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t
prtt) a(t,s)g(x(s))ds = 0 with variable
delay. By using the fixed point theory, we obtain conditions which ensure that the zero solution of this equation is stable
under an exponentially weighted metric. Then we establish necessary and sufficient conditions ensuring that the zero solution

is asymptotically stable. We will give an example to apply our results.

We investigate integrodifferential functional differential equations % + f(¢,x, %)x +

1. Introduction

Functional differential equations have many applications in
control theory, biology, and so on. The stability of the solution
of functional differential equations has been a hot issue for
researchers for many years. It is well known that Lyapunov’s
direct method has been widely applied to study the stability
problems for a long time; see, for example, [1, 2]. Recently,
many authors have applied the fixed points theory to study
the stability of solution of integral equations and several
functional differential equations with variable delays; see, for
example, [3-5] and the references therein.

In [6], Levin and Nohel investigated the behavior of
solution of a nonlinear equation

x(r):—lr (L-(t-1)gx(T@®))dr, (0<t<o0),
L)1
¢))

where L is a constant. This equation was equivalent to

t

$0+960) =7 [ gemydn 0st<o0). @

Burton studied stability of a nonconvolution equation

xX=- J, a(t,s) g (x(s))ds, (3)

where r was a positive constant. He gave conditions on
functions a and g to ensure that the zero solution was
asymptotically stable by applying fixed point theorem; see [7].

Becker and Burton studied the following differential
equation:

X =- Jt a(t,s)g(x(s)ds (4)
t=r(t)

—r(t

and equation
x=-a(t)g(x(t-r(), (5)

for t > 0, where r(¢) : [0,00) — [0,00), a(t,s) : [0,00) X
[-7(0),00) = R,g:R — R,a(t) : [0,+00) — [0,+00) are
continuous. In addition, they assumed that

(A ) r(¢) is differentiable;

(A,) the function t —r(t) : [0,00) — [-1(0), 00) is strictly
increasing;

(A;)t—r(t) — ocoast — oo.

They obtained sufficient conditions ensuring that the zero
solution was asymptotically stable by changing the supremum
metric to an exponentially weighted metric. Moreover, they
hoped to relax condition (A,); see, for example, [8].

Jin and Luo succeeded in eliminating condition (A,) in
their work; they did not need the condition that t — r(r)
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was invertible. Moreover, they established necessary and
sufficient conditions that could ensure that the zero solution
of this equation was asymptotically stable; see, for example,
[9]. Dung [10] studied linear case of this equation and gave
new stability results by using a new expression of the solution.
Other results on fixed points and stability properties in
equations with variable delays can be found in [3, 11] and the
references therein.

Levin and Nohel [12] studied the global asymptotic
stability of a class of nonlinear systems

O +htxx) i+ f(x)=e(t). (6)

Burton [13] used the fixed points theory to study the stability
problems of some second order functional differential equa-
tions. He considered the equation

X+ ft,x,%)x+b(t)g(x(t-L1L))=0, (7)

where L is a positive constant. He obtained sufficient condi-
tions under which each solution x(t) satisfied (x(t), x(t)) —
0 via the fixed point theorem.

We generalized the above equation to an equation with a
variable delay [11]

X+ ftx,x)x+b(t)gx(t—-1(1)=0 (8)

and obtained some results on asymptotic stability of the zero
solution. Before we introduce our new results we recall the
main results in [11]. There are basic assumptions on the delay
function 7(t).

(o) t—1(t) is strictly increasing and lim, _, .t — 7(t) = 00.
The inverse of t — 7(t) exists and denotes it by p(t).
Moreover, 0 < b(t) < M for some constant M > 0.

The main results in [11] can be stated as follows.

Theorem 1. Suppose (&) and the following conditions.

(i) There exists a constant | > 0 such that g(x) satisfies
the Lipschitz condition on [-1,1]. The function g(x) is
odd and is strictly increasing on [-1,1], and x — g(x) is
nondecreasing on [0, 1].

