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We propose a powerful iteration scheme for solving analytically a class of partial equations with mixed derivatives. Our approach
is based upon the Lagrange multiplier in two-dimensional spaces. The local convergence and uniqueness of the proposed method
are analyzed. In order to demonstrate the applicability of our method, we present an algorithm to compute the solution for two
examples.

1. Introduction

In the recent decade, several scholars in the fields of partial
differential equations have paid attention in showing the
existence and the solutions of the class of partial differential
equations involvingmixed and nonmixed derivatives. Several
methods were proposed, for instance, the Laplace transform
method [1–3], the Mellin transform method [4], the Fourier
transformmethod [5, 6], and the Sumudu transformmethod
[7–9] and the Green function method [10] for linear cases.
Perturbation method [11], variational iteration method [12–
14], homotopy decomposition and perturbation method [15–
18], and others were developed for both linear and nonlinear
cases.

While doing a search in the literature, we noticed that
there is a class of partial differential equations for which no
analytical method or iteration method has been proposed to
get to the bottomof their solutions.Without loss of generality,
the general form of this class of equation is given below as

𝜕
𝑛

𝑥
𝑛𝜕
𝑚

𝑦
𝑚 ⋅ ⋅ ⋅ 𝜕

𝑖

𝑡
𝑖 [𝑈 (𝑥, 𝑦, . . . , 𝑡)] + 𝐿 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [𝑈 (𝑥, 𝑦, . . . , 𝑡)] = 𝑓 (𝑥, 𝑦, . . . , 𝑡) ,

(1)

where,𝑚, 𝑛, . . . , 𝑖 are natural numbers, 𝐿 and𝑁 are linear and
nonlinear operators with onlymixed derivatives, respectively,
and 𝑓 is a known function. It is perhaps important to
mention that proving the existence of a partial differential
equation may be a very difficult task but it is only useful in
pure mathematics. However, while dealing with real world
problem, one needs to present the numerical or analytical
solution because the proof of existence is not worth in this
case. In order to satisfy scholars that deal with real world
problems, several analytical methods have been developed
in the recent decade. Nevertheless, we are afraid to say that
those methods are not powerful enough to handle the above
equation because of its complexity.

In this paper, our approach will be based upon the La-
grange multiplier in two-dimensional spaces. The local con-
vergence and uniqueness of the proposed method will be
analyzed in detail.

2. Method for Solution

We devote this section to the discussion underpinning the
general method to derive the special solution of (1). The
foremost item of the technique is as follows: the solution
of a mathematically real world problem with linearization
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postulation is used as an initial guesstimate; formerly an
additional extremely detailed estimate at some special point
can be gotten.

We will assume that 𝐻(𝑥, 𝑦, . . . , 𝑡) is the solution of the
linear part of (1); we can record an illustration to appropriate
the value of the selected singular point, for example, at
𝑋(𝑥, 𝑦, . . . , 𝑡), and then the corrected solution can be written
as follows:
𝑈 (𝛼, 𝛽, . . . , 𝜏) = 𝐻 (𝛼, 𝛽, . . . , 𝜏)

+ ∫

𝛼

0

⋅ ⋅ ⋅ ∫

𝜏

0

𝜆 (𝑥, 𝑦, . . . , 𝑡)

× (𝜕
𝑛

𝑥
𝑛𝜕
𝑚

𝑦
𝑚 ⋅ ⋅ ⋅ 𝜕

𝑖

𝑡
𝑖 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝐿 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [𝑈 (𝑥, 𝑦, . . . , 𝑡)]

−𝑓 (𝑥, 𝑦, . . . , 𝑡) ) 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑡.

