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Fractional Brownian motion with Hurst exponent H € (1/2,1) is a good candidate for modeling financial time series with long-
range dependence and self-similarity. The main purpose of this paper is to address the valuation of equity indexed annuity (EIA)
designs under the market driven by fractional Brownian motion. As a result, this paper presents an explicit pricing expression for
point-to-point EIA design and bounds for the pricing of high-water-marked EIA design. Some numerical examples are given to
illustrate the impact of the parameters involved in the pricing problems.

1. Introduction

An indexed annuity is a type of tax-deferred annuity whose
credited interest is linked to an equity index—typically the
S&P 500 or international index. It guarantees a minimum
interest rate (typically between 1% and 3%) if held to the end
of the surrender term and protects against a loss of principal.
An equity indexed annuity (EIA for short) is a contract
with an insurance or annuity company. The returns may be
higher than fixed instruments such as CDs, money market
accounts, and bonds but not as high as market returns. The
guarantees in the contract are backed by the relative strength
of the insurer. The contracts may be suitable for a portion
of the asset portfolio for those who want to avoid risk and
are in retirement or nearing retirement age. The objective of
purchasing an equity index annuity is to realize greater gains
than those provided by CDs, money markets, or bonds, while
still protecting principal.

Because they provide minimum guarantee investment
return and lock-in credit rate, EIA designs have been attrac-
tive products to customers. Sales have grown dramatically
since their introduction in 1995. Indeed, EIA sales for 2007
were nearly 25.2 billion, a 380% increase over their 2000 level
of 5.25 billion (see Marrion [1]). According to an industry
survey, indexed annuities enjoyed record sales growth in
2010; thirty-nine indexed annuity carriers participated in

the 54th edition of AnnuitySpecs.com’s Indexed Sales & Mar-
ket Report, representing 99% of indexed annuity production.
Total fourth quarter sales were 8.3 billion, up to 19% from the
same period of last year.

The mechanics of EIA are often complex and the returns
can vary greatly depending on the month and year that the
annuity is purchased. One main method for valuing (pricing)
of EIA is the so-called structural method. The idea of the
method is to introduce a stochastic process for modeling the
behavior of equity involved in the EIA products. Original
works on this aspect can be found in Tiong [2]. Stepped
works can be found in Boyle and Tian [3], Gerber and
Shiu [4], Hardy [5], Jaimungal [6], Kijima and Wong [7],
Lee [8], Lin and Tan [9], and Moore [10]. These authors
studied the pricing, hedging, and risk management of various
features of EIA. There also exist a variety of literatures on
EIA valuation by incorporating stochastic interest rate or
stochastic mortality into model; for details, see the work of
Biffis [11], Biffis et al. [12], Hainaut and Devolder [13], and
Jalen and Mamon [14] and references therein.

In aforementioned papers, the dynamic of equity is
assumed to be driven by drifted Brownian motion, Brownian
motion with Poisson jumps, or Lévy process. All these
processes are independent in increments and thus they
are semimartingales, which enable the classical It6 calculus
for semimartingales to be applied for modeling the equity
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market. Another popular tool for the valuation of EIA is
Esscher transform; see the work of Lin and Tan [9], Qian et
al. [15], and Tiong [2] and references therein. The purpose of
Esscher transform is to obtain a Radon-Nikodym derivative
for constructing a new measure. Under the new measure,
underlying risky asset is embedded into a risk-neutral world.
This is also the idea of famous Black-Scholes-Merton option
pricing framework. Esscher transform requires that the
return process of risky asset (also named by the logarithm
of asset price process) should be independent in increments.
However, behavioral finance and econometrics as well as
empirical studies found that not all financial data are con-
sistent with this basic characteristic. Over the past decades,
vast literatures show that many financial market time series
display long-range dependence and momentum and self-
similar properties; see the work of Ait-Sahalia [16], Andrew
[17], and Granger [18], for example. In this case, the classical
financial model with independent increments is invalid,
consequently, the approach of deriving risk neutral measure
by Esscher transform is not available. Thus, it is natural to
propose new model for describing such new kinds of financial
time series. By theoretical analysis and empirical test, it turns
out that fractional Brownian motion (fBm for short) model
is good candidate and consequently, the fractional Black-
Scholes models are brought forward. The fractional Black-
Scholes model is a generalization of the Black-Scholes model,
which is based on replacing the standard Brownian motion by
a fractional Brownian motion in financial model.