(ii) There exist an o« € (0,1) and a continuous function
a(t) : [0,00) — [0,00) such that f(t,x,y) > a(t) for
t>20,xeR, yeR, IOOO a(t)dt = oo, and

P(t) oo ws
ZSupJ J e 1 a0y () s
t>0 Jt 0

. 9)
+ 2sup J J eI amdvy, (s)dwds < a.
t—s

t>0 JO

(iil) There exist constants a, > 0 and Q > 0 such that, for
eacht >0, if ] > Q, then

t+]
J a(v)dv = ay]. (10)
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(iv) There exist continuous functions F: R x R — [0, 00)
and c(t) : [0,00) — [0,00) such thatVt > 0, x € R,
y € R, f(t,x,y) < F(x, y)c(t). The function g'(x) is
continuous on [-1,1], g'(O) +0.

The following statements hold.

(a) If, for each y > 0,

jj e [ ey, (s)dwds = o0, 11)

0

then the zero solution of (8) is asymptotically stable.
(b) If the zero solution of (8) is asymptotically stable, then

” ¢ [ atdvy, (s)dwds = co. (12)
0

This theorem failed to offer a necessary and sufficient
condition which ensures that the zero solution was asymptot-
ically stable. In this paper, we will establish a necessary and
sufficient condition which ensures that the zero solution of
related equation is asymptotically stable.

In this paper we consider equation

t

5c'+f(t,x,5c)5c+J' ats)g(x(s)ds=0  (13)

t—r(t)

fort > 0, where r(t) : [0,00) — [0,00). a(t,s) : [0,00) X
[-7(0),00) = R,g:R — R,a(t): R" — R, f: RXRXR —
R are all continuous, where R* = [0, +00). We assume that
t—r(t) > ocoast — 0o.

For each t, > 0, define m(t;) = inf{s — r(s) : s > t,}. Set
C(ty) = C([m(t,), to], R) with the continuous function norm
- Il, where [yl = sup{ly(s)| : m(t,) < s < t,}. It will cause no
confusion even though we use [|¢|| to express the supremum
on [m(ty), co) later. It is well known that in [2], for a given
continuous function ¢, there exists a solution of (13) on an
interval [t,, T); if the solution remains bounded, then T' = co.
We denote by (x(t), y(t)) the solution (x(t, ¢, ¢), y(t, ty, ¢)).

We will give a necessary and sufficient condition ensuring
that the zero solution of this equation is asymptotically
stable. To our knowledge, there are few results about its
stability. From the solution (x(t), y(t)), we denote A(t) :=
f(t, x(t), y(t)). We can write (13) as

x=y,
(14)

t
y=-At)y- L o a(t,s)g(x(s)ds.
For each t, > 0, let m(t,) = inf{s — r(s) : s > t,},C(¢t,) =
C([m(ty),t,], R) with the continuous function norm | - |,
where [y|l = sup{ly(s)| : m(t,) < s <t}

This paper is organized as follows. In the next section
we will state our main results. Their proofs will be given in
Sections 3 and 4. We will give an example to apply our results
in Section 5.
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2. Statement of Main Results

We make the following basic assumptions on the delay
function r(t) of (13).

(¢f1) lim, _, t — r(t) = oo. p(t) is the inverse of t — r(¢).

Gt = [ a(u,0)du and G(t,s) = [ a(u, s)du.
There exists a constant M > 0 such that |G(t, )] < M.
The following are our main results.

Theorem 2. Assume that (¢/,) holds and the following condi-
tions hold.

(i) There exists a constantl > 0 such that g(x) satisfies Lip-
schitz condition on [-1,1]. g(x) is odd and it is strictly
increasing on [-1,1], and x — g(x) is nondecreasing on
[0,1].

(ii) There exist an « € (0,1) and a continuous function
a(t) : [0,00) — [0,00) such that f(t,x,y) > a(t)
fort > 0. For Vt > 0, Lt_r(t) |G(t, v)|dv is increasing
with respect to t, and Lt_r(t) la(t, v)|dv is bounded and

fort>0andfort>0,x €R, y €R,

ws

pt) oo
2 J J e [ g (s,s)dwds
¢t Jo

t roo ws
+2J J ¢ 170G (6 9 dw ds (15)
t

0 Jt-s

t t s
+2 J ¢ s aay J- |G (s,v)| dvds < a.
0 (s)

S—r

(iii) There exist constants a, > 0 and Q > 0 such that, for
eacht >0, if ] > Q, then

t+]
J a(s)ds = a,]. (16)
t

Then the zero solution of (13) is stable.
In addition, we have the following.

Theorem 3. Assume thatlim,_, . ,t—r(t) = 0o and there exists
a function h(t) € C(R*,R") such that for t > 0 the following
conditions hold.

