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In searching formethods to increase the power capacity of wind power generation system, superconducting synchronous generator
(SCSG) has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and
unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale
wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive
PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which
the RBF neural network (NN) is employed to estimate the uncertain but continuous functions. Compared with the conventional
PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and
maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.

1. Introduction

With the fast development of wind power generation systems,
the generating capacity of wind turbines is expected to reach
up to 10MW [1]. Consequently, the wind turbine weight
and size have to be increased simultaneously, with the bald
diameter reaching up to 10 meters [2], as shown in Figure 1,
which imposes technical difficulty in designing, transporting,
and installing such large turbine blades. To address this
challenge, novel concept of wind turbine generators with high
energy density is urgently needed. High-temperature super-
conducting (HTS) technology is an expected solution. The
research of wind turbines with SCSG has gained worldwide
attention during the past decade [3–11].

Among various issues related to SCSG wind power
generation systems, speed control represents one of the most
crucial ones. Because of the inherent nonlinear and uncer-
tain characteristics of the system, traditional PID control,
although simple in structure and used widely in industry,

is difficult to achieve reliable variable speed control perfor-
mance in the blow-rated speed region.

To address this issue, several advanced control approach-
es have been studied, such as single neuron-adaptive PID
control approach, BP neural network PID control approach,
fuzzy RBF neural network PID control approach, genetic
algorithm PID control approach, and adaptive fuzzy PID
control approach. However, previous studies show that the
response time of single neuron-adaptive PID is comparatively
long, andmost of the existing algorithms are computationally
expensive, and some of them even lead to larger overshoot
than traditional PID. The neural network control approach
with self-learning and strong self-adaptive characteristics
can effectively reduce the negative impact arising from the
system parametric uncertainties and stochastic disturbances.
Motivated by this fact, in this paper, a single neuron-
adaptive PID controller based on Delta learning regulation is
introduced, in which the RBF neural network is employed to
estimate the uncertain but continuous function. Analysis and
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Figure 1: Comparison of nacelle sizes for technology options for large systems (image from American Superconductor).

simulation results show that the proposed control approach
has better performance in terms of robustness, stability, and
computational cost as compared with other modified PID
methods, thus being mode suitable for the speed control of
SCSG wind turbine systems.

2. Dynamic System Modeling

2.1. Configuration of the Superconducting Generator. The
SCSG for wind turbine system has a multiple synchronous
high-temperature superconducting (HTS) field winding for
direct drive train and has been widely studied worldwide.
Figure 2 shows the configuration of the 10MW SCSG wind
power generation system, including the wind turbine, the
generator, and the convertor [12]. Physical properties and
electrical properties of the designed SCSG are given in Tables
1 and 2, respectively [1].

2.2. Modeling of the Superconducting Synchronous Generation
System. It is well known that the expression for power
produced by a wind turbine is simply given by

𝑃
𝑆
=
1

2
𝐶
𝑝
(𝜆, 𝛽) 𝜌𝜋𝑅

2V3, (1)

where 𝜌 is air density, 𝑅 is the radius of rotor, and V is wind
speed passing the rotor.𝐶

𝑝
denotes power coefficient of wind

turbine, which is a function of the tip-speed ratio 𝜆 and the
pitch angle 𝛽 [13].

Table 1: Physical properties of the designed SCSG.

Items Value Items Value
Rated power 10MW Number of poles 24
Rated line to line
voltage 13.8 kV Rated frequency 2Hz

Rated armature
current 418A Number of phases 3

Rated field current 100A Length of HTS
wire 919 km

Rated rotating
speed 10 RPM Operating

temperature 20K

Table 2: Electrical properties of the designed SCSG.

Items Value
Turns of stator coil 28
Number of slots 144
Number of slots per pole per phase 2
Current density of stator wire 5A/mm2

Space factor of stator wire 0.4
Turns of field coil 1500

Note that the tip-speed ratio is defined by

𝜆 =

VTip
V
=
𝑅𝜔

V
, (2)

where VTip is the tip-speed and 𝜔 is the rotor speed.
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Figure 2: Configuration of the 10MW SCSG system.

