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We prove a unicity theorem of entire functions that share two distinct small functions with their shifts.The corollary of the theorem
confirms the conjecture posed by Li and Gao (2011).

1. Introduction

Let𝑓 be a nonconstantmeromorphic function in the complex
plane C. We will use the standard notations in Nevanlinna
theory of meromorphic functions such as 𝑇(𝑟, 𝑓), 𝑁(𝑟, 𝑓),
and 𝑚(𝑟, 𝑓) (see [1, 2]). The notation 𝑆(𝑟, 𝑓) is defined to be
any quantity satisfying 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → ∞ pos-
sibly outside a set of finite linear measures. A meromorphic
function 𝑎 is called a small function related to𝑓 provided that
𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑓).

Let 𝑓 and 𝑔 be two nonconstant meromorphic functions,
and let 𝑎 be a small function related to both 𝑓 and 𝑔. We
say that 𝑓 and 𝑔 share 𝑎 CM if 𝑓 − 𝑎 and 𝑔 − 𝑎 have the
same zeros with the same multiplicities. 𝑓 and 𝑔 are said to
share 𝑎 IM if 𝑓 − 𝑎 and 𝑔 − 𝑎 have the same zeros ignoring
multiplicities.

Let𝑁(𝑟, 𝑎) be the counting functions of all common zeros
with the same multiplicities of 𝑓 − 𝑎 and 𝑔 − 𝑎. If

𝑁(𝑟,
1

𝑓 − 𝑎
) + 𝑁(𝑟,

1

𝑔 − 𝑎
) − 2𝑁 (𝑟, 𝑎)

= 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ,

(1)

then we say that 𝑓 and 𝑔 share 𝑎 CM almost.
For a nonzero complex constant 𝑐 ∈ C, we define

difference operators asΔ
𝑐
𝑓(𝑧) = 𝑓(𝑧+𝑐)−𝑓(𝑧) andΔ𝑛

𝑐
𝑓(𝑧) =

Δ
𝑐
(Δ𝑛−1
𝑐
𝑓(𝑧)), 𝑛 ∈ N, 𝑛 > 2.

In 1977, Rubel and Yang [3] proved the following result.

Theorem A. Let 𝑓 be a nonconstant entire function. If 𝑓(𝑧)
and 𝑓(𝑧) share two distinct finite values CM, then 𝑓(𝑧) ≡
𝑓(𝑧).

In fact, the conclusion still holds if the two CM values are
replaced by two IM values (see Gundersen [4, 5], Mues and
Steinmetz [6]).

Recently, a number of articles focused on value dis-
tribution in shifts or difference operators of meromorphic
functions (see [7–11]). In particular, some papers studied the
unicity of meromorphic functions sharing values with their
shifts or difference operators (see [12–14]). In 2009, Heit-
tokangas et al. [12] proved the following result concerning
shifts.

Theorem B. Let 𝑓 be a nonconstant entire function of finite
order, 𝑐 ∈ C. If𝑓(𝑧) and𝑓(𝑧+𝑐) share two distinct finite values
CM, then 𝑓(𝑧) ≡ 𝑓(𝑧 + 𝑐).

In 2011, Li and Gao [14] proved the following result
concerning difference operators.

Theorem C. Let 𝑓 be a nonconstant entire function of finite
order, 𝑐 ∈ C, and let 𝑛 be a positive integer. Suppose that 𝑓(𝑧)
and Δ𝑛

𝑐
𝑓(𝑧) share two distinct finite values 𝑎, 𝑏 CM and one of

the following cases is satisfied:
(i) 𝑎𝑏 = 0;
(ii) 𝑎𝑏 ̸= 0 and 𝜌(𝑓) ∉ 𝑁.
Then 𝑓(𝑧) ≡ Δ𝑛

𝑐
𝑓(𝑧).
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In [14], Li andGao conjectured that the restriction 𝜌(𝑓) ∉
N for the case 𝑎𝑏 ̸= 0 can be removed. In this paper, we
confirm their conjecture. In fact, we prove the followingmore
general results.

Theorem 1. Let 𝑓 be a nonconstant entire function of finite
order, let 𝑛 be a positive integer, let 𝑎(𝑧), 𝑏(𝑧) be two distinct
small functions related to 𝑓(𝑧), let 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
be nonzero

complex numbers and 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
distinct finite values, and let

𝐹 (𝑧) = 𝑚
1
𝑓 (𝑧 + 𝑐

1
) + 𝑚
2
𝑓 (𝑧 + 𝑐

2
) + ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑓 (𝑧 + 𝑐

𝑛
) .
(2)

If 𝑓(𝑧) and 𝐹(𝑧) share 𝑎(𝑧), 𝑏(𝑧) CM, then 𝑓(𝑧) ≡ 𝐹(𝑧).

