
Research Article
Application of Radial Basis Function Method for
Solving Nonlinear Integral Equations

Huaiqing Zhang, Yu Chen, Chunxian Guo, and Zhihong Fu

The State Key Laboratory of Transmission Equipment and System Safety and Electrical New Technology,
Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Huaiqing Zhang; zhanghuaiqing@cqu.edu.cn

Received 13 July 2014; Revised 28 August 2014; Accepted 30 August 2014; Published 28 October 2014

Academic Editor: Song Cen

Copyright © 2014 Huaiqing Zhang et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The radial basis function (RBF) method, especially the multiquadric (MQ) function, was proposed for one- and two-dimensional
nonlinear integral equations. The unknown function was firstly interpolated by MQ functions and then by forming the nonlinear
algebraic equations by the collocation method. Finally, the coefficients of RBFs were determined by Newton’s iteration method and
an approximate solution was obtained. In implementation, the Gauss quadrature formula was employed in one-dimensional and
two-dimensional regular domain problems, while the quadrature background mesh technique originated in mesh-free methods
was introduced for irregular situation. Due to the superior interpolation performance of MQ function, the method can acquire
higher accuracy with fewer nodes, so it takes obvious advantage over the Gaussian RBF method which can be revealed from the
numerical results.

1. Introduction

Consider the general form of nonlinear integral equation as
follows:

𝑓 (𝑃) = 𝜇∫
Ω

𝑘 (𝑃, 𝑄) 𝐹 [𝑓 (𝑄)] 𝑑𝑄 + 𝑔 (𝑃) 𝑃, 𝑄 ∈ Ω, (1)

where the 𝑔(𝑃) and 𝑘(𝑃, 𝑄) are the given functions and 𝑃
and 𝑄 are coordinate variables of integral region Ω. 𝐹[𝑓(𝑄)]
is the nonlinear function of unknown 𝑓(𝑄), 𝜇-the known
parameter. These types of nonlinear integral equations have
arisen from various branches of applied science as solid
and fluid mechanics, electrostatics, heat transfer, diffraction,
scattering of waves, and so forth [1]. Analytical solutions
either do not exist or are hard to find.

However, significant progress in this area has been
obtained in the last 20 years. The projection, iterated pro-
jection, and Nystrom methods [2] are the commonly used
approaches for the numerical solutions of nonlinear integral
equations. But for nonrectangular region, the above methods
need to divide the solution region into nonoverlapping
triangular fragments and then discretize the integral equation

based on approximation and numerical integration over
the segments. Recent contributions in this area include
Chebyshev polynomials [3, 4], wavelets method [5, 6], Sinc-
collocation method [7], hybrid of block-pulse function and
Taylor seriesmethod [8], and orthogonal triangular functions
[9].

RBFs were introduced in [10] and formed a primary
tool for multivariate interpolation. Hardy [11] showed that
multiquadrics (MQs) are related to a consistent solution
of the biharmonic potential problem and thus they have
a physical foundation. Buhmann and Micchelli [12] have
shown that RBFs are related to prewavelets. Kansa [13]
illustrated firstly the idea of using RBFs collocation method
for solving partial differential equations (PDEs) and forming
a class of truly mesh-free method. In the past decades, RBF
based methods have been applied to many PDE applications
as heat transfer, 1D and 2D nonlinear Burgers’ equation,
shallow water equation, electromagnetic problems, and so
forth. However, the RBFmethod in solving integral equations
was initially proposed in 2006. Golbabai applied the RBF net-
works for solving the linear integral equations [14], the linear
integrodifferential equations [15], and the nonlinear integral
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equations [16]. Parand and Rad [17] presented the RBF
collocationmethod for one-dimensional Volterra-Fredholm-
Hammerstein integral equations. Alipanah adopted the posi-
tive definite functions [18] and Gaussian RBF [19] for solving
the integral equations. The related research about nonlinear
integral equations attracted a lot of attention recently. In the
author’s former paper [20], theMQwas introduced in solving
linear integral equations and two types of integration schemes
such as the Gauss quadrature formula and regional split
technique were put forward. Therefore, this paper attempted
to adopt the RBF method for solving nonlinear integral
equations and the quadrature background mesh technique
for nonrectangular region integration was proposed.