(2)

Wewill point out that 𝜆(𝑥, 𝑦, . . . , 𝑡) is the Lagrangemultiplier
[12] and the second term on the right is called the correction.
The method has been modified into an iteration method [4–
8] in the following approach:

𝑈
𝑛+1

(𝛼, 𝛽, . . . , 𝜏)

= 𝐻 (𝛼, 𝛽, . . . , 𝜏)

+ ∫

𝛼

0

⋅ ⋅ ⋅ ∫

𝜏

0

𝜆 (𝑥, 𝑦, . . . , 𝑡)

× (𝜕
𝑛

𝑥
𝑛𝜕
𝑚

𝑦
𝑚 ⋅ ⋅ ⋅ 𝜕

𝑖

𝑡
𝑖 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝐿 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [�̃� (𝑥, 𝑦, . . . , 𝑡)]

− 𝑓 (𝑥, 𝑦, . . . , 𝑡) ) 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑡

(3)

besides𝐻(𝛼, 𝛽, . . . , 𝜏) as preliminary guesstimate with likely-
nonentities and �̃�(𝑥, 𝑦, . . . , 𝑡) is pondered as a circumscribed
adaptation meaning 𝛿�̃�(𝑥, 𝑦, . . . , 𝑡) = 0. Indeed for random
(𝛼, 𝛽, . . . , 𝜏), the above equation can be reformulated as
follows:

𝑈
𝑛+1

(𝑋, 𝑌, . . . , 𝑇)

= 𝐻 (𝑋, 𝑌, . . . , 𝑇)

+ ∫

𝑋

0

⋅ ⋅ ⋅ ∫

𝑇

0

𝜆 (𝑥, 𝑦, . . . , 𝑡)

× (𝜕
𝑛

𝑥
𝑛𝜕
𝑚

𝑦
𝑚 ⋅ ⋅ ⋅ 𝜕

𝑖

𝑡
𝑖 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝐿 [𝑈
𝑛
(𝑥, 𝑦, . . . , 𝑡)]

+ 𝑁 [�̃� (𝑥, 𝑦, . . . , 𝑡)]

− 𝑓 (𝑥, 𝑦, . . . , 𝑡) ) 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑡.

(4)

For straight problems, its exact answer can be achieved via
one repetition step because of the statement that the Lagrange
multiplier can be faithfully acknowledged.

We will in the coming section illustrate this extension by
solving some problems with mixed derivatives. However, we
will first deal with the convergence and uniqueness analysis
of a specific equation (5).

3. Convergence Analysis of
the Iteration Method

The purpose of this section is to show the local convergence
of the proposed method for solving an example of nonlinear
equation and the uniqueness of the special solution obtained
via the proposed method; we will therefore consider the
following equation:

𝜕
2

𝑥𝑡
𝑢 + 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢 + 4𝜕

3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢

+ 4(𝜕
2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢 + 𝑢

2

+ 𝑢 = 0.

(5)

Let us consider the equation in the Hilbert space H =

𝐿
2

((𝜂, 𝜆) × [0, 𝑇]), defined as

H = {(𝑢, V) : (𝜂, 𝜆) × [0, 𝑇] with, ∫ 𝑢V𝑑𝜄𝑑𝜅 < ∞} . (6)

Then, the operator is of the form

𝑇 (𝑢) = 𝜕
2

𝑥𝑡
𝑢 + 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢

+ 4𝜕
3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢 + 4(𝜕

2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢

+ 𝑢
2

+ 𝑢.

(7)

Theproposed analyticalmethod is convergent if the following
requirements are met.

Hypothesis 1. It is possible for us to find a positive constant say
𝐹 such that the inner product satisfies the following condition
inH:

(𝑇 (𝑢) − 𝑇 (V) , 𝑢 − V) ≤ 𝐹 ‖𝑢 − V‖ , ∀V, 𝑢 ∈H. (8)

Hypothesis 2. To the extent that all V, 𝑢 ∈ 𝐻 are bounded
implying that we can find a positive constant say 𝐶 such that
‖𝑢‖, ‖V‖ ≤ 𝐶, then we can find Φ(𝐶) > 0 such that

(𝑇 (𝑢) − 𝑇 (V) , 𝑔) ≤ Φ (𝐶) ‖𝑢 − V‖ 𝑔
 , ∀𝑔 ∈ 𝐻. (9)

We can consequently state the resulting theorem for the
sufficient condition of the convergence of iteration method
for (5).