Corollary 2. Let 𝑓 be a nonconstant entire function of finite
order, let 𝑐 be a nonzero finite complex number, let 𝑛 be a
positive integer, and let 𝑎, 𝑏 be two distinct finite values. If 𝑓(𝑧)
and Δ𝑛

𝑐
𝑓(𝑧) share 𝑎, 𝑏 CM, then 𝑓(𝑧) ≡ Δ𝑛

𝑐
𝑓(𝑧).

Remark 3. Corollary 2 confirms the conjecture of Li and Gao
in [14].

Corollary 4. Let 𝑓 be a nonconstant entire function of finite
order, let 𝑐 be a nonzero finite complex number, and let 𝑎(𝑧),
𝑏(𝑧) be two distinct small functions related to 𝑓. If 𝑓(𝑧) and
𝑓(𝑧 + 𝑐) share 𝑎(𝑧), 𝑏(𝑧) CM, then 𝑓(𝑧) ≡ 𝑓(𝑧 + 𝑐).

2. Some Lemmas

For the proof of Theorem 1, we require the following results.

Lemma 5 (see [15]). Let 𝑓 and 𝑔 be two nonconstant mero-
morphic functions satisfying

𝑁(𝑟,
1

𝑓
) + 𝑁 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) ,

𝑁(𝑟,
1

𝑔
) + 𝑁 (𝑟, 𝑔) = 𝑆 (𝑟, 𝑔) .

(3)

If 𝑓(𝑧) and 𝑔(𝑧) share 1 CM almost, then either 𝑓(𝑧) ≡ 𝑔(𝑧)
or 𝑓(𝑧)𝑔(𝑧) ≡ 1.

Lemma 6 (see [15]). Let 𝑓 and 𝑔 be two nonconstant mero-
morphic functions satisfying

𝑁(𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) , 𝑁 (𝑟, 𝑔) = 𝑆 (𝑟, 𝑔) . (4)

If 𝑓(𝑧) and 𝑔(𝑧) share 0 and 1 CM almost, and

lim
𝑟→∞

𝑟∈𝐼

𝑁(𝑟, 0) + 𝑁 (𝑟, 1)

𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)
<
2

3
, (5)

where 𝐼 ⊂ [0,∞) is a set of infinitely linear measure, then

𝑓 (𝑧) =
𝑎𝑔 (𝑧) + 𝑏

𝑐𝑔 (𝑧) + 𝑑
, (6)

where 𝑎, 𝑏, 𝑐, and 𝑑 are constants satisfying 𝑎𝑑 − 𝑏𝑐 ̸= 0.

Lemma 7 (see [10]). Let 𝑓 be a nonconstant meromorphic
function of finite order, 𝑐 ∈ C. Then

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) = 𝑆 (𝑟, 𝑓) , (7)

for all 𝑟 outside a possible exceptional set 𝐸 with finite loga-
rithmic measure ∫

𝐸

𝑑𝑟/𝑟 < ∞.

In the following, 𝑆(𝑟, 𝑓) denotes any function satisfying
𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) as 𝑟 → ∞, possibly outside a set with
finite logarithmic measure.

3. Proof of Theorem 1

We prove Theorem 1 by contradiction. Suppose that 𝑓(𝑧) ̸≡
𝐹(𝑧). Then it follows from 𝑓(𝑧) and 𝐹(𝑧) being two distinct
entire functions that 𝑓(𝑧) and 𝐹(𝑧) share 𝑎(𝑧), 𝑏(𝑧), and ∞
CM. By the Nevanlinna second fundamental theorem for
three small functions, we have

𝑇 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓 − 𝑎
)

+ 𝑁(𝑟,
1

𝑓 − 𝑏
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝐹 − 𝑎
) + 𝑁(𝑟,

1

𝐹 − 𝑏
) + 𝑆 (𝑟, 𝑓)

≤ 2𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓) .

(8)

Similarly, we have 𝑇(𝑟, 𝐹) ≤ 2𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝐹). Therefore,
𝑆(𝑟, 𝑓) = 𝑆(𝑟, 𝐹).