In the lower-rated wind speed region, the maximum
power point tracking (MPPT) control approach is adopted.
The maximum power of the wind turbine is expressed as [14]

𝑃max =
1

2

𝜌𝜋𝑅
5
𝐶
𝑝 max

𝜆
3

opt
𝜔
3
. (3)

Table 3 shows the specifications of the modeled 10MW
SCSG wind turbine [2].

For the purpose of the studies presented in this paper, a
standard (𝑑𝑞-frame) synchronousmachine simulationmodel
has been used with parameters resembling the main charac-
teristics of a notional 10MW HTS generator along with the
associated controls. This notional simulation model of the
HTS generator is loosely based on the parameters of an actual
prototype in order to safeguard the proprietary information
of the manufacturer. The mechanical input for the notional
HTS generator originates from the wind turbine model.

In the rotor 𝑑𝑞-rotating coordinate system, the generator
flux model is shown in (4)

Ψ
𝑠𝑑
= 𝐿
𝑠𝜎
𝑖
𝑑
+ (𝐿
𝑚𝑑
𝑖
𝑑
+𝑀
𝑠𝑓
𝑖
𝑓
+𝑀
𝑠𝐷
𝑖
𝐷
) ,

Ψ
𝑠𝑞
= 𝐿
𝑠𝜎
𝑖
𝑞
+ (𝐿
𝑚𝑞
𝑖
𝑞
+𝑀
𝑠𝑄
𝑖
𝑄
) ,

Ψ
𝑓
= 𝐿
𝑓𝜎
𝑖
𝑓
+ (

3

2
𝑀
𝑠𝑓
𝑖
𝑑
+ 𝐿
𝑚𝑓
𝑖
𝑓
+𝑀
𝑓𝐷
𝑖
𝐷
) ,

Ψ
𝐷 = 𝐿𝐷𝜎𝑖𝐷 + (

3

2
𝑀𝑠𝐷𝑖𝑑 + 𝐿𝑚𝐷𝑖𝐷 +𝑀𝑓𝐷𝑖𝑓) ,

Ψ
𝑄
= 𝐿
𝑄𝜎
𝑖
𝑄
+ (

3

2
𝑀
𝑠𝑄
𝑖
𝑞
+ 𝐿
𝑚𝑄
𝑖
𝑄
) .

(4)

Ψ
𝑠𝑑
, Ψ
𝑠𝑞
are the orthogonal axes flux of the stator; Ψ

𝑓
is

rotor excitation flux; Ψ
𝐷
, Ψ
𝑄
are orthogonal axes flux of the

damping winding; 𝑖
𝑑
, 𝑖
𝑞
are the orthogonal axes currents of

the stator; 𝑖
𝑓
is rotor excitation current; 𝑖

𝐷
, 𝑖
𝑄
are orthogonal

Table 3: Model parameters of the designed SCSG.

Items Symbol Value
Rated power 𝑃

𝑁
10MW

Rated rotor speed 𝑛
𝑟

10 RPM
Rotor radius 𝑅 85m
Maximum power coefficient 𝐶

𝑝 max 0.48
Optimum tip-speed ratio 𝜆opt 7
Air density 𝜌 1.225 kg/m3

axes currents of damper winding. 𝐿
𝑠𝜎
, 𝐿
𝑓𝜎
, 𝐿
𝐷𝜎
, and 𝐿

𝑄𝜎

are leakage inductances, respectively, for stator winding, field
winding, and orthogonal axis damper winding. 𝐿

𝑚𝑑
, 𝐿
𝑚𝑞

are armature reaction inductances for orthogonal axis.𝑀
𝑠𝑓
,

𝑀𝑠𝐷, and 𝑀𝑠𝑄 are mutual inductances between the stator
winding, rotor field winding, and the orthogonal axis damper
winding. 𝐿𝑚𝑓, 𝐿𝑚𝐷, and 𝐿𝑚𝑄 are inductances corresponding
to themainmagnetic circuit in the self-inductance of the field
winding and the orthogonal axis damper winding.