Theorem 1. Let us consider
𝑇 (𝑢) = 𝜕

2

𝑥𝑡
𝑢 + 2𝑢𝜕

4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢

+ 4𝜕
3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢 + 4(𝜕

2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢

+ 𝑢
2

+ 𝑢

(10)

and consider the initial and boundary conditions for (5); then
the proposed method leads to a special solution of (5).
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Wewill present the proof of this theorem by just verifying
the Hypotheses 1 and 2.

Proof. Using the definition of our operator 𝑇, we have the
following:

𝑇 (𝑢) − 𝑇 (V) = 𝜕2
𝑥𝑡
(𝑢 − V) + 2𝑢𝜕4

𝑥
2
𝑡
2𝑢 + 4𝜕

𝑥
𝑢𝜕
3

𝑥𝑡
2𝑢

+ 4𝜕
3

𝑥
2
𝑡
𝑢𝜕
𝑡
𝑢 + 4(𝜕

2

𝑥𝑡
𝑢)
2

+ 𝜕
2

𝑡
2𝑢𝜕
2

𝑥
2𝑢

+ (𝑢 − V)2 + (𝑢 − V) − 2V𝜕4
𝑥
2
𝑡
2V

− 4𝜕
𝑥
V𝜕3
𝑥𝑡
2V − 4𝜕3

𝑥
2
𝑡
V𝜕
𝑡
V

− 4(𝜕
2

𝑥𝑡
V)
2

− 𝜕
2

𝑡
2V𝜕2
𝑥
2V

𝑇 (𝑢) − 𝑇 (V) = 𝜕2
𝑥𝑡
(𝑢 − V) + (𝑢 − V)2 + (𝑢 − V)

+ 2𝜕
𝑥
(𝑢𝜕
3

𝑥𝑡
2𝑢 + 𝜕

2

𝑥𝑡
𝑢𝜕
𝑡
𝑢 + 𝜕
2

𝑡𝑥
𝑢𝜕
𝑡
𝑢 + 𝜕
𝑥
𝑢𝜕
2

𝑡
2𝑢)

− 2𝜕
𝑥
(V𝜕3
𝑥𝑡
2V + 𝜕2

𝑥𝑡
V𝜕
𝑡
V + 𝜕2
𝑡𝑥
V𝜕
𝑡
V + 𝜕
𝑥
V𝜕2
𝑡
2V)

𝑇 (𝑢) − 𝑇 (V) = 𝜕2
𝑥𝑡
(𝑢 − V) + (𝑢2 − V2)

+ (𝑢 − V) + 𝜕4
𝑥
2
𝑡
2𝑢 − 𝜕

4

𝑥
2
𝑡
2V

𝑇 (𝑢) − 𝑇 (V) = 𝜕2
𝑥𝑡
(𝑢 − V) + (𝑢2 − V2)

+ (𝑢 − V) + 𝜕4
𝑥
2
𝑡
2 (𝑢
2

− V2) .
(11)

With the above reduction in hand, it is therefore possible for
us to evaluate the following inner product:

(𝑇 (𝑢) − 𝑇 (V) , (𝑢 − V))

= (𝜕
2

𝑥𝑡
(𝑢 − V) , 𝑢 − V) + ((𝑢2 − V2) , 𝑢 − V)

+ ((𝑢 − V) , 𝑢 − V) + (𝜕4
𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑢 − V) .

(12)

We will examine case after case starting with

(𝜕
2

𝑥𝑡
(𝑢 − V) , 𝑢 − V) . (13)

Assuming that 𝑢, V are bounded, therefore we can find a
positive constant𝑀 such that (𝑢, 𝑢), (V, V) < 𝑀

2. It follows
by the use of Schwartz inequality that

(𝜕
2

𝑥𝑡
(𝑢 − V) , 𝑢 − V) ≤


𝜕
2

𝑥𝑡
(𝑢 − V)


‖𝑢 − V‖ . (14)

However, we can find a positive constant 𝜔 such that
‖(𝑢 − V)

𝑥
‖ ≤ 𝜔‖𝑢 − V‖; it follows from (14) that

(𝜕
2

𝑥𝑡
(𝑢 − V) , 𝑢 − V) ≤ 𝜔

1
𝜔
2
‖𝑢 − V‖2. (15)