In this paper we introduce fBm into EIA valuing frame-
work and obtain pricing expressions for two main kinds of
EIA designs. This paper is organized as follows. In Section 2,
we quickly cite some preliminary results which show why
fBm captures the financial data with long-range dependence
and self-similarity. Since fBm is not a semimartingale, the
traditional Itd calculus method is not valid here. Thus,
Section 2 also presents some existing basic calculus results on
fBm which will be of great importance in our later discussion.
In Section 3, an explicit pricing formula for point-to-point
EIA design and bound estimation for high-water-marked EIA
design are presented. Some numerical examples are presented
for comparing our results with the classical model in this
section. In Section 4, we present our conclusions and some
remaining problems.

2. Preliminaries: Long-Range
Dependence and fBm

This section just serves as a quick survey of the content pre-
sented in Sottinen and Valkeila [19] and references therein.

Definition I (long-range dependence). A stationary sequence
X = {Xpk € N} is said to exhibit the statisti-
cal long-range dependence, if its autocorrelation function
p(k) = Cov(X,,, Xi,,.) satisfies

. p(k)
1 =1,
koo ¢ k@ ©)
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for some ¢, and « € (0, 1). This is to say that the dependence
between X, and X,,,, decays slowlyask — oo.In particular,

Y p (k) = co. 2)
k=0

In some literatures, (2) is also referred to as the definition
of long-range dependence.

Definition 2 (self-similarity). A centered stochastic process
X = {X,,t € (0,T)} is said to be statistically self-similar with
Hurst exponent H, if

Xot € 0.1} £ fa Xt € (0, 1)], (3)

d
for all « > 0. Here, = denotes the equivalence in distribution.

Following Lemmas 3 and 4 demonstrates the importance
of fractional Brownian motion in modeling financial data
with long-range dependence; for details we refer to Sottinen
and Valkeila [19] and references therein.

Lemma 3. A square integrable self-similar process X = {X,,
0 <t < T} with stationary increments admits that

1
Cov(X,, X,) = 3 Var (X,) (7 + 7 =1t - s). (@)

By (4), one can easily find that it is a necessary condition that
H € (0, 1) for the process to be well defined.

Lemma 4. Suppose that self-similar process X = {X;,k €
N*} is centered square integrable process with stationary
increments; then the increments

Y EX, - X, (5)

are stationary with autocorrelation function p(k) = (1/2)((k +
D - 26 & (k= 1)*H). Then, whenk — o0, one has

p(k) ~H(Q2H-1)k""2. (6)

Thus, only if H € (1/2,1), the increments {Y,, k € N*} exhibit
long-range dependence.

Let (Q, &, (F,)o<i<1> P) be a complete filtered probability
space, a fBm Bf{ with Hurst exponent H € (0,1) is
a continuous, centered Gaussian process with covariance
function

Cov (Bf, B?) = (tZH +5°H - |t — s|2H) , ste(0,T),

7)

N | —

where we assumed that § = F, for some T € (0, 00), and
F, = a(B,0 <'s < t < T) satisfy the usual condition and P
is the real world probability.

If H = 1/2, then the corresponding fBm is the usual
standard Brownian motion. Furthermore, B}’ has stationary
increments and is H self-similar. Valuations of EIA under
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model driven by standard Brownian motion have been
extensively studied, as we mentioned in introduction. If
H > 1/2, the process Bf[, t € (0,T) exhibits a long-
range dependence. As it was mentioned in Willinger et al.
[20], data with long-range dependence are widely spread
in economics and finance and thus are an active research
topic (e.g., see [10] for details). Long-range dependence seems
also an important feature that explains the well-documented
evidence of volatility persistence and momentum effects.
Hereafter, we will only consider the case H > 1/2 in the rest
of this paper, which is most frequently encountered in the real
financial data.

