
𝑓 (𝑥
𝑛
) .

(61)
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3.1. The Polynomial Reproduction Properties of
the OperatorsLV

𝑚

Theorem 8. The operatorsLV
𝑚

reproduce all univariate poly-
nomials of degree no more than 2𝑚.

Proof. By using the proof of Theorem 4 and formulas (51)–
(54), we get the proof of Theorem 8 immediately.

3.2. The Convergence Rate of the Operators LV
𝑚

. In order
to obtain the convergence rate of the modified multiquadric
quasi-interpolants LV

𝑚

, we make use of the following nota-
tions:

𝐼
𝜌
(𝑥) = [𝑥 − 𝜌, 𝑥 + 𝜌] , 𝜌 > 0,

ℎ =
1

2
inf {𝜌 > 0 : ∀𝑥 ∈ [𝑎, 𝑏] , 𝐼𝜌 (𝑥) ∩ 𝑋 ̸= 0} ,

𝑀 = max
𝑥∈[𝑎,𝑏]

# (𝐼
ℎ
(𝑥) ∩ 𝑋) ,

(62)

where #(⋅) denotes the cardinality function. So, 2ℎ =
max
1⩽𝑖⩽𝑛

|𝑥
𝑖
− 𝑥
𝑖−1

| and𝑀 denotes the maximum number of
points from 𝑋 contained in an interval 𝐼

ℎ
(𝑥). At first, for the

quasi-interpolants L̃V
𝑚

, we then give the error estimates as
follows.

Theorem 9. Let 𝑐 satisfy

𝑐 ⩽ 𝐷𝑟𝑙, (63)

where 𝐷 is a positive constant and 𝑙 is a positive integer. Let
𝑓(𝑥) ∈ 𝐶2𝑚[𝑎, 𝑏]; then

󵄩󵄩󵄩󵄩󵄩L̃V
𝑚

[𝑓; 𝑎, 𝑏](𝑥) − 𝑓(𝑥)
󵄩󵄩󵄩󵄩󵄩∞ ⩽ 𝐶󸀠𝑀

󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞𝑇𝑙,𝑚 (ℎ) ,

(64)

where

𝑇
𝑙,𝑚 (ℎ) = {

ℎ2𝑚, 2𝑚 < 2𝑙 − 1,

ℎ2𝑙−1, 2𝑚 ⩾ 2𝑙 − 1,
(65)

and 𝐶󸀠 is a positive constant independent of 𝑓, 𝑥, and 𝑋.

Proof. Let each pair 𝑥
𝑖
, 𝑥
𝑖+1

∈ [𝑎, 𝑏], be fixed and let 𝑥
𝑖
< 𝑥
𝑖+1

.
For each 𝑥 ∈ [𝑎, 𝑏] we make use of the following settings:

𝑑 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥) =
{{
{{
{

𝑥
𝑖+1

− 𝑥, 𝑥 ⩽ 𝑥
𝑖
,

𝑥
𝑖+1

− 𝑥
𝑖
, 𝑥
𝑖
⩽ 𝑥 ⩽ 𝑥

𝑖+1
,

𝑥 − 𝑥
𝑖
, 𝑥

𝑖+1
⩽ 𝑥,

𝑑2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥) = (𝑑 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥))
2𝑚
.

(66)

By applying (14) to (48), we obtain
󵄨󵄨󵄨󵄨󵄨L̃V
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=0

𝜓
𝑖
(𝑥) (𝑃

𝑥
𝑖
,𝑚
[𝑓; 𝑥
𝑖
, 𝑥
𝑖+1

]) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
𝑛

∑
𝑖=0

𝜓
𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨𝑃𝑥𝑖 ,𝑚 [𝑓; 𝑥𝑖, 𝑥𝑖+1] (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶 (𝑚)
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞𝑆𝑙,𝑚 (𝑥) ,