(i) There exists constant | > 0 such that g(x) satisfies
Lipschitz condition on [-1,1]. L is the Lipschitz constant.
g(x) is odd and it is strictly increasing on [-1,1], and
x — g(x) is nondecreasing on [0, 1].

(ii) There exist a constant a« € (0,1) and a continuous
function a(t) : R* — R such that f(t,x, y) > a(t).

For Vt > 0, Lt_r(t) la(t, v)|dv is bounded and fort > 0,
x€R, y€R,

P(t) o0 w+s
2L J J e I g (s,s)dwds
t

0

t roo wts
+2L J J e[ advg (s,s)dwds
t

0 Jt-s

t t u
+2L J. ¢ Lhwav <J |a (u,v)]| dv> du
u—r(u)

0

p(t) t (o8 wtu
+L J e Jurriwy HOIY J e L atds |G (u, u)| du dw
0 0

+ Jt e LHO 0 H ()] du < o
’ 17)

(iii) There exist constants a, > 0 and Q > 0 such that, for
eacht >0, if ] > Q, then

t+]
J a(s)ds = ay]. (18)
t
Then the zero solution of (13) is asymptotically stable if
and only if
(iv)
t
J-h(s)ds—>oo as t — oo. (19)
0

Remark 4. We give some new notations:
t
¢ lAGdsg (u,u) 2 C(t,u),
[e¢]
J Clu+t—tyt)duzDI(t) 20,
to

D(t)
1-7(t)

D(p®))2H(®),

t
- Ji, AWds a

x(ty)e B(1), 2D@), (20)

J C(u+s—tys)du=E(ts)=0.
t

ott—s

3. Proof of Theorem 2

In this section, we will prove Theorem 2 by applying the fixed
point theory. We will give the expression of the solution of the
related equation. The following result can be found in [8].

Lemma 5. Let the function p : [-r(0),00) — [0, 00) denote
the inverse of t — r(t). Then

£ =~ a9 g6e()ds (a1)

—r(t



is equivalent to

t
£0=-Gungw+ 5| GhIgkENds
t—r(t)

(22)
Lemma 6. Let v : [m(t,),t,] — R be a given continuous
function; if (x(t), y(t)) is the solution of (13) on [t,,T;)
satisfying x(t) = y(t), t € [m(ty),t,], and y(t,) = x(t,), then
x(t) is the solution of the following integral equation:

x(t)

t

—y(ty)e [l Hds jt o L HOds g (w) du
+ J;t e Ju HOS iy () [x (1) — g (x (u))] du

t t
+ J; E(t,s)g(x(s)ds+ J H(s)g(x(s)ds

t—r(t

—e Itto H9ds J-to H(s)g (V/ (S)) ds

to—r(ty

t

r“ H@MM®%]4MWWWMu
-]

“ E(u,s)g(x(s— r(s)))ds] -1, HOAS I (1) du

ty

+ J e_I H(s)ds <J G (u,v) g (x(v) dv) du
ty u—r(u)

J b o [ HOs - [ A6

to

- (J:r(to)

t t u u
_ J e IM H(s)ds [J e L A(v)dvA (S)
t t

X (JS G(s,v)g(x(v) dv> ds] du.
s—r(s)
(23)

G(tg,v) gy () dv) du

Proof. We apply the variation of parameters formula to the
second equation of (14); then we obtain

- .I.rto A(s)ds

x(t)=x(ty)e

. . (24)
_J o A(v)dv<J a(s,v)g(x(v))dv> ds
ty s=1(s)
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Equation (24) can be written as

%(t) = B(?)

~ Lt - J-SfA(v)dV <G (S, S)g (X (S))

d s
ds L—r(s) G(sv) g (x () dV> ds.
(25)

Therefore,

t
x(t) =B(t) - L C(t,s)g(x(s)ds

LO *J A(v <d$ J'H(S) G(s,v) g(x (v))dv> ds.
(26)

Since |G(t, t)| £ M, we have

J C(u+s—tys)du
t

—st+t,

(o8] w+sA d
< J el Ay |G (s, 8)| dw
t=s

Q w+s
= J el AV G (s, 6) dw
t—s

(o8] w+s
+ J- el A
Q

(o8] wts A(d e
J e LAV G (s 9 dw < M
Q

VG (s, 5)| dw,

—4)Q

)
(27)