Also, we have the following inequality

(𝑢
2

− V2, 𝑢 − V) ≤

𝑢
2

− V2

‖𝑢 − V‖ ≤ 𝜃

1
𝜃
2
‖𝑢 − V‖2

((𝑢 − V) , 𝑢 − V) ≤ ‖𝑢 − V‖2.
(16)

We also have moreover that the Cauchy-Schwarz-Bunyakov-
sky inequality yields

(𝜕
4

𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑢 − V) ≤ 𝜃
3
𝜃
4
𝜃
5
𝜃
6


𝑢
2

− V2

‖𝑢 − V‖ . (17)

Obviously due to the fact that it is possible for us to find two
positive constants 𝜃

3
, 𝜃
4
such that

𝜕
4

𝑥
2
𝑡
2 ((𝑢
2

− V2) , 𝑢 − V) ≤ 𝜃
3
𝜃
4


(𝑢
2

− V2)
𝑥𝑡


‖𝑢 − V‖ , (18)

then we can find another set of positive constants 𝜃
5
𝜃
6

respecting the following inequality:

(𝑢
2

− V2)
𝑥𝑡


≤ 𝜃
5
𝜃
6


𝑢
2

− V2


(19)

and finally we can find two positive constants 𝜃
7
and 𝜃

8

verifying

(𝜕
4

𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑢 − V) ≤ 𝜃
3
𝜃
4
𝜃
5
𝜃
6
𝜃
7
𝜃
8
‖𝑢 − V‖2. (20)

Now, substituting (20), (16), and (15) into (12) we arrive at

(𝑇 (𝑢) − 𝑇 (V) , (𝑢 − V))

≤ (𝜃
3
𝜃
4
𝜃
5
𝜃
6
𝜃
7
𝜃
8
+ 𝜃
1
𝜃
2
+ 𝜔
1
𝜔
2
+ 1) ‖𝑢 − V‖2.

(21)

Since it is assumed that 𝑢, V are bounded in H, we can
obviously obtain the following positive constant𝑀 satisfying

‖𝑢 − V‖ ≤ 2𝑀2. (22)

Therefore, we can conclude that

(𝑇 (𝑢) − 𝑇 (V) , (𝑢 − V))

≤ 2𝑀
2

(𝜃
3
𝜃
4
𝜃
5
𝜃
6
𝜃
7
𝜃
8
+ 𝜃
1
𝜃
2
+ 𝜔
1
𝜔
2
+ 1) ‖𝑢 − V‖

(23)

taking here

𝐹 = 2𝑀
2

(𝜃
3
𝜃
4
𝜃
5
𝜃
6
𝜃
7
𝜃
8
+ 𝜃
1
𝜃
2
+ 𝜔
1
𝜔
2
+ 1) (24)

and then Hypothesis 1 is verified. We will now verify
Hypothesis 2; to do this we quickly compute the relation as
follows.

Proof. Consider

(𝑇 (𝑢) − 𝑇 (V) , 𝑧) = (𝜕2
𝑥𝑡
(𝑢 − V) , 𝑧) + (𝑢2 − V2, 𝑧)

+ ((𝑢 − V) , 𝑢 − V) + (𝜕4
𝑥
2
𝑡
2 (𝑢
2

− V2) , 𝑧) .
(25)

Now, following the discussion presented earlier we obtain

(𝑇 (𝑢) − 𝑇 (V) , 𝑧) ≤ Φ (𝐶) ‖𝑢 − V‖ ‖𝑧‖ , (26)

with

Φ (𝐷) = (2𝐷
2

𝑓
3
𝑓
4
𝑓
5
𝑓
6
𝑓
7
𝑓
8
+ 2𝐷
2

𝑓
1
𝑓
2
+ 2𝐷
2V
1
V
2
+ 1) .

(27)

With the above hypothesis proved, we will go ahead with
stating the following theorem.
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Theorem 2. Taking into account the initial conditions for (5),
then the special solution of (5) 𝑢

𝑒𝑠𝑝
to which 𝑢 converge is

unique.