(67)

where

𝑆
𝑙,𝑚

(𝑥) =
𝑛

∑
𝑖=0

𝜓
𝑖
(𝑥) 𝑑
2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥) . (68)

Assume that

𝑁 = [
𝑏 − 𝑎

2ℎ
] + 1,

𝑄
𝜌 (𝑢) = (𝑢 − 𝜌, 𝑢 + 𝜌] , 𝑢 ∈ [𝑎, 𝑏] , 𝜌 > 0,

𝑇
𝑗
= 𝑄
ℎ
(𝑥 − 2ℎ𝑗) ∪ 𝑄

ℎ
(𝑥 + 2ℎ𝑗) , 𝑗 = 0, . . . , 𝑁,

(69)

where the set⋃𝑁
𝑗=−𝑁

𝑄
ℎ
(𝑥+2ℎ𝑗) denotes the covering of [𝑎, 𝑏]

with half open intervals. Thus, for every 𝑖 ∈ {0, . . . , 𝑛}, there
exists a unique 𝑗 ∈ {0, . . . , 𝑁} s.t. 𝑥

𝑖
∈ 𝑇
𝑗
. Then, we get the

following inequalities:

(2𝑗 − 1) ℎ ⩽
󵄨󵄨󵄨󵄨𝑥 − 𝑥

𝑖

󵄨󵄨󵄨󵄨 ⩽ (2𝑗 + 1) ℎ,

(2 (𝑗 − 1) − 1) ℎ ⩽
󵄨󵄨󵄨󵄨𝑥 − 𝜏

𝑖

󵄨󵄨󵄨󵄨 ⩽ (2 (𝑗 + 1) + 1) ℎ,
(70)

where 𝑗 = 2, . . . , 𝑁 and 𝜏
𝑖
∈ [𝑥
𝑖−1

, 𝑥
𝑖+1

]. Therefore, we have
from (70)

𝑑 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥) ⩽ (2𝑗 + 3) ℎ. (71)

We also obtain from the definition of𝑀

1 ⩽ # (𝑋 ∩ 𝑇
0
) ⩽ 𝑀,

1 ⩽ # (𝑋 ∩ 𝑇
𝑗
) ⩽ 2𝑀, 𝑗 = 1, . . . , 𝑁.

(72)

On the other hand, when 𝑥
0
∈ 𝑇
𝑗
, 𝑗 = 2, . . . , 𝑁, we get, after

some calculations, by applying the first mean value theorem
for integrals to (46),

𝜓
0
(𝑥) ⩽

1

2
𝑐2 ∫
𝑥
0

−∞

1

|𝑥 − 𝑡|3
𝑑𝑡 +

1

2
𝑐2

1

[(𝑥 − 𝜏
0
)
2
+ 𝑐2]
3/2

× ∫
𝑥
1

𝑥
0

𝑥
1
− 𝑡

𝑥
1
− 𝑥
0

𝑑𝑡

⩽
1

4
𝑐2
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨
−2

+
1

4
𝑐2 (𝑥
1
− 𝑥
0
)
󵄨󵄨󵄨󵄨𝑥 − 𝜏

0

󵄨󵄨󵄨󵄨
−3

⩽
1

4
𝑐2 [(2𝑗 − 1)

−2
ℎ−2 + 2(2𝑗 − 3)

−3
ℎ−2]

⩽ 𝑐2ℎ−2(2𝑗 − 3)
−2
,

(73)

where 𝜏
0
∈ [𝑥
0
, 𝑥
1
]. When 𝑥

𝑛
∈ 𝑇
𝑗
, 𝑗 = 2, . . . , 𝑁, we obtain in

an analogous manner

𝜓
𝑛
(𝑥) ⩽ 𝑐2ℎ−2(2𝑗 − 3)

−2
. (74)
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When 𝑥
𝑖
(𝑖 = 1, . . . , 𝑛−1) ∈ 𝑦