This implies that the integral _L‘iﬂ Clu + s — ty,s)du is

convergent. Hence, we have

x(t)=B(t)-g(x(E-r) D)

+ % j; E(t,s)g(x(s—r(s))ds

t ¢ s
+ J o I Awav <i J G(s,v)g(x(v) dv> ds
to ds s—r(s)

(28)
Then we have

x()=B@)-D(p®)g(x®)

d (f =
i E J;,r(t) b (P (S)) g(x(s))ds

+ d Jt E(t,s)g(x(s—r(s)))ds

dt
+ J:) e Jsf Aw)dv <% J:_r(s) G(s,v) g (x(v) dV> ds,
(29)
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x(t)=B(t)~H®)x()+H () [x(®) - g (x ()]

d t
+ T Lir(t) H(s)g(x(s))ds

d J E(t,s)g(x(s—r(s))ds

T
J _." A()dv < Js G(s,v)g(x(v) dV> ds.
s—r(s)
(30)

For Vt € [ty, T;], by the variation of parameters formula, we

obtain that
x (t)
t t t
—y (to) e J—fo H(s)ds + J e _[u H(s)dsB () du
ty

+r e 2 Hds [di L H(s) g (x(s)) ds] du

Jo!
J et [ [ B9 g e romas]

+J.te’JH “ 7j A(v)dv

(js J o © (5v) g (x () dv) ds] du.
€))

+ HOAS T (u) [x () — g (x (u))] du

+

If we integrate the last several terms by parts, we have (23).
This ends the proof of this lemma. O

Let (C, | - ) be the Banach space of bounded continuous
functions on [m(t,), c0) with the supremum norm. For a
given continuous initial function y : [m(t,),t,] — R, define
the set C,, ¢ Cby

Cy=1{p:[m(t),00) = RI$peC, ¢pt) =y (®),
€ [m(ty).to]}s

Cy:={p:[m(ty).c0) = RI$C. () =y (),

€ [m(ty).to], [¢ O] <L t2m(ty)},

(32)

where y : [m(t,),t,] — [-1,1] is a given initial function and
I is a positive constant. We will also use || - || to denote the
supremum norm of an initial function. Let P, be a mapping

defined on Cf,, as follows: for ¢ € C.,if t € [mlty),t,],
(Pp)(t) = w(t). If t > t,,

(Pg) (2)
)

)

e fu HOdS B () du
o e B 0 [ @) - g (9 00)] du
+ L E(t,s)g(¢(s))ds+ L_ . H(s)g(¢(s))ds
[ Heas ("
e ' . H (s) (s))ds
Jo oy HO9 )

Lt H o H(s) g (¢ (s))ds] e JHOS L (1)

J “u E(u,3) g(¢(s—7(s)) ds] - [oHOds gy (u) du
J

. t o JoHOds (Ju G(u,v) g(¢d () dv) du
t r(u)

J - H(s)ds - [ Als)ds
to

g (Jtm

t t u u
_ J o~ L H)ds [ J e I A0 4
t t

G(tg,v) g(y () dv) du

x (J GEMg(dW) dv> ds] du.
(33)

Note that P, may not be a contraction mapping. We solve
this problem in Lemma 7 by introducing an exponentially
weighted metric.

Lemma 7. Suppose that there exists a constant | > 0 such that
g(x) satisfies Lipschitz condition on [-1,1]. Then there exists a

metric d on C{V such that

(i) the metric space (Cfp, d) is complete;

(ii) P, is a contraction mapping on (C.,d) if P, maps CL,
into itself.

Proof. (i) We change the supremum norm to an exponen-
tially weighted norm |¢|,, which is defined on ny. Let S be

the space of all continuous functions ¢ : [m(t,),c0) — R
such that

|¢],, := sup {|¢> ®)]e™ it € [m(t) ,oo)} <oo, (34)



where h(t) = kL [ [H(s) + D(s) + [ IG(s, v)ldvlds, kisa
0 s=r(s

constant and k > 7, and L is the common Lipschitz constant
for x — g(x) and g(x). Then (S, | - |;,) is a Banach space. Thus,
(S, d) is a complete metric space, where d denotes the induced
metric: d(¢, n) = ¢ —#l,,, where ¢, % € S. Under this metric,
the space Cfl/ is a closed subset of S. Therefore, the metric
space (Cf,,, d) is complete.