Assume

𝐿𝑑 = 𝐿 𝑠𝜎 + 𝐿𝑚𝑑,

𝐿
𝑞
= 𝐿
𝑠𝜎
+ 𝐿
𝑚𝑞
,

𝐿
𝑓
= 𝐿
𝑓𝜎
+ 𝐿
𝑚𝑓
,

𝐿
𝐷
= 𝐿
𝐷𝜎
+ 𝐿
𝑚𝐷
,

𝐿
𝑄 = 𝐿𝑄𝜎 + 𝐿𝑚𝑄,

(5)

where 𝐿𝑑, 𝐿𝑞 are the orthogonal axis inductances of the
motor; 𝐿

𝑓
is the self-inductance of the rotor field winding;

𝐿
𝐷
, 𝐿
𝑄
are the self-inductances of orthogonal axis damper

winding.
According to formula (5), the fluxmathematical model in

formula (4) could be further simplified.
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Figure 3: Equivalent circuits of the modeled SCSG for dq-axes.

The voltage balance equations of stator and rotor wind-
ings are shown in (6)

𝑢
𝑑
= 𝑟
𝑠
𝑖
𝑑
+
𝑑Ψ
𝑠𝑑

𝑑𝑡
− Ψ
𝑠𝑞

𝑑𝜃
𝑟

𝑑𝑡
,

𝑢
𝑞
= 𝑟
𝑠
𝑖
𝑞
+

𝑑Ψ
𝑠𝑞

𝑑𝑡
+ Ψ
𝑠𝑑

𝑑𝜃
𝑟

𝑑𝑡
,

𝑢𝑓 = 𝑟𝑓𝑖𝑓 +

𝑑Ψ
𝑓

𝑑𝑡
,

𝑟
𝐷
𝑖
𝐷
+
𝑑Ψ𝐷

𝑑𝑡
= 0,

𝑟
𝑄
𝑖
𝑄
+
𝑑Ψ
𝑄

𝑑𝑡
= 0,

(6)

where 𝑟𝑠, 𝑟𝑓, 𝑟𝐷, and 𝑟𝑄 are the resistances of the stator
winding, rotor field winding, and orthogonal axis damping
winding, respectively.

The electromagnetic torque expression is shown in for-
mula

𝑇
𝑒
=
3

2
𝑝 (Ψ
𝑠𝑑
𝑖
𝑞
− Ψ
𝑠𝑞
𝑖
𝑑
) , (7)

where 𝑝 is the number of pole pairs of the generator.
Figure 3 shows the d-q equivalent circuit model of the

designed SCSG based on Park’s transformations.
In order to allow operation at different speeds, the

designed SCSG model is linked to the power grid via a full-
scale frequency inverter. The frequency converter consists
of a generator side converter, a grid side rectifier, and a
DC-link. The generator side converter executes the MPPT
control through the control of the q-axis current. The grid
side rectifier performs reactive power control and constant
DC voltage control through control of the d-axis and q-
axis currents. Figure 4 depicts the structure of the full-scale
frequency inverter. Figure 5 shows controller implementation
of the generator side converter and the grid side rectifier.

The simulation model of the generator drive used in
this paper utilizes ideal voltage sources representing the
fundamental frequency component of a PWM-type variable
speed drive. It includes a current control and a speed control.
The control target of the speed control is to keep the expected
steady state and dynamic characteristic of the rotor speed
𝜔. The paper utilizes a single neuron-adaptive PID control
approach based on RBF to achieve this control goal [15].

Lgrid
DC-
link

Figure 4: Structure of the full-scale frequency inverter.

Figure 6 represents the overall structure diagram of the SCSG
wind turbine generation system mounted with associated
controllers.

3. Design of Controller

3.1. Incremental PID Control Approach. Equations of the
incremental PID control approach are defined as follows:

𝑢 (𝑘) = 𝑢 (𝑘 − 1) + Δ𝑢 (𝑘) ,

Δ𝑢 (𝑘) = 𝑘𝑝 [𝑒 (𝑘) − 𝑒 (𝑘 − 1)] + 𝑘𝑖𝑒 (𝑘)

+ 𝑘
𝑑 [𝑒 (𝑘) − 2𝑒 (𝑘 − 1) + 𝑒 (𝑘 − 2)] .