𝑗
(𝑗 = 2, . . . , 𝑁), we also obtain

𝜓
𝑖
(𝑥) ⩽

1

2
𝑐2

1

[(𝑥 − 𝜏
𝑖
)
2
+ 𝑐2]
3/2

∫
𝑥
𝑖+1

𝑥
𝑖−1

𝐵
𝑖
(𝑡) 𝑑𝑡

⩽
1

4
𝑐2 (𝑥
𝑖+1

− 𝑥
𝑖−1

)
󵄨󵄨󵄨󵄨𝑥 − 𝜏

𝑖

󵄨󵄨󵄨󵄨
−3

⩽ 𝑐2ℎ−2(2𝑗 − 3)
−2
,

(75)

where 𝜏
𝑖
∈ [𝑥
𝑖−1

, 𝑥
𝑖+1

]. Then, for (68), we have

𝑆
𝑙,𝑚

(𝑥) = ∑
𝑥
𝑖
∈𝑇
0
,𝑇
1

𝜓
𝑖
(𝑥) 𝑑
2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥)

+
𝑁

∑
𝑗=2

∑
𝑥
𝑖
∈𝑇
𝑗

𝜓
𝑖 (𝑥) 𝑑

2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥)

⩽ ∑
𝑥
𝑖
∈𝑇
0
,𝑇
1

𝑑2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥)

+
𝑁

∑
𝑗=2

∑
𝑥
𝑖
∈𝑇
𝑗

𝜓
𝑖 (𝑥) 𝑑

2𝑚 [𝑥
𝑖
, 𝑥
𝑖+1

] (𝑥)

⩽ 𝑀(3ℎ)
2𝑚 + 2𝑀(5ℎ)

2𝑚

+ 2𝑀
𝑁

∑
𝑗=2

𝑐2ℎ−2(2𝑗 − 3)
−2
((2𝑗 + 3) ℎ)

2𝑚

⩽ 2𝑀(5ℎ)
2𝑚+ 2𝑀(5ℎ)

2𝑚+ 2𝑀
𝑁

∑
𝑗=1

𝑐2ℎ−2𝑗−2((5𝑗) ℎ)
2𝑚

⩽ 2𝑀52𝑚(2ℎ2𝑚 + 𝐷2ℎ2𝑚−2+2𝑙
𝑁

∑
𝑗=1

𝑗2𝑚−2) ,

(76)

where the last inequality follows from

2𝑗 − 3 ⩾ 𝑗, 𝑗 = 3, 4, . . . ,

2𝑗 + 3 ⩽ 5𝑗, 𝑗 = 1, 2, . . . ,

72𝑚 ⩽ 52𝑚 +
1

22
102𝑚, 𝑚 = 1, 2, . . . .

(77)

Let 2𝑚 < 2𝑙−1; then 2ℎ2𝑚 +𝐷2ℎ2𝑙+2𝑚−2∑𝑁
𝑗=1

𝑗2𝑚−2 = O(ℎ2𝑚).
Let 2𝑚 ⩾ 2𝑙 − 1; then 2ℎ2𝑚 + 𝐷2ℎ2𝑙+2𝑚−2∑

𝑁

𝑗=1
𝑗2𝑚−2 =

O(ℎ2𝑙−1).

Applying Theorem 3, we can obtain the desired error
estimates of the operator L̃V

𝑚

in an analogous manner.

Theorem 10. Let 𝑐 satisfy

𝑐 ⩽ 𝐷ℎ𝑙, (78)

where 𝐷 is a positive constant and 𝑙 is a positive integer. Let
𝑓(𝑥) ∈ C2𝑚+1[𝑎, 𝑏]; then
󵄩󵄩󵄩󵄩󵄩L̃V

𝑚

[𝑓; 𝑎, 𝑏](𝑥) − 𝑓(𝑥)
󵄩󵄩󵄩󵄩󵄩∞ ⩽ 𝐶󸀠󸀠𝑀

󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞𝑇
󸀠

𝑙,𝑚
(ℎ) ,

(79)

where

𝑇󸀠
𝑙,𝑚

(ℎ) = {
ℎ2𝑚+1, 2m + 1 < 2l − 1,

ℎ2𝑙−1, 2m + 1 ⩾ 2l − 1,
(80)

and 𝐶󸀠󸀠 is a positive constant independent of 𝑓, 𝑥, and 𝑋.