To define a fractional analogue of the classical Black-
Scholes Pricing model, we need to know how to integrate
with respect to (w.r.t. for short) fBm as this is connected
to hedging. There are two main ways in defining stochastic
integration for fBm. One is path wise, that is, w — w stochastic
integrals w.r.t. fBm as a refinement of Riemann-Stieltjes
integrals by using p-variation; for details, see Dudley and
Norvaisa [21]. Another one is based on white noise analysis
and Wick products; for details, see Duncan et al. [22] and,
for applications, see Hu and @ksendal [23]. Suppose that f €
CY([0, T)); the following change of variables formula for the
path wise integration with respect to the fBm plays important
role in what follows:

f(B7) - (B) = j f'(B)aBf. (8)

In option pricing or EIA valuation, the Girsanov theorem for
semimartingales is of great importance for which transforms
the underlying asset price process into an risk-neutral world;
besides Girsanov theorem, Esscher transform is also one
main method for obtaining the risk neutral measure. Since
Esscher transform is invalid for fBm, to continue our discus-
sion, analogues of Girsanov theorem for fBm is necessary. We
start our discussion by defining the so-called fundamental
martingale M = M", which is given by

t
MtH =¢q J P (. r)l/z_HdBf; 9
0

Now, M™ is a martingale with quadratic process
H\ _ _,2-2H
(M )t =t (10)

where ¢, and ¢, are certain constants depending on Hurst
Exponent H. The following two theorems present the Gir-
sanov transform for fBM derived process and martingale
representation for fBM; readers are referred to Norros et al.
[24] for detailed discussion.

Lemma 5 (Girsanov theorem). Let u(r) be a deterministic
function and define a measure Q = Q¥ by

do
=lF
d[F"l !

t t
:exp{J y(r)dM:{—%Jo ,M2 (1’)d<M>fI}

0
= exp {Jt p(r) de{ - %cz (2-2H) Jt (42 (r) rl_ZHdr} .
0 0 i

Then the process

t
BtH—J‘u(r)dr, 0<t<T (12)
0

is an fBm, if and only if under measure Q.

Lemma 6 (martingale representation for fractional Brownian
~ H
motion). Define BfQ[E[B;IIf%”f 1; then

t
B'=B'+ J gr (t,s)dBY, 13)
0
where
. _ T , H-1/2 _ H-1/2
g 6 = SN2 e (0 =0T
T , P
(14)
3. Pricing EIA

3.1. EIA Designs and Model. There are variable EIAs products;
in this paper, we discuss the pricing of some most commonly
available EIA policies in the market. The simplest one is a
point-to-point design, where the policy earns the realized
return on the index (or some other risky asset) over a certain
period of time at a prescribed participation rate, but with
a minimum guarantee. For example, if the realized 5-year
return on the S&P 500 is 100% and we assume a participation
rate of 80%, then the actual interest credited to the policy
will be 80% instead. Even when the market performs poorly,
the policy still earns a return of at least the guaranteed rate.
Another type of design that we will also touch on in this
paper is the look-back or the high-water-marked. This is also
referred to as the “no-regret” type of policy, which earns the
highest return on the index attained during the life of the
policy. The most favorable type of EIA product design seems
to be the annual reset. However, due to technical difficulties,
we cannot present satisfied framework and results for valuing
the annual reset EIA products.

To price an EIA design, one has to bring forward the
dynamic of indexed equity. To our knowledge, the risky assets
are mostly driven by semimartingales. Due the properties of
long-dependence and self-similarity of some financial time
series, it is natural and urgent to introduce proper process for
modeling such financial data. As it was shown in Section 2,
fBm is the ideal continuous time candidate. Thus, we replace



the source of randomness of Brownian motion W, by fBm B
with index H € (1/2,1) and then the dynamic of our risky
asset is given by

ds, = S, (udt + odB]?). (15)

The solution to (15) is called the geometric fractional Brownian
motion. Similar to the assumption in classical model, we
assume that the parameters r, i, 0, and H are constants.

Remark 7. Since our idea is to apply the option pricing
formula for valuing EIA designs, an inevitable problem is
whether the pricing model is free of arbitrage and whether
the pricing model is complete. Under the Wick product
framework of Duncan et al. [22], the solution to (15) is

2
S, = S exp { ut — %tZH + 0B } (16)

and the pricing model is free of arbitrage and complete.
However, under the path wise integration framework, the
solution to (15) is

S, = Syexp {ut + 0B’} 17)

and there exists arbitrage for the pricing model. In 1997,
Rogers [7] showed that the fractional Brownian motion could
not be used as a price process for a risky security without
introducing arbitrage opportunities.