The layout of this paper is as follows. In Section 2, the
RBF and interpolation principle were described. In Section 3,
the RBF method for solving nonlinear integral equation and
the numerical integration scheme for coefficientsmatrix were
proposed. In Section 4, numerical examples are given and
analyzed. Finally, the conclusions are discussed in Section 5.

2. Radial Basis Function and
Interpolation Principle

Radial basis function B : 𝑅+ → 𝑅 (domain: 𝑅𝑑) is defined
as the function of distance 𝑟 = ‖𝑥 − 𝑥

𝑗
‖. The commonly

used RBF contains the thin plate splines function (B(𝑟) =
𝑟2 ln 𝑟), Gaussian function (B(𝑟) = exp(−𝛽𝑟2)), Hardy’s
multiquadrics (MQs) functions, compact support RBFs, and
so forth. Franke has proved that the MQ method has the
superior comprehensive performance in 29 kinds of scattered
data interpolation methods. So in this paper, we choose the
MQ as the basis function. The widely used MQ function has
the following expression:

𝜙 (x) = √‖x − c‖2 + 𝛼2. (2)

In above equation, c means the center of basis function
and 𝛼 is the shape parameter which is generally associated
with the distance between adjacent centers. So 𝛼 = 𝛽‖c

𝑖
− c
𝑗
‖,

and 𝛽 is also called the shape parameter.
The principle of RBF interpolation is regarding the

unknown function as linear combination of RBFs. So the
approximation function can be obtained after calculating
the coefficients. For example, having a series of known data
points (𝑥

𝑖
, 𝑓(𝑥
𝑖
)), 𝑖 = 1, 2, . . . , 𝑁, the approximation function

can be constructed by RBF as follows:

𝑓 (𝑥) =
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
𝑗 (𝑥) =

𝑁

∑
𝑗=1

𝜆
𝑗
√(𝑥 − 𝑐

𝑗
)
2

+ 𝛼2. (3)

Then, substituting the interpolation data points into the
above equation, we obtain

𝑓 (𝑥
𝑖
) =
𝑁

∑
𝑗=1

𝜆
𝑗
𝜙
𝑗
(𝑥
𝑖
) =
𝑁

∑
𝑗=1

𝜆
𝑗
√(𝑥
𝑖
− 𝑐
𝑗
)
2

+ 𝛼2, (4)

with its abstract matrix form

[Φ
𝑑
] [𝜆] = [f

𝑑
] , (5)

where [f
𝑑
] = [𝑓(𝑥

1
), 𝑓(𝑥

1
), . . . , 𝑓(𝑥

𝑁
)]𝑇 is the known data,

[𝜆] = [𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
]𝑇 is the coefficients, and [Φ

𝑑
] is

the coefficient matrix whose element calculation formula is
Φ
𝑚𝑛

= √(𝑥
𝑚
− 𝑐
𝑛
)2 + 𝛼2.

TheMQ function is globally definedwhich results in a full
resultant coefficientmatrix. And consequently, the coefficient
matrix in (5) is nonsingular and usually ill-conditioned. The
accuracy of the MQ solution depends heavily on the shape
parameter. In general, for a fixed number of centers 𝑁,
smaller shape parameters produce more accurate approxi-
mations but also are associated with a poorly conditioned
interpolation matrix. Also, the condition number grows with
𝑁, for fixed values of the shape parameter𝛼.The choice of this
optimal value is still under intensive investigation.Therefore,
solving (5) can acquire

[𝜆] = [Φ
𝑑
]
−1

[f
𝑑
] . (6)

The approximation value 𝑓(𝑥) at any point 𝑥 is

𝑓 (𝑥) = [Φ (𝑥)] [𝜆] = [Φ (𝑥)] [Φ𝑑]
−1

[f
𝑑
] . (7)

3. Solving the Nonlinear Integral Equations
Based on the RBF Interpolation

The basic idea of the RBF method for solving nonlinear
integral equation is using a linear combination of RBFs
to approximate the unknown function; thus the integral
equation is transformed into the nonlinear equations with
RBFs and their coefficients. Then the weight coefficients can
be calculated by the optimization method. And finally, an
approximate representation of the unknown function can be
obtained. Specifically, the RBF method for solving nonlinear
integral equation is proposed as follows.