Because of disadvantage with the derivatives in the
operators L̃V

𝑚

, we give the following desired error estimates
of the modification quasi-interpolantsLV

𝑚

.

Theorem 11. Let 𝑐 satisfy

𝑐 ⩽ 𝐷ℎ𝑙, (81)

where 𝐷 is a positive constant and 𝑙 is a positive integer. Let
𝑓(𝑥) ∈ 𝐶2𝑚+1[𝑎, 𝑏]; then
󵄩󵄩󵄩󵄩󵄩LV

𝑚

[𝑓; 𝑎, 𝑏](𝑥) − 𝑓(𝑥)
󵄩󵄩󵄩󵄩󵄩∞ ⩽ 𝐶𝑀

󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞𝑇
󸀠

𝑙,𝑚
(ℎ) ,

(82)

where

𝑇󸀠
𝑙,𝑚

(ℎ) = {
ℎ2𝑚+1, 2𝑚 + 1 < 2𝑙 − 1,

ℎ2𝑙−1, 2𝑚 + 1 ⩾ 2𝑙 − 1,
(83)

and 𝐶 is a positive constant independent of 𝑓, 𝑥, and 𝑋.

Proof. Consider
󵄨󵄨󵄨󵄨󵄨LV
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨

⩽
󵄨󵄨󵄨󵄨󵄨LV
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − L̃V
𝑚

[𝑓; 𝑎, 𝑏] (𝑥)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨L̃V
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨 .

(84)

The second term of the right-hand sides in (84) has been
obtained fromTheorem 10, so we only need to prove the first
term.

We denote by ℎmax and ℎmin the maximum and the
minimum distance between adjacent nodes, respectively. Let
ℎ = ℎmax/ℎmin ⩾ 1 and 𝐶

0
= ‖𝑓(2𝑚+1)(𝑥)‖

∞
.

Let 𝐶
1
be a constant; then, according to [18], we get

∑
𝑎∈𝐴

󵄨󵄨󵄨󵄨𝜆𝑎
󵄨󵄨󵄨󵄨

|𝑎|2𝑚+1

(2𝑚 + 1)!
⩽ ∑
𝑎∈𝐴

󵄨󵄨󵄨󵄨𝜆𝑎
󵄨󵄨󵄨󵄨

1

(2𝑚 + 1)!
(max
𝑎∈𝐴

|𝐴|)
2𝑚+1

⩽ 𝐶
1
ℎ2𝑚+1−(2𝑗−1)𝑘2𝑚.

(85)

Therefore, we obtain
󵄨󵄨󵄨󵄨󵄨𝐷
2𝑗−1

𝐴
𝑓 (𝑥
𝑖
) − 𝑓(2𝑗−1) (𝑥

𝑖
)
󵄨󵄨󵄨󵄨󵄨 ⩽ 𝐶
1
ℎ2𝑚+1−(2𝑗−1)𝑘2𝑚

×
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞.
(86)
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Table 1: Numerical results of the operators 𝑆
𝐵𝑚

andLV𝑚 for the saddle function.