(8)

Equation (8) shows that the three control parameters (𝑘
𝑝
,

𝑘
𝑖
, and 𝑘

𝑑
) cannot be real-time adjusted, which result in a

decrease in the response speed of system.

3.2. Single Neuron-Adaptive PID Controller Algorithm. Com-
bining single neuron to the incremental PID can address the
challenge of real-time adjustment of control parameters. The
single neuron-adaptive PID control structure is illustrated in
Figure 7.

Improved single neuron-adaptive PID control algorithm
based on Delta learning rule implements the adjustment of
the three weights in incremental PID controller, therefore,
achieving adaptive control.

Delta learning rule based on the steepest descent method
completes the aim to adjust the three weights by minimizing
the introduced performance indicator.

Assume the weight value at time 𝑘 in the incremental PID
controller is to be expressed as 𝑤

𝑗
(𝑘), 𝑗 = 𝑝, 𝑖, 𝑑, and the

weight value adjusting formula of next moment is expressed
as

𝑤
𝑗 (𝑘) = 𝑤𝑗 (𝑘 − 1) + Δ𝑤𝑗 (𝑘) , (9)
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where Δ𝑤
𝑗
(𝑘) is the weight increment. Introduce the output

error square function as the performance indicator, namely,

𝐹 [𝑤𝑗 (𝑘)] =
1

2
[𝑟 (𝑘) − 𝑦 (𝑘)]

2
=
1

2
[𝑧 (𝑘)]

2
, (10)

where 𝑟(𝑘) and 𝑦(𝑘) are input and output of the reference.
Each time the amendments are to meet

𝐹 [𝑤
𝑗 (𝑘)] < 𝐹 [𝑤𝑗 (𝑘 − 1)] . (11)

First-order Taylor expansion of 𝐹[𝑤
𝑗
(𝑘)] is expressed as

𝐹 [𝑤
𝑗 (𝑘)] = 𝐹 [𝑤𝑗 (𝑘 − 1) + Δ𝑤𝑗 (𝑘)]

≈ 𝐹 [𝑤
𝑗 (𝑘 − 1)] + 𝑔

𝑇
(𝑘) Δ𝑤𝑗 (𝑘) ,

(12)

where 𝑔(𝑘) = ∇𝐹[𝑤
𝑗
(𝑘)].

In the above formula, 𝑔(𝑘) is the gradient vector of 𝐹[𝑤]
when 𝑤 = 𝑤

𝑗
(𝑘). Assume Δ𝑤

𝑗
(𝑘) = −𝜂

𝑗
𝑔(𝑘), where 𝜂

𝑗
is the

learning rate, which is a small positive value. Formula (11) is
bound to meet.

The value of Δ𝑤
𝑗
(𝑘) is expressed as

Δ𝑤
𝑗 (𝑘) = 𝑤𝑗 (𝑘) − 𝑤𝑗 (𝑘 − 1)

= −𝜂
𝑗

𝜕𝐹 (𝑤)

𝜕𝑤𝑗 (𝑘)
= 𝜂
𝑗
𝑧 (𝑘)

𝜕𝑦 (𝑘)

𝜕Δ𝑢 (𝑘)

𝜕Δ𝑢 (𝑘)

𝜕𝑤𝑗 (𝑘)
,

(13)

where (𝜕𝑦(𝑘))/(𝜕Δ𝑢(𝑘)) is unknown and in the case when
calculation accuracy is not strictly required, replace it with
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the sign function sgn((𝜕𝑦(𝑘))/(𝜕Δ𝑢(𝑘))). Standardizing the
above algorithm, we can get

𝑤𝑝 (𝑘) = 𝑤𝑝 (𝑘 − 1) + 𝜂𝑝𝑧 (𝑘) sgn(
𝜕𝑦 (𝑘)

𝜕Δ𝑢 (𝑘)
) 𝑥
1 (𝑘) ,

𝑤
𝑖 (𝑘) = 𝑤𝑖 (𝑘 − 1) + 𝜂𝑖𝑧 (𝑘) sgn(

𝜕𝑦 (𝑘)

𝜕Δ𝑢 (𝑘)
) 𝑥
2 (𝑘) ,

𝑤𝑑 (𝑘) = 𝑤𝑑 (𝑘 − 1) + 𝜂𝑑𝑧 (𝑘) sgn(
𝜕𝑦 (𝑘)