3.1. RBF Interpolation to Approximate One-Dimensional
Nonlinear Integral Equation. The general form of one-
dimensional nonlinear integral equation is

𝑓 (𝑥) = 𝜇∫
𝑏|𝑥

𝑎

𝑘 (𝑥, 𝑡) 𝐹 [𝑓 (𝑡)] 𝑑𝑡 + 𝑔 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] . (8)

Here, 𝑏 | 𝑥 represents the upper limit. The constant
𝑏 or variable 𝑥 is, respectively, corresponding to Fredholm
or Volterra equation. The upper limit 𝑏 was chosen for
demonstration in the following discussion. The unknown
function 𝑓(𝑥) is expressed as a combination of RBFs. Thus,
the approximate formula for (8) is obtained:

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑥) = 𝜇∫

𝑏

𝑎

𝑘 (𝑥, 𝑡) 𝐹 [
𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡)] 𝑑𝑡 + 𝑔 (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] .

(9)
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Furthermore, for any collocation point𝑥
𝑑
in [𝑎, 𝑏], we can

get the following algebraic equation:

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑥
𝑑
)

− 𝜇∫
𝑏

𝑎

𝑘 (𝑥
𝑑
, 𝑡) 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡)] 𝑑𝑡 = 𝑔 (𝑥

𝑑
) , 𝑥

𝑑
∈ [𝑎, 𝑏] .

(10)

When choosing 𝑀 collocation points, hence the nonlinear
algebraic equations in matrix form are formed as follows:

[F − 𝜇K] = [G] , (11)

where [G] = [𝑔(𝑥
1
), 𝑔(𝑥
1
), . . . , 𝑔(𝑥

𝑀
)]𝑇, [F] = [∑

𝑁

𝑖=1
𝜆
𝑖
𝜙
𝑖

(𝑥
1
), ∑
𝑁

𝑖=1
𝜆
𝑖
𝜙
𝑖
(𝑥
2
), . . . , ∑

𝑁

𝑖=1
𝜆
𝑖
𝜙
𝑖
(𝑥
𝑀
)]𝑇. The elements in

matrix [K] are determined by

𝐾
𝑑
= ∫
𝑏

𝑎

𝑘 (𝑥
𝑑
, 𝑡) 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡)] 𝑑𝑡 = ∫

𝑏

𝑎

ℎ (𝑡) 𝑑𝑡. (12)

It is the definite integral of function ℎ(𝑡) which can be
calculated by the following Gauss quadrature formula:

∫
1

−1

ℎ (𝜉) 𝑑𝜉 ≈
𝑄

∑
𝑞=1

𝑊
𝑞
ℎ (𝜉
𝑞
) . (13)

However, there are two issues that should bementioned in
the implementation of the above Gauss quadrature. The first
one is that the coefficients [𝜆] are undetermined, while the
integrand ℎ(𝑡) and vector [F] are the functions of [𝜆]. Hence,
(11) cannot be solved directly just as the linear algebraic
equations and the iterative approach is widely adopted in this
situation. Fortunately, the coefficients [𝜆] are presupposed in
every iteration process, and the ℎ(𝑡) and [F] can be calculated
thereby. The second issue is that the Gauss quadrature is
defined on the interval [−1, 1]. Then, the integral range can
be transformedwith formula 𝑡 = (𝑏+𝑎)/2+(𝑏−𝑎)𝜉/2 = 𝑝(𝜉).
So the final formula is

𝐾
𝑑
=

𝑏 − 𝑎

2
∫
1

−1

𝑘 [𝑥
𝑑
, 𝑝 (𝜉)] 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑝 (𝜉))] 𝑑𝜉

≈
𝑏 − 𝑎

2

𝑄

∑
𝑞=1

𝑊
𝑞
𝑘 [𝑥
𝑑
, 𝑝 (𝜉
𝑞
)] 𝐹[

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑝 (𝜉
𝑞
))] .

(14)

3.2. RBF Interpolation to Approximate Two-Dimensional Lin-
ear Integral Equation. Two-dimensional nonlinear integral
equation has the general form

𝑓 (𝑥, 𝑦) = 𝜇∫
Ω

𝑘 (𝑥, 𝑦, 𝑡, 𝑠) 𝐹 [𝑓 (𝑡, 𝑠)] 𝑑𝑡 𝑑𝑠 + 𝑔 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ Ω.