𝑆
𝐵𝑚

𝑓
1

LV𝑚 𝑓1
(𝜇,𝑚) 𝜀mean 𝜀max (𝑙, 𝑚) 𝜀mean 𝜀max

(2, 1) 1.002 × 10−3 4.786 × 10−3 (2, 1) 2.237 × 10−4 1.126 × 10−3

(2, 2) 5.836 × 10−4 3.654 × 10−3 (2, 2) 3.356 × 10−6 2.745 × 10−5

(2, 3) 4.148 × 10−4 2.776 × 10−3 (2, 3) 4.020 × 10−7 2.300 × 10−6

(3, 1) 4.100 × 10−4 2.578 × 10−3 (3, 1) 2.063 × 10−4 1.097 × 10−3

(3, 2) 1.626 × 10−4 1.200 × 10−3 (3, 2) 1.698 × 10−6 2.623 × 10−5

(3, 3) 6.893 × 10−5 2.332 × 10−4 (3, 3) 1.325 × 10−8 2.021 × 10−7

(4, 1) 3.008 × 10−4 3.643 × 10−3 (4, 1) 1.824 × 10−4 1.053 × 10−3

(4, 2) 1.822 × 10−4 2.004 × 10−4 (4, 2) 9.620 × 10−7 2.363 × 10−5

(4, 3) 1.844 × 10−5 5.491 × 10−4 (4, 3) 9.891 × 10−8 2.031 × 10−7

Table 2: Numerical results of the operatorsL
𝐻2𝑚−1

andLV𝑚 for the saddle function.

L
𝐻2𝑚−1

𝑓
1

LV𝑚 𝑓1
(𝑙, 𝑚) 𝜀mean 𝜀max (𝑙, 𝑚) 𝜀mean 𝜀max

(2, 1) 2.654 × 10−4 1.200 × 10−3 (2, 1) 2.237 × 10−4 1.126 × 10−3

(2, 2) 6.678 × 10−6 4.005 × 10−5 (2, 2) 3.356 × 10−6 2.745 × 10−5

(2, 3) 3.400 × 10−6 1.280 × 10−5 (2, 3) 4.020 × 10−7 2.300 × 10−6

(3, 1) 2.541 × 10−4 1.180 × 10−3 (3, 1) 2.063 × 10−4 1.097 × 10−3

(3, 2) 6.435 × 10−6 4.160 × 10−5 (3, 2) 1.698 × 10−6 2.623 × 10−5

(3, 3) 1.236 × 10−7 1.230 × 10−6 (3, 3) 1.325 × 10−8 2.021 × 10−7

(4, 1) 2.540 × 10−4 1.180 × 10−3 (4, 1) 1.824 × 10−4 1.053 × 10−3

(4, 2) 6.435 × 10−6 4.160 × 10−5 (4, 2) 9.620 × 10−7 2.363 × 10−5

(4, 3) 1.185 × 10−7 1.230 × 10−6 (4, 3) 9.891 × 10−8 2.031 × 10−7

Let 𝐶
2
, 𝐶
3
, . . . , 𝐶

2𝑚
, 𝐶, 𝐶, 𝐶 be constants; then

󵄨󵄨󵄨󵄨󵄨LV
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − L̃V
𝑚

[𝑓; 𝑎, 𝑏] (𝑥)
󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶
0
𝐶
2
ℎ2𝑚𝑘2𝑚

𝑛

∑
𝑖=0

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨 𝜓𝑖 (𝑥) + 𝐶
0
𝐶
3
ℎ2𝑚−1𝑘2𝑚

×
𝑛

∑
𝑖=0

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2
𝜓
𝑖
(𝑥)+ ⋅ ⋅ ⋅ +𝐶

0
𝐶
2𝑚
ℎ2𝑘2𝑚

×
𝑛

∑
𝑖=0

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2𝑚−1

𝜓
𝑖
(𝑥)

⩽ 𝐶
0
𝐶
2
ℎ2𝑚𝑘2𝑚

× ( ∑
𝑥
𝑖
∈𝑇
0
,𝑇
1

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨 𝜓𝑖 (𝑥) +
𝑁

∑
𝑗=2

∑
𝑥
𝑖
∈𝑇
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨 𝜓𝑖 (𝑥))