𝜕Δ𝑢 (𝑘)
) 𝑥
3 (𝑘) ,

(14)

where

sgn (𝑥) = {
+1, 𝑥 ≫ 0

−1, 𝑥 < 0.
(15)

Introducing a gain factor K, we can get

𝑢 (𝑘) = 𝑢 (𝑘 − 1)

+ 𝐾 [𝑤
𝑝 (𝑘) 𝑥1 (𝑘) + 𝑤𝑖 (𝑘) 𝑥2 (𝑘) + 𝑤𝑑 (𝑘) 𝑥3 (𝑘)] .

(16)

3.3. Improved Single Neuron PID Using RBF Neural Network.
Neural network (NN) is a powerful approach to linearize
and approximate any continuous nonlinear control system,
in which radial basis function (RBF) network is a three-layer
forward network. RBF network is composed of an input layer,
a single hidden layer with nonlinear nodes, and an output
layer with a linear node.The topological structure of a typical
RBF network is depicted in Figure 8.

The control block diagram of a typical RBF neural
network is illustrated in Figure 9.

In RBF network,𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇 is the input vector

and ℎ
𝑔
is activation function, which is given by

ℎ
𝑔
= exp(−


𝑋 − 𝐶

𝑔



2

2𝑏2
𝑔

) , 𝑔 = 1, 2, . . . , 𝑚, (17)

where 𝐶
𝑔
= [𝐶
1𝑔
, 𝐶
2𝑔
, . . . , 𝐶

𝑖𝑔
, . . . , 𝐶

𝑛𝑔
]
𝑇 is the central vector

of 𝑔th hidden neuron. 𝐵 = [𝑏
1, 𝑏2, . . . , 𝑏𝑔, . . . , 𝑏𝑚]

𝑇 is the
basis-width vector, 𝑏𝑔 > 0 is the base width constant of
𝑔th mode, and the weight vector of the network is 𝑤 =

[𝑤1, 𝑤2, . . . , 𝑤𝑔, . . . , 𝑤𝑚]
𝑇.

The output of the 𝑚th neuron in the output layer at time
𝑘 is defined as

𝑦
𝑚 (𝑘) = 𝑤𝐻 = 𝑤

1
ℎ
1
+ 𝑤
2
ℎ
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑚
ℎ
𝑚
. (18)

The performance of network can be evaluated by

𝐸 =
1

2
[𝑦 (𝑘) − 𝑦𝑚 (𝑘)]

2
. (19)

x1
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xn
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∑

Figure 8: Topological graph of RBF neural network.
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−

Figure 9: Control block diagram of RBF neural network.

Using the gradient descent method, we can get the
iterative algorithm of output weight, central vector of mode,
and base width constant expressed as follows:

𝑤𝑔 (𝑘) = 𝑤𝑔 (𝑘 − 1) + 𝛽 (𝑦 (𝑘) − 𝑦𝑚 (𝑘)) ℎ𝑔

+ 𝛼 [𝑤
𝑔 (𝑘 − 1) − 𝑤𝑔 (𝑘 − 2)] ,

Δ𝑏𝑔 = [𝑦 (𝑘) − 𝑦𝑚 (𝑘)] 𝑤𝑔ℎ𝑔


𝑋 − 𝐶

𝑔



2

𝑏3
𝑔

,

𝑏
𝑔 (𝑘) = 𝑏𝑔 (𝑘 − 1) + 𝛽Δ𝑏𝑔 + 𝛼 [𝑏𝑔 (𝑘 − 1) − 𝑏𝑔 (𝑘 − 2)] ,

Δ𝑐𝑖𝑔 = [𝑦 (𝑘) − 𝑦𝑚 (𝑘)] 𝑤𝑔

𝑥
𝑔
− 𝑐
𝑖𝑔

𝑏2
𝑔

,

𝑐
𝑖𝑔 (𝑘) = 𝑐𝑖𝑔 (𝑘 − 1) + 𝛽Δ𝑐𝑖𝑔 + 𝛼 [𝑐𝑖𝑔 (𝑘 − 1) − 𝑐𝑖𝑔 (𝑘 − 2)] ,

(20)

where 𝛼 is the momentum factor and 𝛽 is the learning rate.
At time 𝑘, (𝜕𝑦(𝑘))/(𝜕Δ𝑢(𝑘)) ≈ (𝜕𝑦