(15)

The corresponding RBF approximation at collocation
points (𝑥

𝑑
, 𝑦
𝑑
) is

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑥
𝑑
, 𝑦
𝑑
) − 𝜇∫

Ω

𝑘 (𝑥
𝑑
, 𝑦
𝑑
, 𝑡, 𝑠) 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡, 𝑠)] 𝑑𝑡 𝑑𝑠

= 𝑔 (𝑥
𝑑
, 𝑦
𝑑
) , (𝑥

𝑑
, 𝑦
𝑑
) ∈ Ω.

(16)

And in a similar way, the matrix element of nonlinear
equations [F − 𝜇K] = [G] can be obtained for𝑀 collocation
points case. According to the domain type, two integration
schemes as regular and irregular situation were put forward.

(1) Definite Integral Calculation for Regular Domain.
When the integral domain Ω is regular in [𝑎, 𝑏] × [𝑐, 𝑑],
using the two-dimensional Gauss quadrature formula with
the transform as 𝑡 = (𝑏 + 𝑎)/2 + (𝑏 − 𝑎)𝜉/2 = 𝑝(𝜉) and
𝑠 = (𝑑 + 𝑐)/2 + (𝑐 − 𝑐)𝜂/2 = 𝑞(𝜂), we have

𝐾
𝑑
= ∫
Ω

𝑘 (𝑥
𝑑
, 𝑦
𝑑
, 𝑡, 𝑠) 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡, 𝑠)] 𝑑𝑡 𝑑𝑠

≈
(𝑏 − 𝑎) (𝑑 − 𝑐)

4

𝑄
1

∑
𝑙=1

𝑄
2

∑
𝑚=1

𝑊
𝑙
𝑊
𝑚
𝑘 [𝑥
𝑑
, 𝑦
𝑑
, 𝑝 (𝜉
𝑙
) , 𝑞 (𝜂

𝑚
)]

× 𝐹[
𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑝 (𝜉
𝑙
) , 𝑞 (𝜂

𝑚
))] .

(17)

(2)Definite Integral Calculation for Irregular Domain.The
traditional and straightforward method for irregular domain
integration is the regional split technique which divides the
solution region into nonoverlapping triangular fragments
and then calculates the integral of subregions. Therefore,
the triangulations and mesh refinement are necessary which
means huge time consumption. Another kind of integra-
tion techniques such as Monte Carlo method (MCM) is
also preferred for approximating multidimensional integrals
when the region of integral is abnormal. However, the
main drawbacks of MCM are slow convergence rate and its
precision for𝑚

𝑁
-point is of 𝑂(𝑚−1/2

𝑁
).

Therefore, the quadrature background mesh technique
arising from meshless methods [21, 22] was introduced in
this paper which can get rid of the triangulations and mesh
refinement. Firstly, construct a regular extended background
domain which covers the whole solution domain and then
subdivide it into regular cells. Finally, the Gauss quadrature
formula can be adopted as shown in Figure 1.

It is assumed that

𝐾
𝑑
= ∫
Ω

𝑘 (𝑥
𝑑
, 𝑦
𝑑
, 𝑡, 𝑠) 𝐹 [

𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖 (𝑡, 𝑠)] 𝑑𝑡 𝑑𝑠

≈
𝑄

∑
𝑞=1

𝑊
𝑞
𝑘 (𝑥
𝑑
, 𝑦
𝑑
, 𝑡
𝑞
, 𝑠
𝑞
) 𝐹[
𝑁

∑
𝑖=1

𝜆
𝑖
𝜙
𝑖
(𝑡
𝑞
, 𝑠
𝑞
)] .

(18)

The organization of the program is listed in Algorithm 1.
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(1) Loop over cells of domain
(2) Loop over quadrature points in every cell

(a) if quadrature point outside solution domain, go to 2(d);
(b) if quadrature point inside solution domain, compute the integrand in (18), then multiplied by the
corresponding Gauss weights, go to 2(d);
(c) if quadrature point located in solution boundary, perform the similar process as 2(b) and then multiplied by 0.5;
(d) end if.

(3) End quadrature point loop
(4) End cell loop
(5) Give the matrix element 𝐾

𝑑

Algorithm 1: Flowchart for background mesh quadrature technique.

Background mesh
Gauss points

Outside points
Inside points
Boundary points

Figure 1: The scheme of background mesh quadrature technique.