(ii) Suppose that P, : Cf// - C{l/' For ¢,n € Cf,,, since
H(t) > 0 and E(t,s) > 0, then

|(P1¢) t) - (Pn) (t)| e

t t
- J ol HOds £ W)
t

0

x|[9w) = g (6 ()] = 1) =g (1 w)] |

+ L E(t,s) |g (6 (s)—g(n (S))| R OFN
+ L Y H(s)|g(¢(s)) - g (1(s))| e ds

g H " HOIg$©) g e s
to u)

Xe .[: H(S)dsH (u) du
[ ]] B@sle@6-rem-gais-re)

X e_h(t)ds] e JHOSE (1) dy

+J “ E(u,s)g(gb(s—r(s)))ds]
t Lz,
x ¢ MO L HOds by (u)du

t t
N J o~ Lo H)ds ~ho)
t,

0

<[ 166Nl - g ()] dv ) d

Uu—r

b [Hds - (Y- [ Amd
N J o~ L H)ds ;~h(t) < J o [A0 4 (o)
t t

X (J |G (s,v)]
s—r(s)

x|g (¢ (v))

-g(n ()| dv) ds) du.
(35)
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For v < t, since D(t), H(t) > 0, we have
t

hv) = h(t) = —kLJ

v

t s
< —kLJ J
v Js—r(s)

[H (s)+D(s) + JS ) |G (s, )] dv] ds

s—r(.

|G (s,v)|dvds.

(36)
For u < t, since D(t) > 0, we have
t
h(w) —h(t) < —ij H (s) ds. (37)
Fors <t,
t
h(s—r(s))—h(t) <-kL J D (u) du. (38)
Since E(t, s) > 0, then
E(t,s)zJ C(u+s—tys)du
t—s+t,
(39)

< J Cu+s—tys)du=D(s).
to
Fors < u,
I G (s,v)| dv < J Gwv)dv.  (40)
s—r(s) u—r(u)

Easy calculation shows that

[(Pig) (©) - (Pp) (D] "

1 2 "1 [ Hds
— — u H
S{kL+1+kL+L,kLe (1) du

t t
+ Jt &e_ J, H)ds by (u) du + k_} Li¢ -1,

(41)

2
L

0
7
< E"p_”'h’ t>t,.

Fort € [m(t,), to], (Py§)(t) = (Pyy)(t) = w(t). Hence, d(P,¢p—
Pin) < (7/k)d(¢—n). Note that k > 7; thus P, is a contraction

mapping on (C;,, d). O

We  continue to prove Theorem2. Choose
v : [m(ty),t,] — R and x(t) satistying |ly| + [x(t))] < &
such that

—a0Q ty
(Q+e )8+6+g(6)J H(s)ds < (1-a) g ().
dy to=r(to
(42)
Since (i) implies that g(0) = 0, thus g(I) < [ Since

g(x) satisfies the Lipschitz condition on [-],1], thus g(x) is
continuous on [-1,1], so such a § exists and 6 < [.
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By the expression of (P, ¢)(t), and condition (ii), we have

(Pig) (8)] < 5+ g (3) j

to—r(to

t u
to

H(s)ds+[l-g()] +ag ()

t u
H(s)ds+ J e Jio A 1. 8

ty

S5+g(8)ro

to—r(ty

+[1-gD] +ag ().
(43)

By condition (iii), some easy computation shows that

t ty+Q e t NG
J ¢l UdsduzJ- e JfoA(s)dsd1,¢+‘|- ¢ Jo A g,
fo ) th+Q

t+Q t
< J du + J e o) gy
to t+Q

e*“oQ

<Q+
dy
(44)

Hence,
I(Pg) ()] <(1-a)gD)+(@-1) g +1=1  (45)

Observe that if t € [m(t,),t,], then (P,d)(t) = w(t). We
obtain that [(P,¢)(t)| < I, t € [m(t,), 00). Thus, P;¢ : ny —
CfV. Since we have proved that P, is a contraction mapping,

hence P, has a unique fixed point x(t) and |x(¢)| < .
Recall (24); we have

- [, Als)ds

ly @] < |%(t0)[ e

+ Jt o [ AWy r la (s, V)| |g (x (v))| dvds.
ty s—r(s)
(46)

Since la(t, v)|dv is bounded, 3 a constant N > 0 such

t=r(t)
that L_r@ la(t,v)|dv < N, then

¢ t
|y (t)| < |x/ (tO)l + NLl ) J; e '[u A(S)dsdu

<z(1+NL(Q+%f)).
2w

To show the stability of zero solution, let Ve > 0 be given;
we only need to replace € by [. This completes the proof of
Theorem 2.