Although under the framework of classical “fundamental
asset pricing theorem,” fBm is not good candidate for driving
process of financial market; it is still meaningful to consider
pricing problem under the market driven by fBm. Our
reasons are listed as follows.

(i) (Nonarbitrage is possible in a fBm model.) Thanks
to the work of Jarrow et al. [25], it is possible to
find a general class of processes, which need not be
semimartingales that do not permit arbitrage. The
idea is to disallow continuous trading and, moreover,
to require a minimal fixed time between successive
trades. The fixed time can be as small as one likes,
but once chosen, it cannot be changed. This disal-
lows a clustering of trades around a fleeting arbi-
trage opportunity. One should note that continuous
trading strategies generate infinite transaction costs
under reasonable models of such costs, and those of
unbounded variation generate infinite liquidity costs
in any finite time interval (c.f. Soner et al. [26]). As
such, these trading strategies could never be used
in practice. Thus, the method of avoiding arbitrage
proposed by Jarrow et al. [25] is naturally accepted in
real world practice.

(ii) (Practical needed) Price processes which are not
semimartingales are appearing more regularly in the
empirical literature estimating stock price processes
(see Ait-Sahalia [16], Andrew [17], Granger [18] Dud-
ley and Norvaisa [21], and references therein); so it
necessary to introduce fBm in modeling financial
time series.
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Remark 8. One can compute the price of EIA in path
wise fractional model using a weak pricing principle, which
coincides with the ones obtained in the generalized pricing
model brought forward by Hu and @ksendal [23]. Although
the path wise integration theory is not as satisfactory as the
Wick product way, the former one takes its own advantages.
Firstly, the functional analytic approach makes it impossible
to consider the integrals as almost sure limits of the paths of
the process under certain partitions of the integral. It should
be noted that this interpretation is possible in Brownian
motion. Secondly, and more subjectively, one wants to model
the paths properties of the price of the indexed equity. The
Wick products integration does not fit well to this aim since
the path properties play no central role in the integrals.

3.2. Point-to-Point Design. Here, we shall discuss only the
plain point-to-point design, where the index level at maturity
is taken simply as the ending index. In all cases the starting
index is the prevailing index level when the policy is issued.
Let S, be the value (or price) of an asset at time ¢ that takes
interest force r; that is, S, are paid dividends rS(¢)dt between
time t and time ¢ + dt, where r is nonnegative. Let « be the
participation rate, which, in practice, is almost always less
than or equal to 1. Suppose that at time T, T > 0, given
an initial premium of 1, we have a policy that pays e,
a > 0 or a fixed exercise price K (=¢X), whichever is higher.
Therefore, at maturity, the policy earns a percentage of the
realized return on the asset over T periods (the term of the
policy) which is «ln S,, with the provision of a minimum
guaranteed rate of return, In K. Thus, we can express the
valuation of this policy under fractal model by

¢ TEC [max (S,,K)]. (18)

In classical pricing formula, if the market is free of arbitrage,
under the risk neutral measure Q, the discounted price
process e"™ is a martingale with respect to the natural sigma
filtration generated by Brownian motion {B,,0 < t < T}.
Particularly, we have

EY [e77Sr] = S, (19)

In factional setting, we cannot have the martingale prop-
erty. However, the Girsanov theorem for fraction Brownian
motion provides a unique probability measure Q, equivalent
to P such that (19) holds. By simple calculation, one can find
that (19) holds, if process

t+ —t (20)
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is the fBm under measure Q. By the Grisanov theorem, Q is
defined as

d - Lo
d% = exp {—%Mt +0H L s 'dM,
- (2-2H)
5%
—\2
X ((%) t272H+(‘u—r)t+02t2H)}.