Set

𝑓
1
(𝑧) =

𝑓 (𝑧) − 𝑎 (𝑧)

𝑏 (𝑧) − 𝑎 (𝑧)
,

𝐹
1
(𝑧) =

𝐹 (𝑧) − 𝑎 (𝑧)

𝑏 (𝑧) − 𝑎 (𝑧)
.

(9)

Thus 𝑓
1
(𝑧), 𝐹
1
(𝑧) share 0, 1, and∞ CM almost.

Obviously, we have

𝑇 (𝑟, 𝑓
1
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑇 (𝑟, 𝐹
1
) = 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓) ,

𝑆 (𝑟, 𝐹) = 𝑆 (𝑟, 𝐹
1
) = 𝑆 (𝑟, 𝑓

1
) = 𝑆 (𝑟, 𝑓) .

(10)

By Nevanlinna’s second fundamental theorem, we have

𝑇 (𝑟, 𝑓
1
) ≤ 𝑁(𝑟,

1

𝑓
1

) + 𝑁(𝑟,
1

𝑓
1
− 1

) + 𝑁 (𝑟, 𝑓
1
) + 𝑆 (𝑟, 𝑓

1
)

≤ 𝑁 (𝑟, 0) + 𝑁 (𝑟, 1) + 𝑆 (𝑟, 𝑓)
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≤ 𝑁(𝑟,
1

𝐹
1
− 𝑓
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹
1
− 𝑓
1
) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹 − 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝐹 − 𝑓) + 𝑆 (𝑟, 𝑓) .

(11)
Since 𝐹 − 𝑓 = 𝑚

1
𝑓(𝑧 + 𝑐

1
) + 𝑚
2
𝑓(𝑧 + 𝑐

2
) + ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑓(𝑧 +

𝑐
𝑛
) − 𝑓(𝑧) = 𝑓(𝑧)[𝑚

1
(𝑓(𝑧 + 𝑐

1
)/𝑓(𝑧)) +𝑚

2
(𝑓(𝑧 + 𝑐

2
)/𝑓(𝑧)) +

⋅ ⋅ ⋅ + 𝑚
𝑛
(𝑓(𝑧 + 𝑐

𝑛
)/𝑓(𝑧)) − 1], thus

𝑚(𝑟, 𝐹 − 𝑓)

≤ 𝑚 (𝑟, 𝑓)

+ 𝑚(𝑟,𝑚
1

𝑓 (𝑧 + 𝑐
1
)

𝑓 (𝑧)
+ ⋅ ⋅ ⋅ + 𝑚

𝑛

𝑓 (𝑧 + 𝑐
𝑛
)

𝑓 (𝑧)
− 1)

≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(12)
By (11), we have

𝑇 (𝑟, 𝑓
1
) ≤ 𝑁 (𝑟, 0) + 𝑁 (𝑟, 1) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓
1
) + 𝑆 (𝑟, 𝑓) .

(13)

It follows that
𝑁(𝑟, 0) + 𝑁 (𝑟, 1) = 𝑇 (𝑟, 𝑓

1
) + 𝑆 (𝑟, 𝑓) . (14)

On the other hand, byNevanlinna first fundamental theorem,
we have

2𝑇 (𝑟, 𝑓
1
) = 𝑇(𝑟,

1

𝑓
1

) + 𝑇(𝑟,
1

𝑓
1
− 1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 0) + 𝑁 (𝑟, 1) + 𝑚(𝑟,
1

𝑓
1

)

+ 𝑚(𝑟,
1

𝑓
1
− 1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝑓
1
) + 𝑚(𝑟,

1

𝑓
1

)

+ 𝑚(𝑟,
1

𝑓
1
− 1

) + 𝑆 (𝑟, 𝑓) .

(15)

So we get

𝑇 (𝑟, 𝑓
1
) ≤ 𝑚(𝑟,

1

𝑓
1

) + 𝑚(𝑟,
1

𝑓
1
− 1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
1

𝑓 − 𝑎
) + 𝑚(𝑟,

1

𝑓 − 𝑏
) + 𝑆 (𝑟, 𝑓) .

(16)

Set
𝑎
1
(𝑧) = 𝑚

1
𝑎 (𝑧 + 𝑐

1
) + 𝑚
2
𝑎 (𝑧 + 𝑐

2
) + ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑎 (𝑧 + 𝑐

𝑛
) ,

𝑏
1
(𝑧) = 𝑚

1
𝑏 (𝑧 + 𝑐

1
) + 𝑚
2
𝑏 (𝑧 + 𝑐

2
) + ⋅ ⋅ ⋅ + 𝑚

𝑛
𝑏 (𝑧 + 𝑐

𝑛
) .