3.3. The Implementation Procedure of RBF for Solving Non-
linear Integral Equation. In summary, the implementation
procedure of RBF for solving nonlinear integral equation is
listed as follows:

(1) Setting the centers c of RBFs and shape parameters
𝛼 and then setting the collocation points 𝑥

𝑑
, the numbers of

RBFs and collocation points are, respectively, 𝑁 and 𝑀 in
general. Note that to simplify and speed up the computations,
we can identify the set of centers with the set of collocation
points.

(2) Substituting approximate solution based on RBF into
the nonlinear integral equation, then the collocation condi-
tions are imposed to form nonlinear algebraic equations.

(3) Matrix elements calculation schemes: the Gauss
quadrature formula is adopted for one-dimensional and two-
dimensional regular domain problems, while, for irregular
domain case, the backgroundmesh quadrature techniquewas
employed.

(4) Coefficient calculation: the collocation equations are
the nonlinear form of RBF coefficient, and the nonlinear
systemof equations [F−𝜇K] = [G] can be solved viaNewton’s
iteration method to obtain unknown [𝜆].

(5) RBF solution for unknown function then can be
achieved as follows:

𝑓 (x) ≈ 𝑓 (x) = [Φ (x)] [𝜆] . (19)

4. Numerical Experiments and Analysis

In this section, the RBFmethod is applied to some numerical
examples involving one-dimensional and two-dimensional
integral equations on the regular and nonrectangular regions.
Two types of RBF such as multiquadric (MQ) function
and Gaussian function were adopted simultaneously in the
following simulations. Their parameters were set the same
except that the additional shape parameter was provided for
MQ. In order to measure the accuracy of the method, the
maximum absolute error (MAE), themaximum relative error
(MRE), and the root mean squared error (RMSE) have been
used, respectively. Let 𝑓

𝑒
(𝑥
𝑘
) and 𝑓(𝑥

𝑘
), respectively, express

the exact and calculation value at the point 𝑥
𝑘
; the RMSE is

defined as follows:

RMSE = √
1

𝑚
𝑁

𝑚
𝑁

∑
𝑘=1

[𝑓
𝑒
(𝑥
𝑘
) − 𝑓 (𝑥

𝑘
)]
2
. (20)

Example 1. Consider the one-dimensional nonlinear integral
equation [7]:

𝑓 (𝑥) = 𝑥∫
1

0

𝑡√𝑓 (𝑡)𝑑𝑡 + 2 −
1

3
(2√2 − 1) 𝑥 − 𝑥2,

0 ≤ 𝑥 ≤ 1.

(21)

The exact solution is 𝑓(𝑥) = 2 − 𝑥2.
Setting RBF centers with interval ℎ = 1/10, the collo-

cation points are the same as the center points 𝑁 = 11.
The MQ and Gaussian RBF method are implemented. For
MQ, the shape parameter 𝛽 = 14. Then, the 10-point Gauss
quadrature formula is adopted in integral calculation. And
select measuring points with the spacing ℎ

𝑡
= 0.01. Table 1

lists the absolute error of the Sinc-collocationmethod [7], the
Gaussian method, and MQ RBF method.

TheRMSE,MAE, andMRE forMQmethod are 7.5187E−
06, 1.9679E − 05, and 1.4058E − 05 but for Gaussian RBF
method are 2.0951E − 04, 8.0920E − 04, and 4.0460E − 04,
respectively. Then, the shape parameter was analyzed with
interval ℎ = 1/10, and the RMSE was calculated as shown
in Figure 2.

It can be seen that the MQ method can overall maintain
RMSE at the level of 1E − 4 and 𝛽 = 8, 14, and 17 are local
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Table 1: The absolute error of the Sinc-collocation method, Gaussian method, and MQ RBF method.

𝑥
𝑡

In [7],𝑁 = 10 Gaussian MQ
0.1 4.94𝐸 − 5 5.7826𝑒 − 05 8.9252𝑒 − 06

0.3 8.55𝐸 − 5 2.8593𝑒 − 04 3.6018𝑒 − 06

0.5 1.04𝐸 − 4 4.2268𝑒 − 05 8.6477𝑒 − 06

0.7 6.78𝐸 − 5 6.6820𝑒 − 05 1.7214𝑒 − 07

0.9 1.41𝐸 − 5 2.8658𝑒 − 05 3.3042𝑒 − 06

MAE 2.18𝐸 − 4 2.0951𝑒 − 04 7.5187𝑒 − 06

Table 2: Error comparison between MQmethod and Gaussian method.