(21)
Under measure Q, we have

E [ (1)) = EX[f (Syexp (uT +0B}))]

=g [f (Soexp<a [B¥+ Elry %TZH]

(o4

2
=),
2

Note that, under measure Q, {Bfl+((y—r)/o)t+(0/2)t2H, 0<
t < T} is a fractional Brownian motion; integrating its self-
similarity property yields

(22)

E* [ (87)]

1
=e

V2
2

X j_ S (So exp <0yTH +1T - %T2H>) efyz/zdy.
(23)

Given r, T, y, and o, denote by P, the valuation of EIA with
participation rate o. Without loss of generality, suppose that
So = L. Then, we obtain the valuation formula for EIA under
point-to-point design directly by (23). Consider
P, =E“ [max (ealnST, K)]
- 2 [max (eoc(yTJroB?),K):I

o7 1

IR

o H o’ 2H
X max yexp | a| oyT" + 7T - 7T , K
=00

x e_yz/zdy.
(24)

Note that

e(X(UyTH+TT—(O'2 /2)T°H)

2
<K=« <ayTH +1T - %T2H> <InhK (25)

- InK/« B LTI*H o

= y< +-TH,
Y oTH o 2

Thus, (24) can be reformulated as

Ke*chD(an/“ _IpeEy gTH>
oTH ¢ 2

2 2H
4 e(a—l)rT+(0 12)T a(a—1)

S H\2
« j oo T2
1

d
nK/aoTH—(r/o)T' H4(a/2)TH 4

- Ke*TT<D<1nK/“ _ D ETH>
oTH ¢ 2

+ e(a—l)rT+(02/2)T2Hoc(oc—1)
InK _
x [1—@( nRja 1o H+gTH—oc0TH>].
oTH ¢ 2

(26)

Remark 9. If we take the dividend payment into account, we
let § be the nonnegative dividend yield rate, that is, the assets
pay out dividend 8S(t)dt between very small time interval
[t,t + dt], then the “pure” riskless income of the asset is
(r—6)S(t)dt. One can easily find that, in this case, the pricing
formula for point-to-point design is revived as

ke T <ln K/a (r-9) TH gTH>
oTH o 2

2 2H
+ e[(a—l)r—txﬁ]T+(0 12)T a(a—1)

x [1 —@(mK/“ O gTH—ocaTHﬂ .
oTH o 2
(27)

By putting H = 1/2, then our model is the famous Black-
Scholes pricing model, which is also the indexed equity model
in Tiong [2] and (3.4) of Tiong [2] is a special case of (27) by
putting H = 1/2.

Let us now assume that the customer is guaranteed a
minimum maturity value, which is a percentage 5, 0 <
B < 1, of the original premium compounded at a minimum
guaranteed rate of return g, g > 0, for the duration of the
policy. We can incorporate this feature into the policy by
setting the exercise price to be

K = e, (28)

assuming an initial premium of 1. For most of the EIA designs
sold by the insurance companies, f3 is set at around 90% and g
at 3%. Now, we are going to make some observations about P,.



Generally speaking, the price of design P, is increasing with
respect to parameter K, o, and a. As for r and T, the situations
are not clear cut. P, can be increasing or/and decreasing with
respect to r and T, depending on other parameters. Although
we can give some intuitive understanding of these relations
by numerical examples, just as what has been done in Tiong
[2], here, we want to emphasize on the difference of the EIA
valuation under the model driven by Brownian motion and
the one driven by fBm. Thus, we take the same parameters as
the one taken in Figures 1 and 2 of Tiong [2], respectively.

In Figures 1 and 2, the red curves represent the pricing
curves under fBm model and blue curves represent the ones
under Brownian motion model. From these two figures, it
follows easily that when the participation rate « puts small
value, for example 0.2 or 0.3, there is no obvious difference
between two pricing models. While the value of « is relatively
large, for example 0.6 and 0.9, then, two pricing models are
quite different. Generally speaking, at the same surrender
term, the valuation of fBm model is higher than the one of
Brownian motion.