(47)

It follows that

Ix ()] + |y ()] < <2+NL<Q+

4, Proof of Theorem 3

In this section, we will prove Theorem 3. First of all, we will
obtain a new expression of the solution of (13). We multiply

eI‘o hle)ds by both sides of (30); then

x (t)

t t t
=y (t,)e Jly s J ¢ 1B (1) du
to

t t
J ¢ WO () x () du

+

,J h(s)ds [_ Ju H (s) g (x(s)) ds] du
u—r(u)

J ¢l hds gy (1) g (x (u)) du
to

.,_Jt eij h(s)ds [_ Ju E(u,s)g(x(s—r(s))) ds] du
to t

+J o (s “ o i AWy

- <% Ls—r(s) Glsv)gx() dV) dS] du.
(49)

We have
x(t)
t t t
—vlt)e [y ws)ds J' ¢l B 1y du
)

Jt SO [y () — H ()] (11)

+

_J h(s)ds [_ Jm H (s) g (x(s)) ds] du
u—r(u)

L e ML (1) [ (x () - x ()] du

.,_Jt e*f h(s)ds [_ Ju E(u,s)g(x(s—r(s))) ds] du
ty ty

+J o (s “ o i AWy

g <% J() G(s.1) g (x () dv) ds] du,
(50)



Performing an integration by parts, then we have

x(t)

=y(t,)e fihods Jt o Ji howdup (s)ds
t t
+L e PO [ 0y — H ()] x (w) du
—J’: Oy () [g (x W) - x (u)] du
s)ds

+r E(t,s) g (x(s) ds+jt H(s)g(x(s)ds—e fig
ty t—r(t)

.'[tn‘r(to) HE g ds - J;U [L—r(u) H©g(x() dS]
X e I WSy (1)

J[JEW@gM@—MmMﬂ L, (1)
+L: el hS)dSU ” Gw,v)g(x (v))dv> du
J o Junsds = I A(s)ds(L_r(to)c(to,v)g(w (v))dv> du
J't ol ho)ds H I A 4 ()
to

X (r G(s,v) g (x(v) dv) ds] du.
s—r(s)

(51)
We define
Cy={¢:[m(ty),c0) = RI$peC, ¢®)=y(t),
te[m(ty).ty], o) — 0ast — 0.}

Let P, be a mapping defined on C,, as follows: for ¢ € C,, if
t € [m(ty), tol, (Pyp)(t) = w(t). If t > t,, we define

(P¢) (£)
=y(t))e fighods Jt e

ty

Juhds g (u) du
PO [ () ~ H ()] ¢ (1) du

PORH (u) [g (¢ () — ¢ ()] du

Abstract and Applied Analysis

+J: E(t,5)g(¢(s)) dS+J:_ O (¢ (5)) ds—e "

[ msweas- [ [

to—r(to u—r(u

: H(s)g(¢(s))ds
x e s, (u) du

J: “ E(u,s)g(¢(s—r(s ))ds] SO (1) du

+Jt: e‘f h(s)ds <L » Gw,v) g (¢ (v))dv) du

Jereee(f,

J —jh(ss“ o 1A 4 (o
t

x (L: S G(s,v)g(d(v) dv) ds] du.
(53)

G(tg,v) g (v (v)) dv) du

Ifp e Cg, since fot h(s)ds — ocoast — 00, the first term
and fourth term of (P,$)(t) — 0,ast — oo.
Note that

J»t o Lhods g (w) du = & (¢ )J' ~ [y hs)ds = Jo A g
)
(54)

Since A(t) = f(t, x(t), y(t)) = a(t) > 0, then

t t
J o fuhds g f, A(S)dsdusj ¢ Jo A0 gy, (55)
ty to

For a given € > 0, there exists T; > Q + t, such that
%l T < g e For T, < tand t, < Q < T, < u, we have

! —Ju A(s)ds ! —a,(u—t,y) e“oto —a,T, —ayt
Je‘o duSJea" "du=—(e"‘—e“°)
T T gy
eaoto—aoTl
< <E.
Ay

(56)
Fort > T}, we have

T u
J Lo [on@ds = [ A
tO

du=e jTtl h(s)ds

T u
. j 1 - J'uTl h(s)dse— LO A(s)dsdu.
to
(57)

Then this term of (P,¢)(t) — 0,ast — o00. Analogously, we
can prove other terms of (P,¢)(t) — 0,ast — 0. Then we
can easily check that P, is a contraction mapping on CS, by
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using condition (ii). By the contraction mapping principle,
P, has a unique fixed point x(¢) in CS/. Thus, x(t) — 0 as
t — +00.