+ 𝐶
0
𝐶
3
ℎ2𝑚−1𝑘2𝑚

× ( ∑
𝑥
𝑖
∈𝑇
0
,𝑇
1

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2
𝜓
𝑖 (𝑥) +

𝑁

∑
𝑗=2

∑
𝑥
𝑖
∈𝑇
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2
𝜓
𝑖 (𝑥))

+ ⋅ ⋅ ⋅ + 𝐶
0
𝐶
2𝑚
ℎ2𝑘2𝑚

× ( ∑
𝑥
𝑖
∈𝑇
0
,𝑇
1

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2𝑚−1

𝜓
𝑖
(𝑥) +

𝑁

∑
𝑗=2

∑
𝑥
𝑖
∈𝑇
𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑥
𝑖

󵄨󵄨󵄨󵄨
2𝑚−1

𝜓
𝑖
(𝑥))

⩽ 𝐶
0
𝐶
2
ℎ2𝑚𝑘2𝑚

× (𝑀ℎ + 2𝑀(3ℎ) + 2𝑀
𝑁

∑
𝑗=2

𝑐2ℎ−2(2𝑗 − 3)
−2
(2𝑗 + 1) ℎ)

+ 𝐶
0
𝐶
3
ℎ2𝑚−1𝑘2𝑚

× (𝑀ℎ2 + 2𝑀(3ℎ)
2 +
𝑁

∑
𝑗=2

𝑐2ℎ−2(2𝑗 − 3)
−2
((2𝑗 + 1)ℎ)

2
)

+ ⋅ ⋅ ⋅ + 𝐶
0
𝐶
2𝑚
ℎ2𝑘2𝑚

× (𝑀ℎ2𝑚−1 + 2𝑀(3ℎ)
2𝑚−1

+ 2𝑀
𝑁

∑
𝑗=2

𝑐2ℎ−2(2𝑗 − 3)
−2

((2𝑗 + 1)ℎ)
2𝑚−1

)

⩽ 𝐶𝑀
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞(ℎ
2𝑚+1 + 𝑐2ℎ2𝑚−2 + 𝑐2ℎ2𝑚−3+ ⋅ ⋅ ⋅ + 𝑐2ℎ)
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Table 3: Numerical results of the operators 𝑆
𝐵𝑚

andLV𝑚 for the sphere function.

𝑆
𝐵𝑚

𝑓
2

LV𝑚 𝑓2
(𝜇,𝑚) 𝜀mean 𝜀max (𝑙, 𝑚) 𝜀mean 𝜀max

(2, 1) 2.012 × 10−3 6.732 × 10−3 (2, 1) 2.356 × 10−4 4.664 × 10−4

(2, 2) 1.521 × 10−4 9.474 × 10−4 (2, 2) 1.001 × 10−6 2.045 × 10−6

(2, 3) 1.900 × 10−4 8.204 × 10−4 (2, 3) 9.097 × 10−8 9.763 × 10−7

(3, 1) 4.834 × 10−4 1.255 × 10−3 (3, 1) 2.304 × 10−4 4.024 × 10−4

(3, 2) 2.801 × 10−5 1.189 × 10−4 (3, 2) 9.972 × 10−8 3.665 × 10−7

(3, 3) 2.711 × 10−5 1.080 × 10−4 (3, 3) 8.851 × 10−9 3.541 × 10−9

(4, 1) 3.991 × 10−4 1.332 × 10−3 (4, 1) 2.636 × 10−4 3.964 × 10−4

(4, 2) 1.989 × 10−5 1.278 × 10−4 (4, 2) 8.614 × 10−8 3.524 × 10−7

(4, 3) 1.249 × 10−5 5.604 × 10−5 (4, 3) 9.811 × 10−9 2.004 × 10−8

⩽ 𝐶𝑀
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞ (ℎ2𝑚+1 + 𝑐2ℎ)

⩽ 𝐶𝑀
󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞ (ℎ2𝑚+1 + 𝐷2ℎ2𝑙+1) .