𝑚
(𝑘))/(𝜕Δ𝑢(𝑘)), since

𝑋 is a one-dimensional vector, containing Δ𝑢; therefore
𝜕𝑋/𝜕Δ𝑢 = 1; then, we can write the Jacobian matrix of the
control system as follows:

𝜕𝑦𝑚 (𝑘)

𝜕Δ𝑢 (𝑘)
=

𝜕∑
𝑚

𝑔=1
𝑤
𝑔
ℎ
𝑔

𝜕Δ𝑢 (𝑘)
=

∑
𝑚

𝑔=1
𝑤𝑔𝜕 exp (−


𝑋 − 𝐶

𝑔



2

/2𝑏
2

𝑔
)

𝜕Δ𝑢 (𝑘)
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Figure 10: Simulation module of the SCSG wind generation system.
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=

∑
𝑚

𝑔=1
𝑤
𝑔
ℎ
𝑔
((𝐶
𝑔
− 𝑋) /𝑏

2

𝑔
) 𝜕𝑋

𝜕Δ𝑢 (𝑘)

=

𝑚

∑

𝑔=1

𝑤
𝑔
ℎ
𝑔

𝐶
𝑔
− 𝑋

𝑏2
𝑔

.

(21)

According to the universal approximation ability of the
RBF neural network [16–28], we can conclude that

𝑦𝑚 (𝑘) − 𝑦 (𝑘)
 < 𝜀, (22)

where 𝜀 is a bounded positive constant.

4. Simulations and Analysis

The proposed neuron-adaptive PID speed control system of
SCSG based on RBF neural network identification is depicted

in Figure 6.The entire controlmodule of the SCSGwind gen-
eration system is presented in Figure 10 and the simulation
module of SCSG is depicted in Figure 11. Parameters of SCSG
used in the simulation are listed in Tables 1, 2, and 3. The
reference model used in the simulation is taken as a constant
speed. The simulation is tested with the MATLAB/Simulink
and FAST (FAST is a fully coupled aero-hydro-servo-elastic
code, freely available and developed at the National Renew-
able Energy Laboratory and used to simulate the loads and
performance of modern wind turbines).

To verify the dynamic and static performances of the
neuron-adaptive PID controller based on RBF NN proposed
in this paper, simulation tests are designed in two cases: (1)
no-load operation with a given speed of 10 r/min; (2) system
starts with no-load, after being in a steady state, given a
sudden load 𝑇

𝑙
= 10MN ⋅ m at 𝑡 = 2 s. Simultaneously

compared with the conventional PID controller, available
system speed control response curves are demonstrated
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Figure 12: SCSG speed response curve to no-load operation with
traditional PID controller.

from Figure 12 to Figure 16. Furthermore, after verifying the
validity of the proposed control approach, the paper applies
the proposed controller in the speed control of SCSG wind
generation system in the below-rated wind speed region to
better track wind speed andmaintain a stable tip-speed ratio,
therefore, achieving themaximumutilization of wind energy.

Figures 12 and 13 show that compared with the conven-
tional PID controller, the speed response with the proposed
controller is more rapid and smooth, with a smaller over-
shoot and no static error, solving the contradiction between
response time and overshoot of the conventional PID control.

Figures 14 and 15 depict that compared with the conven-
tional PID controller, system with the proposed controller is
more robust. When the parameter perturbation occurs, the
entire system is stable, with better transient characteristics
and nonsteady state static error, and has a strong ability to
inhibit the impact of load disturbance to generator speed.

Figure 16 shows the adaptive tuning curve of PID param-
eters (𝑘

𝑝
, 𝑘
𝑖
, 𝑘
𝑑
).

Figures 17 and 18 show the compared simulating results of
two algorithms in speed control of SCSG tracking wind speed
in wind power generation system. Obviously, the proposed
control approachmakes the SCSG speed better track thewind
speed and achieve a more stable tip-speed ratio when the
wind speed is below the rated wind speed 12m/s, such that
the SCSG wind power generation system makes better use of
wind energy.