Proof. Assuming that we can find another special solution,
say Vesp, then by making use of the inner product together
with Hypothesis 1, we have the following:

(𝑇 (𝑢esp) − 𝑇 (Vesp) , (𝑢esp − Vesp)) ≤ 𝐹

𝑢esp − Vesp


(28)

using the fact that we can find a small natural number𝑚
1
for

which we can find a very small number 𝜀 such respecting the
following inequality:


𝑢esp − 𝑢


≤

𝜀

2𝐹
. (29)

Also, we can find another natural number 𝑚
2
for which we

can find a very small positive number 𝜀 that can respect the
fact that


Vesp − 𝑢


≤

𝜀

𝐹2
(30)

taking therefore𝑚 = max(𝑚
1
, 𝑚
2
); we have without fear that

(𝑇 (𝑢esp) − 𝑇 (Vesp) , (𝑢esp − Vesp))

≤ 𝐹

𝑢esp − Vesp


= 𝐹


𝑢esp − 𝑢 + 𝑢 − Vesp


.

(31)

Making use of the triangular inequality, we obtain the
following:

(𝑇 (𝑢esp) − 𝑇 (Vesp) , (𝑢esp − Vesp))

≤ 𝐹 (

𝑢esp − 𝑢


+

Vesp − 𝑢


) ≤ 𝜀.

(32)

It therefore turns out that

(𝑇 (𝑢esp) − 𝑇 (Vesp) , (𝑢esp − Vesp)) = 0. (33)

But according to the law of the inner product, the above
equation implies that

𝑇 (𝑢esp) − 𝑇 (Vesp) = 0 or (𝑢esp − Vesp) = 0. (34)

This concludes the uniqueness of our special solution.

4. Application of the Proposed Method

We will present in this section the application of this method
for (5) since the local convergence and uniqueness have been
presented.

Consider

𝜕
2

𝑥𝑡
𝑢 + 𝑢
2

+ 𝑢 + 𝜕
4

𝑥
2
𝑡
2𝑢
2

= 0. (35)

According to the proposed method, we have that

𝑢 (𝑥, 𝑡)

= 𝐺 (𝑥, 𝑡)

+ ∫

𝑥

0

∫

𝑡

0

𝜆 (𝜌, 𝜏) [𝜕
2

𝜌𝜏
𝑢 + 𝑢
2

+ 𝑢 + 𝜕
4

𝜌
2
𝜏
2𝑢
2

] 𝑑𝜌 𝑑𝜏.

(36)

The method has been modified into an iteration method [4–
8] in the following approach; its correction functional can be
written down as follows:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝐺 (𝑥, 𝑡)

+ ∫

𝑥

0

∫

𝑡

0

𝜆 (𝜌, 𝜏) [𝜕
2

𝜌𝜏
𝑢 + 𝑢
2

̂

+ 𝑢 + 𝜕
4

𝜌
2
𝜏
2𝑢
2

̂

]𝑑𝜌𝑑𝜏.

(37)

�̃�(𝑥, 𝑡) is pondered as a circumscribed adaptation meaning
𝛿�̃�(𝑥, 𝑡) = 0; therefore we can by applying integration by part
in both directions x-t obtain

𝜕
2

𝑥𝑡
𝜆 + 𝜆 = 0 (38)

for which the solution

𝜆 (𝑥, 𝑡) = Cosh (−𝑥 + 𝑡) (39)

with the above Lagrange multiplier; we can set the iteration
formula as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛

+ ∫

𝑥

0

∫

𝑡

0

Cosh (−𝜌 + 𝜏)

× [𝜕
2

𝜌𝜏
𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑢
𝑛
+ 𝜕
4

𝜌
2
𝜏
2𝑢
2

𝑛
] 𝑑𝜌 𝑑𝜏

(40)

with initial guess 𝑢
0
= 𝐺(𝑥, 𝑡) where

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛+1

(𝑥, 𝑡) . (41)

We can resume the above process in the following algorithm.