Remark.8 By using the new expression (53), we do not need
to change the supremum metric to an exponentially weighted
metric. We can easily check that P, is a contraction mapping.

In order to obtain the asymptotic stability, we now need
to show that the zero solution is stable. Let € > 0 be given;
we choose y : [m(ty),t,] — R and x(t,) satisfying [y| +
|x(ty)| < & such that

—a,Q ty
5+(Q+e >5+J H(s)ds- L6 < (1 -a)e.
ay to—r(to)

(58)
By (51), we have
t t u
15 8+ (5 ()] + ) [ e kP fotO ey
to
, (59)
+J H (s)ds- L6 + «e.
to—r(ty)
‘We have obtained that
t u t+Q t
J ¢ I A% g, o J du + J e 0t gy
ty to t+Q (60)
e‘“oQ
<Q+ .
ay
Hence,
|x ()] <e. (61)

Recall (24); we have
% (£)] < | (t)]
t t s
[ Ay ( , d )d .
+ L e J;ir(s) |a (s,v)g(x (v))| v)ds
(62)

It follows that

—a0Q
|x(t)|+|y(t)|<e(2+NL<Q+e )) (63)

ay

Therefore, the zero solution is stable; since we have obtained
that x(t) — Oast — o0, it follows that the zero solution is
asymptotically stable.

The necessary condition is as follows: for each t, > 0, we
denote

K =sup {e_ s h(s)ds} . (64)

t>0

We will prove that

JOO h(s)ds = 0o (65)
0

by way of contradiction. If

Jm h(s)ds < oo, (66)

0

since h(t) > 0, 3 a sequence {t,},t, — ocoasn — oo such
t
that lim,, _, IO" h(s)ds = o, for a certain finite number o €

R. Choose 7 such that -1 < J;" h(s)ds < n holds, for Vn > 1.
Denote

u

W) 2 h(u)J- LH (s)ds + LH (u) + [h (i) — H (10|

u—r(u)

+2LJ |G(u,v)|dv+LJ E (u,s) ds.
u—r(u)

to

(67)
By conditions of Theorem 3, we have
t, tn
0< J w(u)e [ rds gy < o, (68)
0
Then
t, u tn
J- w (1) el MO gy, < el W o o, (69)
0

tn “ .
Thus, the sequence {_[0 a)(u)ejo M99 3} is  bounded;
there exists a convergent subsequence; we assume that
t u
lim,, _, JO" w(u)efo MOdsgy = 1,1 > 0. We can choose a

positive integer k large enough such that

Jtﬂ w (1) el HOds gy, S (70)
t 8K
for Vn > k, where 0 < 8,(3, < €) satisfying
e
60+2max{Q+ ,1}50
9
(71)

+ 6, Ltk_r(t) H(s)ds<(1-«).

k

Now we consider the solution x(¢) = x(t, v, x(t;)) of (8)
which satisfies

323% L 2%
v (tg) = 1’ x(tg) = 2’ 72)
[y ()] + 1% () <8y s <ty
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We can obtain that |x(¢)| < 1 by a similar argument with (61)
if we replace € by 1. Then

t, [t _ "A( Vd.

k

" (J:—r(tk) Glpv)gly ) dv) du

_JE )H(s)w(s)dszw(tk)—Ji()H(s)|1//(s)|ds

te—r(tr te—r (i

B Jtn - [ k) s~ jt“z A(s)ds
t

k

8 (J‘tik_,(tk) G (tﬁ’ V) |g (V/ (V))| dv) du

By (23) and |x(t)| < 1,ift,, > t;, we have

t,

x(t,) - Ln E(t,,s)g(x(s))ds— J n_r( : H(s) g (x(s))ds

k t=r(ty

>

— t”h d ty tn
y(tp)e JE (o + J ¢ b HOd g (u) du

tx

bt ~[" A(s)d
_J o I s, [ Awads
t:

k

‘ (fk IREICORIZ) dv) du

g

— " h(w)d
JE (u)du

—Jtz H(s)w(s)ds-e

Ly(:ﬁ)

t, ty
j e L s (u)du

k

(74)
This implies that
t, t,
x(t,) - J E(t,,s)g(x(s))ds— J. H (s) g (x(s))ds
e t,—r(t,
" b (" h(s)ds Y A(s)ds
Y I’z h(s)ds [ % . J ef’zh( Ms () ef’z A(s)d du‘
fn " h(s)ds
- J w (1) ej’?h( )d du] .
g
(75)

Abstract and Applied Analysis

Note that x(t;) = §,/4 > 0; it follows that

x(t,) - J:l E(t,,s)g(x(s)ds - J n_r( ) H (s) g (x(s))ds

k 21 (tn

tn t— t, uw
S e— LE h(s)ds [% e Jok h(s)ds _ J w (u) ejo h(s)dsdu]
t

k

- f:; hds 8

> e s 0.

9
U
8

(76)

If the zero solution x(t) is asymptotically stable, then x(t) —
0ast — o00. By the mean value theorem, easy computation
shows that

L "_ L HEg(x(9)ds

n n

(77)
t,
: ’g(x @ | HEd|<Ix@].
w1ty
So this term tendsto 0 as t, — ©o0.
Easy computation shows that
t, ty
x(t,) - L E(t,.s) g (x(s))ds— L t H (s) g (x(s))ds
T Tt
(78)
tends to 0 as t,, tends to co. This is a contradiction to (76).
Hence,
J h(s)ds = oco. (79)
0

This completes the proof of Theorem 3.

5. An Example

In this section, we will give an example to apply our results.
Let

—(t-s)

r(t) = %, p(t) =2t a(t,s)=a"e"",

t t
J la(t,v)|dv = J ate ™y =qa* (1 - e_3t/2) <a’,
t-r(t) t/2

for t >0,
(80)

where a” is a very small positive constant. Consider

)
a(u,v)du

G(t,v)zj

t

2v
_ J a*e—(u—v)du _ a* (ev—t _ e—v ,
! (81)

J;t |G (t,v)|dv = Jt a”

—r(t) t/2

=a" (1 +e - 2e_t/2).

_t —
e —e V'dv
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t
This implies that _[t_,(t) |G(t, v)|dv is increasing with respect
to t for t > 0. Consider
2s
ae “du=a"(1-¢7).

(82)

p(s)

G(s,s)=J

N

a(u,s)du=J

N

Set a(t) = 2t; we have '[:H 2sds = J*+2t] > J*for ] > 0,
t > 0. Consider

2t oo stw
J J e LG (s,s)dwds
t

0

2t oo 5
J e VTG (s, ) dwds

I

2t roo )
. _
<a J J e “dwds
t Jo

2t 1 1
:“*J —ds=—1In2, fort>0, (83)
t 2s 16

t roo stw
J J e LG (s,s)dwds
t

0 Jt-s

t oo 5
= J J eV TG (s,5) dwds
t

0 Jt-s

t oo 5 2t-s)

* - — —_

<a JJ. eV e " dwds.
0 Jt—s

Since 0 < s < t, then

J e dw < J e dw = ﬁ (84)
t—s 0 2

Thus, we have

t oo stw
J J e LG (s,s)dwds
t

0 Jt—s

IN

t
VTP e
a —J e 2= g (85)
0

2

t

= a*\/_ﬁ J D 2 g0 o a*ﬁM ).
2 Jo 2

Easy computation shows that lim, _,  M(t) = 0; thus, M(t) is

bounded. Consider

t t s
J el M”J IG (s, v)| dvds
0 s/2

(86)

f; ate’ (1 +e ¥ - 2675/2) ds
= =

Since lim, ,  N(t) = 0, thus N(t) is bounded. Hence,
conditions (ii) and (iii) in Theorem 2 hold. Choose g(x) =
(1/3)x>. Let I = 1; g(x) satisfies the Lipschitz condition on
L. x - g(x) = x - (1/3)x°, (x—g(x))' =1-x*>0
on [0, 1]. Thus, x — g(x) is nondecreasing on [0, 1]. Then by
Theorem 2 the zero solution of (13) is stable.

2a"N(@).
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