3.3. High-Water-Marked Design. Another popular design
among the EIA products is the look-back or high-water-
marked method. The idea is that, at maturity, the interest
earned on the policy will be based on the growth rate of the
highest index value attained during the life of the policy over
the index value at the start of the term, which we assume to be
one in our calculations. In practice, the method usually looks
at the index level at each policy anniversary, and the highest
of these is then taken and figured as the index level on the
maturity date. Here, we consider the continuous look-back
case. Let

Y = max (yt + oBf{) = max log (g—t) (29)

0<t<T 0<t<T 0

be the maximum rate of return on the index attained over the
time interval [0, T]. We assume that the payoft of the policy
at time T is e*'7, 0 < « < 1 or a fixed minimum guaranteed
amount, K, whichever is larger. In this case, at time 0, denote
by P, the value of this policy; then

P, = E® [max (e“YT,K)]

— [EQ [emax(txYT,an)]
_ IE@ I:emax[ocmaxogg(ytJroBfi),In K]]

£Q emax[ocmaxogg(a(Bf’+((u—r)/a)t+<a/z>t2”>+rt—<az/2>t2”>,1nKJ]

- %

EQ [emax[oca maxge7 (B +(r/0)t—(a/2)*"),In K] }
[e

a0 max[maxg, . (B +(r/0)t—(0/2)t*™),In K/ao] ]
(30)

where E?EB?H([J—r)/U)H(0/2)t2H is a fBm under measure
Q. Thus, to derive the pricing formula for high-water-marked
design, it is sufficient to get the distribution of the maximum
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of an fBm with nonlinear drift rt — (0?/2)t*. Unfortunately,
to our knowledge, there are no existing results on the topic
and it is also not an easy job for us. Alternatively, we dedicate
to derive a lower bound and upper bound for the pricing of
EIA under high-water-marked design.

Let Z(T)=maxy,.7(B' + (r/o)t — (¢/2)t*""). Denote by
F(-) the distribution of Z(T) under measure Q and by F(-) the
tail distribution of F(-); that is, F(-) = 1 — F(-). Then (30) is
reformulated as

K@(Z(T)Sln—K>+I e’ dF (y)
InK/o«

ow
_kQ (zm < ln—K> [ emar(y)
ox InK/oa
=K@<Z(T)sh1—K>—KF(h‘—K> (31)
ow ow
+ aaj e’F (y)dy
InK/oa
=2KF<ln—K>—K+o*ocJ ¢"VF (y)dy.
ox InK/o«

Note that

a(zn<25)
ox

_ InK
Q(max (B?+ ﬁt— gt2H> < n_)
o 2

0<t<T

~ r o InK
< mm@<Bf+ L _)
0<t<T o 2 oo
InK r o
= minQ <Bf{ < ————t+ —t2H>
0<t<T o o 2
- ) J~1n K/oa+rt]/o—(o/2)*H —y2/2t2H
= min —e dy
0<t<T —00 1/27-[tH
(nK/ow) 4t ™ jo—(a/2)" )
= min J e g5
0<t<T J)_oo 2
InK _ i H g N InK
= min@(—tH+ -t ) z2minh (| —,1,T ),
0<t<T ox o 2 0<t<T oo

(32)

where ®(:) is standard normal distribution. Denote by ¢,(y,
T) the minimizer of h(y,t, T); then h(y,t,(y,T), T)|y:an/w
is an upper bound of Q(Z(T') < In K/o«). This upper bound
seems to be quite rough; however, just as it was proved in
Narayan [27] and Norros et al. [24], such bound is very tight.
Since the power exponent of t is not an integer, it is not easy
to get explicit expression of h(y, t,(y, T), T)| -in k /o0 but it is
easy to get their numerical solution.
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FIGURE 1: Comparison pricing P, as a function of T given o = 20%, r = 5%, 8 = 2%, and K = 0.9¢"%", for « = 0.2, 0.3, respectively.
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0
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Pricing curve under Brownian motion model

—— Pricing curve under fBm model

FIGURE 2: Comparison pricing P, as a function of T given o = 20%, r = 5%, § = 2%, and K = 0.9¢*%7T for a = 0.6, 0.9, respectively.