5. Conclusion

In this paper, the 10MW class superconducting wind turbine
generator has been studied, and a single neuron-adaptive PID
controller based on Delta learning regulation is proposed,
using the RBF neural network to estimate the uncertain
continuous function. Analysis and simulation results show
that the proposed control approach in SCSG system has a
strong robustness and good dynamic performance by keeping
a stable output in the presence of disturbances. Furthermore,
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Figure 13: SCSG speed response curve to no-load operation with
neuron-adaptive PID controller with RBF NN.
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Figure 14: SCSG speed response curve to a sudden load with
traditional PID controller.
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Figure 15: SCSG speed response curve to a sudden load with
neuron-adaptive PID controller with RBF NN.
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Figure 17: Simulation results of the speed control for SCSG wind
turbine with conventional PID controller.

comparative study between the proposed controller and
the conventional PID controller in the speed control of SCSG
wind turbine system has also been conducted. Overall, the
proposed control approach is able to achieve smooth and
satisfactory rotor speed tracking, achieving the maximum
wind energy utilization, in the below-rated wind speed
region, and outperforms the traditional PID.
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Figure 18: Simulation results of the speed control for SCSG wind
turbine with neuron-adaptive PID controller with RBF NN.
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and K. Storzel, “Reduction of fatigue loads on wind energy
converters by advanced control methods,” in Proceedings of the
proceedings of the European Wind Energy Conference (EWEC
’97), pp. 555–558, October 1997.

[19] H. Jafarnejadsani, J. Pieper, and J. Ehlers, “Adaptive control of
a variable-speed variable-pitch wind turbine using RBF neural
network,” in Proceedings of the IEEE Electrical Power and Energy
Conference (EPEC ’12), pp. 216–222, London, UK, October 2012.

[20] Y. Song, X. Li, and W. Cai, “Adaptive and fault-tolerant
reactive power compensation in power systems via multilevel
STATCOMs,” International Journal of Innovative Computing,
Information and Control, vol. 9, no. 8, pp. 3403–3413, 2013.

[21] D. Niu and Y. Wei, “A novel social-environmental-economic
dispatch model for thermal/wind power generation and appli-
cation,” International Journal of Innovative Computing, Informa-
tion and Control, vol. 9, no. 7, pp. 3005–3014, 2013.

[22] X. Su, P. Shi, L. Wu, and Y.-D. Song, “A novel control design on
discrete-time Takagi-Sugeno fuzzy systems with time-varying
delays,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 4, pp.
655–671, 2013.

[23] L.Wu, X. Su, and P. Shi, “Output feedback control ofMarkovian
jump repeated scalar nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 59, no. 1, pp. 199–204, 2014.

[24] L. Wu, X. Su, and P. Shi, “Sliding mode control with bounded
L
2
gain performance of Markovian jump singular time-delay

systems,” Automatica, vol. 48, no. 8, pp. 1929–1933, 2012.
[25] L. Wang, S. Zuo, Y. D. Song, and Z. Zhou, “Variable torque

control of offshore wind turbine on spar floating platform using
advanced RBF neural network,” Abstract and Applied Analysis,
vol. 2014, Article ID 903493, 7 pages, 2014.

[26] S. Zuo, Y. D. Song, L. Wang, and Q.-W. Song, “Computationally
inexpensive approach for pitch control of offshore wind turbine
on barge floating platform,” The Scientific World Journal, vol.
2013, Article ID 357849, 9 pages, 2013.

[27] Y. Chen, G. Mei, G. Ma, S. Lin, and J. Gao, “Robust adaptive
inverse dynamics control for uncertain robot manipulator,”
International Journal of Innovative Computing, Information and
Control, vol. 10, no. 2, pp. 575–587, 2014.

[28] S. Bououden, M. Chadli, F. Allouani, and S. Filali, “A new
approach for fuzzy predictive adaptive controller design using
particle swarmoptimization algorithm,” International Journal of
Innovative Computing, Information and Control, vol. 9, no. 9, pp.
3741–3758, 2013.