(87)

Finally, applyingTheorem 10 and (87) to (84), we get

󵄨󵄨󵄨󵄨󵄨LV
𝑚

[𝑓; 𝑎, 𝑏] (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨 ⩽ 𝐶𝑀

󵄩󵄩󵄩󵄩󵄩𝑓
(2𝑚+1)(𝑥)

󵄩󵄩󵄩󵄩󵄩∞

× (2ℎ2𝑚+1+ 𝐷2ℎ2𝑙+1+ 𝐷2ℎ2𝑙−1).

(88)

Let 2𝑚 + 1 < 2𝑙 − 1, then 2ℎ2𝑚+1 + 𝐷2ℎ2𝑙−1 = O(ℎ2𝑚+1).
Let 2𝑚+1 ⩾ 2𝑙−1, then 2ℎ2𝑚+1+𝐷2ℎ2𝑙−1 = O(ℎ2𝑙−1).

4. Numerical Examples

We consider the following functions on the interval [0, 1],
which are firstly used in [16]:

Saddle 𝑓
1
=

1.25

6 + 6(3𝑥 − 1)2
,

Sphere 𝑓
2
=
√64 − 81(𝑥 − 0.5)2

9
− 0.5.

(89)

We apply the interpolation operators 𝑆
𝐵
𝑚

, the quasi-
interpolation operators L

𝐻
2𝑚−1

, and the quasi-interpolants
LV
𝑚

on the above functions with 𝑐 = (2ℎ)𝑙, where 𝑆
𝐵
𝑚

and
L
𝐻
2𝑚−1

are defined by [10, 16], respectively.
We use uniform grids of 21 points for the operators 𝑆

𝐵
𝑚

,
L
𝐻
2𝑚−1

, andLV
𝑚

in Tables 1, 2, 3, and 4. In order to estimate
the errors as accurate as possible, we compute the approxi-
mation functions at the points 𝑖/101, 𝑖 = 1, . . . , 100. Tables
1–4 show the mean and max errors which are computed for
different values of the parameters 𝜇, 𝑙, and𝑚. The numerical
results show that our quasi-interpolants LV

𝑚

have better
approximation behavior.

5. An Application of the New Operators

After solving the following initial value problems:

𝑦󸀠 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] × 𝑅,

𝑦 (𝑥
0
) = 𝑦
0
, 𝑥
0
∈ [𝑎, 𝑏] ,

(90)

by virtue of a discrete method, we often need to master the
solution on a set of points that differs from the grid. Here
we use our operators LV

𝑚

to solve the problems. In fact,
combinations of our operators LV

𝑚

with discrete solvers of
ODEs provide approximations of the solution of the problems
(90) on [𝑎, 𝑏]. An algorithm for constructing these quasi-
interpolants is given as follows. The discrete solver produces
an approximation 𝑦

𝑖
of the exact solution 𝑦(𝑥

𝑖
) at nodes

𝑥
𝑖
, 𝑖 = 0, . . . , 𝑛 in [𝑎, 𝑏]. Substituting the exact values

mentioned above into the definition of our operators LV
𝑚

by their respective approximations, we get the proposed
quasi-interpolants. We consider the initial value problems as
follows.