Algorithm 3. Consider the following:

(i) Input: 𝐺(𝑥, 𝑡) as initial guest.
(ii) 𝑗—number terms in the rough calculation.
(iii) Output: 𝑢approx(𝑥, 𝑡), the approximate solution.

Step 1. Put 𝑢
0
(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) and 𝑢approx(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡),

Step 2. For 𝑗 = 0 to 𝑛 − 1, do Step 3, Step 4, and Step 5.

Step 3. Compute

V
𝑛
= ∫

𝑥

0

∫

𝑡

0

Cosh (−𝜌 + 𝜏) [𝜕2
𝜌𝜏
𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑢
𝑛
+ 𝜕
4

𝜌
2
𝜏
2𝑢
2

𝑛
] 𝑑𝜌 𝑑𝜏.

(42)

Step 4. Compute

𝑢
𝑛+1

(𝑥, 𝑡) = V
𝑛
+ 𝑢
𝑛
. (43)

Step 5. Compute 𝑢approx(𝑥, 𝑡) = 𝑢approx(𝑥, 𝑡) + 𝑢𝑛+1(𝑥, 𝑡). Stop.
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4.1. Special Solution. We will in this subsection make use of
the proposed algorithm to present the special solution.

We assume that the initial guest is given by

𝐺 (𝑥, 𝑡) = 1; (44)

then using the iteration formula, we obtain the following:

𝑢
1
(𝑥, 𝑡) = Cosh [𝑥] − Cosh [𝑡 − 𝑥] + Cosh [𝑥]

𝑢
2
[𝑥, 𝑡] = Cosh [𝑡] − Cosh [𝑡 − 𝑥] + Cosh [𝑥]

+
1

72
(−355 + 108𝑡𝑥 + 366Cosh [𝑡]

− 21Cosh [2𝑡] + 10Cosh [3𝑡]

− 6Cosh [𝑡 − 3𝑥] + 30Cosh [2𝑡 − 3𝑥]

+ 18Cosh [𝑡 − 2𝑥] + 30Cosh [3𝑡 − 2𝑥]

− 414Cosh [𝑡 − 𝑥] − 27Cosh [2 (𝑡 − 𝑥)]

− 34Cosh [3 (𝑡 − 𝑥)] + 18Cosh [2𝑡 − 𝑥]

− 6Cosh [3𝑡 − 𝑥] + 366Cosh [𝑥]

− 21Cosh [2𝑥] + 10Cosh [3𝑥]

+ 36Cosh [𝑡 + 𝑥] − 216𝑥Sinh [𝑡]

+ 36𝑥Sinh [2𝑡] − 216𝑡Sinh [𝑥]

+ 36𝑡Sinh [2𝑥])

𝑢
3
(𝑥, 𝑡) = Cosh [𝑡] − Cosh [𝑡 − 𝑥] + Cosh [𝑥]

+
1

72
(−355 + 108𝑡𝑥 + 366Cosh [𝑡]

− 21Cosh [2𝑡] + 10Cosh [3𝑡]

− 6Cosh [𝑡 − 3𝑥] + 30Cosh [2𝑡 − 3𝑥]

+ 18Cosh [𝑡 − 2𝑥] + 30Cosh [3𝑡 − 2𝑥]

− 414Cosh [𝑡 − 𝑥] − 27Cosh [2 (𝑡 − 𝑥)]

− 34Cosh [3 (𝑡 − 𝑥)] + 18Cosh [2𝑡 − 𝑥]

− 6Cosh [3𝑡 − 𝑥] + 366Cosh [𝑥]

− 21Cosh [2𝑥] + 10Cosh [3𝑥]

+ 36Cosh [𝑡 + 𝑥] − 216𝑥Sinh [𝑡]

+ 36𝑥Sinh [2𝑡] − 216𝑡Sinh [𝑥]

+ 36𝑡Sinh [2𝑥] + 𝐹 (𝑥, 𝑡))

𝑢
4
(𝑥, 𝑡) = Cosh [𝑡] − Cosh [𝑡 − 𝑥] + Cosh [𝑥]

+
1

72
(−355 + 108𝑡𝑥 + 366Cosh [𝑡]