ℎ
MQ Gaussian

RMSE MAE MRE RMSE MAE MRE
1/3 4.4569𝑒 − 04 6.9253𝑒 − 04 1.4219𝑒 − 03 3.4881𝑒 − 04 5.5047𝑒 − 04 1.2993𝑒 − 03

1/7 6.5120𝑒 − 06 2.3456𝑒 − 05 2.4413𝑒 − 05 9.2277𝑒 − 03 2.8376𝑒 − 02 2.8376𝑒 − 02

1/15 7.1522𝑒 − 06 1.4779𝑒 − 05 2.9995𝑒 − 05 2.2472𝑒 − 03 6.1536𝑒 − 03 8.3278𝑒 − 03

1/31 6.8676𝑒 − 06 1.9591𝑒 − 05 4.9179𝑒 − 05 2.0452𝑒 − 03 8.4702𝑒 − 03 8.4702𝑒 − 03
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10−5

10−6
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SE

𝛽

Figure 2: The RMSE curve versus the shape parameter 𝛽 with ℎ =
1/10.
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N

Figure 3: The RMSE curve versus the center nodes with 𝛽 = 14.

optimal shape parameters. Finally, the RBF’s center nodes
were analyzed in case of 𝛽 = 14 and were shown in Figure 3.
The MQ method can achieve higher accuracy with fewer
nodes; for example, the RMSE is 4.3853E − 04 in case of
three RBF nodes. So it has obvious advantage in the aspect
of calculation efficiency.
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Figure 4: The maximum absolute error comparison among Haar,
triangular, MQ, and Gaussian methods.

Example 2. Consider the following nonlinear integral equa-
tion [5]:

𝑓 (𝑥) =
3

2
−

1

2
𝑒−2𝑥 − ∫

𝑥

0

[𝑓2 (𝑡) + 𝑓 (𝑡)] 𝑑𝑡, 0 ≤ 𝑥 ≤ 1.

(22)

The exact solution is 𝑓(𝑥) = exp(−𝑥).
Set the shape parameter 𝛽 = 8 and use 10-point Gauss

quadrature formula. In order to compare with Haar Wavelet
[5], successively takeRBF center spacingℎ = 1/3, 1/7, 1/15, and
1/31; the collocation points are the same as the center points.
Select testing points with the spacing ℎ

𝑡
= 0.01. Table 2 shows

the calculation error with the different number of RBF nodes.
The comparisons of the maximum absolute error among

Haar, triangular functions, MQ, and Gaussian methods are
shown in Figure 4.



6 Journal of Applied Mathematics

Table 3: The absolute error comparison among HBT [8], Gaussian, and MQ with ℎ = 1/5.

𝑥
𝑡

In [8],𝑀 = 3 and𝑁 = 6 Gaussian (𝑁 = 6) MQ (𝑁 = 6)
0.0 0.0000𝑒 + 0 2.1317𝑒 − 03 2.3041𝑒 − 10

0.1 1.6268𝑒 − 04 8.8244𝑒 − 04 6.0705𝑒 − 05

0.2 2.4382𝑒 − 04 1.5745𝑒 − 03 2.2495𝑒 − 05

0.3 1.2754𝑒 − 04 1.0464𝑒 − 03 3.9094𝑒 − 05

0.4 2.8587𝑒 − 04 1.0422𝑒 − 04 7.0809𝑒 − 06

0.5 3.9993𝑒 − 04 7.1945𝑒 − 04 8.5021𝑒 − 06

0.6 2.2504𝑒 − 04 1.1380𝑒 − 03 8.3238𝑒 − 06

0.7 3.5946𝑒 − 04 1.0789𝑒 − 03 2.2438𝑒 − 05

0.8 1.0438𝑒 − 04 6.4836𝑒 − 04 1.8032𝑒 − 06

0.9 2.9683𝑒 − 04 9.3607𝑒 − 05 3.0644𝑒 − 05
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Figure 5: The error surfaces for MQmethod and Gaussian method.

Similarly, another absolute error comparison among
hybrid-block pulse functions [8], Gaussian, and MQ RBF
method is listed in Table 3 with ℎ = 1/5 and 𝛽 = 8.