Problem A

𝑦󸀠 (𝑥) = 𝑥𝑒−2𝑥 − 2𝑦, (𝑥, 𝑦) ∈ [0, 1] ×R,

𝑦 (0) = −1.
(91)

Problem B

𝑦󸀠 (𝑥) = sin (2𝑥) − 𝑦 tan (𝑥) , (𝑥, 𝑦) ∈ [0, 1] ×R,

𝑦 (0) = −2.
(92)

The exact solutions of Problems A and B are 𝑦(𝑥) = (𝑥 −

1)𝑒𝑥 and 𝑦(𝑥) = −2cos2𝑥, respectively. By the Runge-Kutta
method of order 4, we obtain the 𝑦

𝑖
on a uniform grid of

21 nodes in [0, 1]. Calculating the approximative functions
at points 𝑖/101, 𝑖 = 1, . . . , 100, we get the mean and max
errors in Table 5. Comparing the approximation capacity of
our proposed quasi-interpolants with that of Runge-Kutta
scheme of order 4 and Wang et al.’s quasi-interpolation
scheme [10] in Table 5, we find that our technique has smaller
errors in the Problems A and B.



Journal of Applied Mathematics 13

Table 4: Numerical results of the operatorsL
𝐻2𝑚−1

andLV𝑚 for the sphere function.

L
𝐻2𝑚−1

𝑓
2

LV𝑚 𝑓2
(𝑙, 𝑚) 𝜀mean 𝜀max (𝑙, 𝑚) 𝜀mean 𝜀max

(2, 1) 3.037 × 10−4 5.727 × 10−4 (2, 1) 2.356 × 10−4 4.664 × 10−4

(2, 2) 1.590 × 10−6 4.065 × 10−6 (2, 2) 1.001 × 10−6 2.045 × 10−6

(2, 3) 9.838 × 10−7 2.290 × 10−6 (2, 3) 9.097 × 10−8 9.763 × 10−7

(3, 1) 2.848 × 10−4 5.653 × 10−4 (3, 1) 2.304 × 10−4 4.024 × 10−4

(3, 2) 2.217 × 10−7 3.077 × 10−6 (3, 2) 9.972 × 10−8 3.665 × 10−7

(3, 3) 1.581 × 10−8 3.135 × 10−8 (3, 3) 8.851 × 10−9 3.541 × 10−9

(4, 1) 2.848 × 10−4 5.653 × 10−4 (4, 1) 2.636 × 10−4 3.964 × 10−4

(4, 2) 6.017 × 10−7 3.107 × 10−6 (4, 2) 8.614 × 10−8 3.524 × 10−7

(4, 3) 1.730 × 10−8 6.000 × 10−8 (4, 3) 9.811 × 10−9 2.004 × 10−8

Table 5: Numerical results of the initial value Problems A and B.

Problem A Problem B
𝜀mean 𝜀max 𝜀mean 𝜀max

𝑦
𝑖

6.34 × 10−7 1.94 × 10−6 2.09 × 10−6 1.23 × 10−5

L
𝐻2𝑚−1

, (𝑙, 𝑚) = (4, 2) 2.30 × 10−7 6.18 × 10−7 7.00 × 10−7 2.43 × 10−6

L
𝐻2𝑚−1

, (𝑙, 𝑚) = (4, 3) 8.05 × 10−8 5.72 × 10−7 3.84 × 10−7 4.02 × 10−6

LV𝑚 , (𝑙, 𝑚) = (4, 2) 6.02 × 10−8 9.17 × 10−8 9.32 × 10−8 3.43 × 10−7

LV𝑚 , (𝑙, 𝑚) = (4, 3) 1.67 × 10−9 2.44 × 10−7 8.72 × 10−8 6.59 × 10−7

6. Conclusions

In this paper, we propose a family of modified even order
Bernoulli-type multiquadric quasi-interpolants LV

𝑚

which
reproduce polynomials of higher degree.There is no demand
for the derivatives of function 𝑓 approximated at each
node in our operators LV

𝑚

, so they do not increase the
orders of smoothness of the function 𝑓. Under a certain
assumption, we give an expected result on the convergence
rate of our operators LV

𝑚

. The numerical examples show
that our operators LV

𝑚

produce higher degree of accuracy.
Furthermore, applying the operators LV

𝑚

to the fitting of
discrete solutions of initial value problems, we find that our
operatorsLV

𝑚

provide more accurate approximation solver.
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