(17)

If 𝑎
1
(𝑧) ≡ 𝑏

1
(𝑧), we can deduce by (16) that

𝑇 (𝑟, 𝑓
1
) ≤ 𝑚(𝑟,

1

𝑓 − 𝑎
+

1

𝑓 − 𝑏
) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
𝐹 − 𝑎
1

𝑓 − 𝑎
+
𝐹 − 𝑏
1

𝑓 − 𝑏
)

+ 𝑚(𝑟,
1

𝐹 − 𝑎
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟,𝑚
1
𝑓 (𝑧 + 𝑐

1
) + 𝑚
2
𝑓 (𝑧 + 𝑐

2
)

+ ⋅ ⋅ ⋅ + 𝑚
𝑛
𝑓 (𝑧 + 𝑐

𝑛
)) + 𝑆 (𝑟, 𝑓)

= 𝑚 (𝑟,𝑚
1
𝑓 (𝑧 + 𝑐

1
) + 𝑚
2
𝑓 (𝑧 + 𝑐

2
)

+ ⋅ ⋅ ⋅ + 𝑚
𝑛
𝑓 (𝑧 + 𝑐

𝑛
)) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓
1
) + 𝑆 (𝑟, 𝑓) .

(18)

If 𝑎
1
(𝑧) ̸≡ 𝑏

1
(𝑧), set

𝐿 (𝐹) =



𝐹 𝑎
1
𝑏
1

𝐹 𝑎
1
𝑏
1

𝐹 𝑎
1
𝑏
1



. (19)

Then we have

𝑚(𝑟,
𝐹 − 𝑎
1

𝑓 − 𝑎
) = 𝑚(𝑟,

𝐹 − 𝑏
1

𝑓 − 𝑏
) = 𝑆 (𝑟, 𝑓) ,

𝑚(𝑟,
𝐿 (𝐹)

𝐹 − 𝑎
1

) = 𝑚(𝑟,
𝐿 (𝐹)

𝐹 − 𝑏
1

) = 𝑆 (𝑟, 𝑓) .

(20)

It followed from (16) that

𝑇 (𝑟, 𝑓
1
) ≤ 𝑚(𝑟,

𝐹 − 𝑎
1

𝑓 − 𝑎
) + 𝑚(𝑟,

1

𝐹 − 𝑎
1

)

+ 𝑚(𝑟,
𝐹 − 𝑏
1

𝑓 − 𝑏
) + 𝑚(𝑟,

1

𝐹 − 𝑏
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
1

𝐹 − 𝑎
1

) + 𝑚(𝑟,
1

𝐹 − 𝑏
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
1

𝐹 − 𝑎
1

+
1

𝐹 − 𝑏
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
1

𝐿 (𝐹)
) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐿 (𝐹)) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)



4 Abstract and Applied Analysis

≤ 𝑇 (𝑟,𝑚
1
𝑓 (𝑧 + 𝑐

1
) + 𝑚
2
𝑓 (𝑧 + 𝑐

2
)

+ ⋅ ⋅ ⋅ + 𝑚
𝑛
𝑓 (𝑧 + 𝑐

𝑛
)) + 𝑆 (𝑟, 𝑓)

= 𝑚 (𝑟,𝑚
1
𝑓 (𝑧 + 𝑐

1
) + 𝑚
2
𝑓 (𝑧 + 𝑐

2
)

+ ⋅ ⋅ ⋅ + 𝑚
𝑛
𝑓 (𝑧 + 𝑐

𝑛
)) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, 𝑓
1
) + 𝑆 (𝑟, 𝑓) .

(21)

By (18) and (21), we can deduce that

𝑇 (𝑟, 𝑓
1
) = 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, 𝐹

1
) + 𝑆 (𝑟, 𝑓) . (22)

It follows from (14) and (22) that

lim
𝑟→∞

𝑟∈𝐼

𝑁(𝑟, 0) + 𝑁 (𝑟, 1)

𝑇 (𝑟, 𝑓
1
) + 𝑇 (𝑟, 𝐹

1
)
=
1

2
<
2

3
. (23)

By Lemma 6, we have

𝑓
1
(𝑧) =

𝐴𝐹
1
(𝑧) + 𝐵

𝐶𝐹
1
(𝑧) + 𝐷

, (24)

where 𝐴, 𝐵, 𝐶, and 𝐷 are complex numbers satisfying 𝐴𝐷 −
𝐵𝐶 ̸= 0.

Now, we consider three cases.