− 21Cosh [2𝑡] + 10Cosh [3𝑡]

− 6Cosh [𝑡 − 3𝑥] + 30Cosh [2𝑡 − 3𝑥]

+ 18Cosh [𝑡 − 2𝑥] + 30Cosh [3𝑡 − 2𝑥]

− 414Cosh [𝑡 − 𝑥] − 27Cosh [2 (𝑡 − 𝑥)]

− 34Cosh [3 (𝑡 − 𝑥)] + 18Cosh [2𝑡 − 𝑥]

− 6Cosh [3𝑡 − 𝑥] + 366Cosh [𝑥]

− 21Cosh [2𝑥] + 10Cosh [3𝑥]

+ 36Cosh [𝑡 + 𝑥] − 216𝑥Sinh [𝑡]

+ 36𝑥Sinh [2𝑡] − 216𝑡Sinh [𝑥]

+ 36𝑡Sinh [2𝑥] + 𝐹 (𝑥, 𝑡) + 𝐻 (𝑥, 𝑡)) .

(45)

In this case, we consider the small natural number 𝑚 to be 4
such that the special solution gives

𝑢esp (𝑥, 𝑡) = Cosh [𝑡] − Cosh [𝑡 − 𝑥] + Cosh [𝑥]

+
1

72
(−355 + 108𝑡𝑥 + 366Cosh [𝑡]

− 21Cosh [2𝑡] + 10Cosh [3𝑡]

− 6Cosh [𝑡 − 3𝑥] + 30Cosh [2𝑡 − 3𝑥]

+ 18Cosh [𝑡 − 2𝑥] + 30Cosh [3𝑡 − 2𝑥]

− 414Cosh [𝑡 − 𝑥] − 27Cosh [2 (𝑡 − 𝑥)]

− 34Cosh [3 (𝑡 − 𝑥)] + 18Cosh [2𝑡 − 𝑥]

− 6Cosh [3𝑡 − 𝑥] + 366Cosh [𝑥]

− 21Cosh [2𝑥] + 10Cosh [3𝑥]

+ 36Cosh [𝑡 + 𝑥] − 216𝑥Sinh [𝑡]

+ 36𝑥Sinh [2𝑡] − 216𝑡Sinh [𝑥]

+ 36𝑡Sinh [2𝑥] + 𝐹 (𝑥, 𝑡) + 𝐻 (𝑥, 𝑡)) .

(46)

We present the graphical representation of the special solu-
tion of (5) in Figure 1.

Example 4. Let us consider the following partial differential
equation:

𝜕
2

𝑥𝑡
𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑢 (0, 𝑡) = ℎ (𝑡) .

(47)

Employing the methodology of the proposed method, we
obtain the following Lagrange multiplier:

𝜆 (𝑥, 𝑡) = −1. (48)

Then, the iteration method is given by

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
+ ∫

𝑥

0

∫

𝑡

0

[𝜕
2

𝜌𝜏
𝑢
𝑛
+ 𝑢
𝑛
] 𝑑𝜌 𝑑𝜏 (49)

choosing the initial guest to be

𝑢
0
(𝑥, 𝑡) = 1 − 𝑥𝑦. (50)
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x

x

x

−

−

Figure 1: Special solution for𝑚 = 4.

Using the algorithm associate to the iteration formula (49),
we obtain

𝑢
7
= 1 +

𝑥
2

2
+
𝑥
4

24
+
𝑥
6

720
+

𝑥
8

40320

+ 𝑡(−𝑥 −
𝑥
3

6
−
𝑥
5

120
−

𝑥
7

5040
)

+ 𝑡
3

(−
𝑥

6
−
𝑥
3

36
−
𝑥
5

720
−

𝑥
7

30240
)

+ 𝑡
5

(−
𝑥

120
−
𝑥
3

720
−

𝑥
5

14400
−

𝑥
7

604800
)

+ 𝑡
7

(−
𝑥

5040
−

𝑥
3

30240

−
𝑥
5

604800
−

𝑥
7

25401600
)