On the other hand,

@(Z(T)sln—K>

o
_ InK
=Q <max (Bfl + zt - gt2H> < n_)
0<t<T o 2 ox
(33)
- InK
> Q(max (Bf{+ £t> < n_)
0<t<T o o
~ InK
:1—@<max(Bf{+1t) > n_>
0<t<T o o

By the Slepian inequality for fBm with drift (e.g., see Michna
[28]), it follows that

(

&1&)% (Bfi + ,ut) > u> <P (max (Btlz/,f + yt) > u> R

0<t<T

(34)

where Bi/ 2 is standard Brownian motion. Denote p(u) as

p (u) = inf {t >0: B;/z + ytl/ZH > u}; (35)



then

P ((gl&); (lez/ﬁ + Mt) > u)

=P BY? 4 yt'PHY 5 ):[P’ V2H () < T).
(;g;g;( VP > u) =P (0 ) < T)
(36)

By using the integral equation for the first passage density for

Brownian motion to the barrier f(s) = u — us'/*" (see, e.g.,
Ferebee [29]), we are able to find a lower density of p(u), say
p(s; u), which takes the form of

) _—3/2< _< _1>7’1/2H>
S;U) =S5 u 1-—|—s
plsu) H/o
y ¢<usl/2 B ls(l—H)/2H>

o
where ¢(-) is the density function of standard normal distri-
bution. By integrating (33), (35), and (37), we have

Q(Z(T)sln—K>
ox

(37)

0<t<T o ox
r InK
>1-P < max <B:2/,§ —t) —) (38)

Together with the definition of h(y, t,(y, T), T)| Jln Ko and
(38), we have

T
1—[ p(s;ln—K>dssQ<Z(T) < ln—K>
0 ox ox
< h(y.to(y, T)’T)lyzan/mx’ (39)

Lkt (W1 ) SFG) < [ plsy)as.

By integrating (30) and (39), we have the following bound
estimation for the pricing of high-water-marked design:

H, (K) < B, < H, (K), (40)

where

T
HI(K):K[I—ZJ p(s;%)ds]

0

(e T
+oa J J p(s;y)e”dsdy,
InK/oa JO (41)

H, (K) = [2h (3, tg (5 T)5 T, oo — 1 K

+aocj1 oo =Rt (7). ) .
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4. Remarks and Conclusion

The valuing of high-water-marked EIA designs are highly
depends on the distribution of the supremum of drifted
(linear or nonlinear) fBm, although the readers can fall back
on the results of Narayan [27] and references therein for the
asymptotic distribution of the supremum of fBm and their
applications. For example, see Willinger et al. [20] for their
applications in performance evaluation and see Michna [28]
for their applications in insurance. But, to our knowledge, the
distribution of the supremum of fBm with nonlinear drift still
remained a problem. Even a good estimation for the bounds
of supremum distribution is unsolved. To some extent, our
bounds estimation for the pricing of EIA under high-water-
marked design is meaningful. In fact, bound estimation is also
classical research topic in risk theory and risk management,
for example, ruin probability; see Asmussen [30].

Usually, there are three kinds of EIA designs: point-to-
point, high-water-marked, and annual reset. In this paper,
we just focus on the former two designs. Up to now, we are
not able to get an explicit expression for pricing formula
or to get any proper bounds estimation for such design
and thus it is a remaining problem. It is very important
to consider stochastic interest rates when pricing EIA. Lin
and Tan [9] considered the model of stochastic interest
rates by postulating a Vasicek model which is correlated
to the geometric Brownian motion of the risky asset. They
argued that the effects of stochastic interest rates are crucial
in EIA pricing by simulation results. Kijima and Wong [7]
adopted the ordinary arbitrage-free pricing principle to price
simple and compound annual reset EIA when the short rate
follows the extended Vasicek model. In the above-mentioned
literatures, mortality risk is considered to be deterministic
or even not included. However, the expected life length
has increased considerably in many countries during the
past decades with the advances made in the health sciences
and medicine; life insurance and annuities are exposed to
unanticipated changes over time in the mortality rates of
the appropriate reference population, which has forced life
insurers to use a stochastic model to describe mortality laws.
There exist a variety of literatures on this topic, for example,
Biffis [11], Biffis et al. [12], Hainaut and Devolder [13], Jalen
and Mamon [14], and Qian et al. [15]. Since up to now, we
have no clear idea on the mechanics of both fBm and the
stochastic mortality process or interest process, so we just
focus on simple case. But these topics are interesting and
worthy of further research.
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