Case 1. Consider 𝑁(𝑟, 0) = 𝑆(𝑟, 𝑓
1
). Thus

𝑁(𝑟,
1

𝑓
1

) + 𝑁 (𝑟, 𝑓
1
) = 𝑆 (𝑟, 𝑓

1
) = 𝑆 (𝑟, 𝑓) . (25)

Similarly, we have

𝑁(𝑟,
1

𝐹
1

) + 𝑁 (𝑟, 𝐹
1
) = 𝑆 (𝑟, 𝐹

1
) = 𝑆 (𝑟, 𝑓) . (26)

By Lemma 5, we get that either 𝑓
1
≡ 𝐹
1
or 𝑓
1
𝐹
1
≡ 1.

If 𝑓
1
≡ 𝐹
1
, we can easily deduce that 𝑓 ≡ 𝐹, which is a

contradiction with our assumption.
If 𝑓
1
𝐹
1
≡ 1, that is

(𝑓 (𝑧) − 𝑎) (𝐹 (𝑧) − 𝑎) ≡ (𝑏 − 𝑎)
2, (27)

then we have

(𝑓 − 𝑎)
2

=
(𝑏 − 𝑎)2

(𝐹 − 𝑎) / (𝑓 − 𝑎)
. (28)

From (28), we have

2𝑇 (𝑟, 𝑓) ≤ 𝑇 (𝑟, (𝑓 − 𝑎)
2

) + 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟,
1

(𝑏 − 𝑎)2/ ((𝐹 − 𝑎) / (𝑓 − 𝑎))
) + 𝑆 (𝑟, 𝑓)

≤ 𝑇(𝑟,
𝐹 − 𝑎

𝑓 − 𝑎
) + 𝑆 (𝑟, 𝑓)

= 𝑁(𝑟,
𝐹 − 𝑎

𝑓 − 𝑎
) + 𝑚(𝑟,

𝐹 − 𝑎

𝑓 − 𝑎
) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
(𝐹 − 𝑎

1
) + (𝑎

1
− 𝑎)

𝑓 − 𝑎
) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
𝑎
1
− 𝑎

𝑓 − 𝑎
) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(29)

It follows that 𝑇(𝑟, 𝑓) ≤ 𝑆(𝑟, 𝑓), a contradiction.

Case 2. Consider 𝑁(𝑟, 1) = 𝑆(𝑟, 𝑓
1
). Using the same argu-

ment as used in Case 1, we deduce that 𝑇(𝑟, 𝑓) ≤ 𝑆(𝑟, 𝑓), a
contradiction.

Case 3. Consider 𝑁(𝑟, 0) ̸= 𝑆(𝑟, 𝑓
1
), 𝑁(𝑟, 1) ̸= 𝑆(𝑟, 𝑓

1
). Since

𝑓
1
and 𝐹

1
share 0, 1 CM almost, we deduce from (24) that

𝑓
1
(𝑧) =

(𝐶 + 𝐷) 𝐹
1
(𝑧)

𝐶𝐹
1
(𝑧) + 𝐷

. (30)

If 𝐶 = 0, then 𝑓
1
≡ 𝐹
1
; that is, 𝑓 ≡ 𝐹, a contradiction.

Hence 𝐶 ̸= 0. Thus we have

𝑁(𝑟,
1

𝐹
1
+ (𝐷/𝐶)

) = 𝑁 (𝑟, 𝑓
1
) = 𝑆 (𝑟, 𝑓

1
) = 𝑆 (𝑟, 𝑓) . (31)

Obviously, 𝐷/𝐶 ̸= 0, 𝐷/𝐶 ̸= − 1. Thus by Nevanlinna
second fundamental theorem and (14), we get

2𝑇 (𝑟, 𝑓
1
) = 2𝑇 (𝑟, 𝐹

1
) + 𝑆 (𝑟, 𝑓

1
)

≤ 𝑁(𝑟,
1

𝐹
1

) + 𝑁(𝑟,
1

𝐹
1
− 1

)

+ 𝑁(𝑟,
1

𝐹
1
+ (𝐷/𝐶)

) + 𝑆 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 0) + 𝑁 (𝑟, 1) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝑓
1
) + 𝑆 (𝑟, 𝑓) .

(32)

It follows that 𝑇(𝑟, 𝑓
1
) ≤ 𝑆(𝑟, 𝑓

1
), a contradiction. Thus

we prove that 𝑓(𝑧) ≡ 𝐹(𝑧). This completes the proof of
Theorem 1.
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