+ 𝑡
8

(
1

40320
+

𝑥
2

80640
+

𝑥
4

967680

+
𝑥
6

29030400
+

𝑥
8

1625702400
)

+ 𝑡
6

(
1

720
+

𝑥
2

1440
+

𝑥
4

17280

+
𝑥
6

518400
+

𝑥
8

29030400
)

+ 𝑡
4

(
1

24
+
𝑥
2

48
+
𝑥
4

576
+

𝑥
6

17280
+

𝑥
8

967680
)

+ 𝑡
2

(
1

2
+
𝑥
2

4
+
𝑥
4

48
+

𝑥
6

1440
+

𝑥
8

80640
)

𝑢
9
(𝑥, 𝑡) = 1 +

𝑥
2

2
+
𝑥
4

24

+
𝑥
6

720
+

𝑥
8

40320
+

𝑥
10

3628800

+ 𝑡(−𝑥 −
𝑥
3

6
−
𝑥
5

120
−

𝑥
7

5040
−

𝑥
9

362880
)

+ 𝑡
3

(−
𝑥

6
−
𝑥
3

36
−
𝑥
5

720

−
𝑥
7

30240
−

𝑥
9

2177280
)

+ 𝑡
5

(−
𝑥

120
−
𝑥
3

720
−

𝑥
5

14400

−
𝑥
7

604800
−

𝑥
9

43545600
)

+ 𝑡
7

(−
𝑥

5040
−

𝑥
3

30240
−

𝑥
5

604800

−
𝑥
7

25401600
−

𝑥
9

1828915200
)

+ 𝑡
9

(−
𝑥

362880
−

𝑥
3

2177280
−

𝑥
5

43545600

−
𝑥
7

1828915200
−

𝑥
9

131681894400
)

+ 𝑡
10

(
1

3628800
+

𝑥
2

7257600
+

𝑥
4

87091200

+
𝑥
6

2612736000
+

𝑥
8

146313216000

+
𝑥
10

13168189440000
)

+ 𝑡
8

(
1

40320
+

𝑥
2

80640

+
𝑥
4

967680
+

𝑥
6

29030400

+
𝑥
8

1625702400
+

𝑥
10

146313216000
)

+ 𝑡
6

(
1

720
+

𝑥
2

1440
+

𝑥
4

17280
+

𝑥
6

518400

+
𝑥
8

29030400
+

𝑥
10

2612736000
)
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+ 𝑡
4

(
1

24
+
𝑥
2

48
+
𝑥
4

576
+

𝑥
6

17280

+
𝑥
8

967680
+

𝑥
10

87091200
)

+ 𝑡
2

(
1

2
+
𝑥
2

4
+
𝑥
4

48
+

𝑥
6

1440

+
𝑥
8

80640
+

𝑥
10

7257600
) .

(51)

Indeed 𝑢
9
(𝑥, 𝑡) is Maclaurin series of Cosh(𝑥 − 𝑡) of order 10.

Therefore, the exact solution of (47) is

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛
(𝑥, 𝑡) = Cosh (𝑥 − 𝑡) . (52)

5. Conclusion

Attention has not been paid to the class of partial dif-
ferential equations with mixed derivatives only. But this
class of partial differential equations is used to describe
several physical occurrences or real world problems. More
importantly, the nonlinear partial differential equations with
mixed derivatives only cannot be handledwith the commonly
used analytical methods. Even some numerical methods
[15] that have been recognized as efficient methods cannot
handle these nonlinear partial differential equations. Based
upon the Lagrange multiplier in two-dimensional space, we
proposed an iteration analytical method to solve a class
of partial differential equations that could be handled via
usual methods including the Laplace transform, Fourier
transform, Mellin transform, the Green function, and the
Sumudu transform on one hand and on the other hand
iteration methods like normal variational iteration method,
the normal homotopy perturbation method, the normal
homotopy decomposition method, and other methods like
perturbation methods. A detailed analysis of convergence
and uniqueness was presented. An algorithm showing the
resume of the method for solving this example was proposed.
The method is highly efficient, easier to use, and also very
accurate.
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