Therefore, we can conclude fromTable 3 and Figure 4 that
the MQmethod takes obvious advantage over Gaussian, and
the accuracy is improved by about 2 orders ofmagnitudewith
the raise of node number. Compared to the method in [5, 8],
the MQmethod has overall optimum precision.

Example 3. Consider the two-dimensional nonlinear integral
equation [6]:

𝑓 (𝑥, 𝑦) = 𝑔 (𝑥, 𝑦) + ∫
𝑦

0

∫
𝑥

0

(𝑥𝑡2 + cos (𝑠)) 𝑓2 (𝑡, 𝑠) 𝑑𝑡 𝑑𝑠

𝑔 (𝑥, 𝑦) = 𝑥 sin (𝑦) (1 −
1

9
𝑥2sin2 (𝑦))

+
1

10
𝑥6 (

1

2
sin (2𝑦) − 𝑦) ,

0 ≤ 𝑥, 𝑦 ≤ 1.

(23)

The exact solution is 𝑓(𝑥, 𝑦) = 𝑥 sin(𝑦).

Setting the RBF center spacing ℎ = 0.2, the collocation
points and centers are𝑁 = 36. The shape parameter is 𝛽 = 5
for MQ and the 10-point Gauss quadrature formula was also
adopted in both 𝑥 and 𝑦 directions. The total testing points

are 121 with equidistant ℎ
𝑡
= 0.1. The RMSE, MAE, and MRE

for MQ are 6.4393E − 05, 2.3181E − 04, and 2.2911E − 03,
respectively. However, the above values for Gaussian method
are 9.0601E − 004, 3.3915E − 03, and 5.3004E − 03. Also
comparing to the rationalHaar functionmethod in [6] whose
overall accuracy was about level 1E − 2 and 1E − 3, the
MQ acquires much higher accuracy than others. Figure 5
describes the error surfaces of MQ and Gaussian methods.

Example 4. Consider the two-dimensional nonlinear integral
equation in irregular domain [1]:

𝑓 (𝑥, 𝑦) − ∫
Ω

sin (𝑥 + 𝑦) 𝑒𝑡+𝑠
1

𝑓 (𝑡, 𝑠) + 1
𝑑𝑡 𝑑𝑠 = 𝑔 (𝑥, 𝑦)

𝑔 (𝑥, 𝑦) = 𝑥 cos (𝑦) − 1.0478001845 sin (𝑥 + 𝑦) ,

(24)

whereΩ is the shark’s fin domain which is shown in Figure 6
and determined by

Ω = {(𝑥, 𝑦) ∈ 𝑅2 : 0 < 𝑦 < 1,

−√2.25 − 2𝑦2 + 1.5 < 𝑥 < √0.5 − (𝑦 − 0.5)
2
+ 1.5} .

(25)

The exact solution is 𝑓(𝑥, 𝑦) = 𝑥 cos(𝑦).
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Figure 6: The distribution of RBF points and quadrature points in background mesh.
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Figure 7: The absolute error curves for MQmethod and Gaussian method.

Firstly, setting the RBF centers, collocation, and testing
points as Figure 6, the total number of RBFs is 44 and the
testing points’ number is 345. The shape parameter was 𝛼 =
𝛽ℎ = 0.8 for MQ. The cells and Gauss points in every cell
are 100 and 4 for background mesh quadrature, respectively.
So there are 942 quadrature points located in the solution
domain.

The results showed that the RMSE, MAE, and MRE are
3.1026E − 03, 5.1044E − 03, and 3.9887E − 02 for MQ
method, while for Gaussian RBF method, the above values
are 1.9129E−02, 2.8901E−02, and 2.8608E−01, respectively.
The absolute error curves of MQ and Gaussian method are
shown in Figure 7. So the RBFmethod proposed in this paper
can obtain higher accuracy.

5. Conclusion

In this study, we have applied an RBF, especially the MQ
function, interpolation technique to solve nonlinear integral
equations. The method is based on the collocation method;
the Gauss quadrature formula and quadrature background

mesh technique are employed for numerical integration.
Compared to the Gaussian RBF and Haar wavelet methods,
the MQ method can acquire better accuracy and efficiency
because of its superior comprehensive interpolation per-
formance. Numerical results showed that the MQ takes
obvious advantage over Gaussian method. And in addition,
themethod is very convenient for solving higher dimensional
integral equations because the RBF is defined as the function
of distance.
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