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We investigate the dynamics of a delayed neural network model consisting of 𝑛 identical neurons. We first analyze stability of the
zero solution and then study the effect of time delay on the dynamics of the system.We also investigate the steady state bifurcations
and their stability.The direction and stability of theHopf bifurcation and the pitchfork bifurcation are analyzed by using the derived
normal forms on center manifolds.Then, the spatiotemporal patterns of bifurcating periodic solutions are investigated by using the
symmetric bifurcation theory, Lie group theory and 𝑆1-equivariant degree theory. Finally, two neural network models with four or
seven neurons are used to verify our theoretical results.

1. Introduction

Growing biological evidence suggests that propagation delay
in axons and dendrites may play a key role in the pro-
cessing of sensory information by the brain. For instance,
spatiotemporal patterns of synchronous oscillations in 𝛾 and
𝜃 frequency bands emerge in the hippocampus when a rat
goes through previously visited places.These oscillations and
their interaction form a coding scheme that is used to readout
from long-time memory (see, e.g., [1]). Although there are
many experimental results pointing to the 𝛾 phase-locked
firing of pyramidal cells (see, e.g., [2]), the mechanisms
underlying this phenomenon are fairly unknown. The hip-
pocampus has a laminar stratificated structure, where each
pyramidal cell receives and integrates a large amount of spikes
arriving at different time instants to different parts of the
cell. Then their active integration by the cell, to produce
an output spike, depends on the relative time delays of the
incoming spikes.Thus the cell output is conditioned by delays
occurring in incoming electric wave, which justifies the need
of mathematical modeling of these complex phenomena [3].

On the other hand, artificial neural networks including
delays have been known to be useful for mimicking various
neuroprocesses like in the image processing (see, e.g., [4]).
Their further expansion and exploitation are limited by the
added complexity of the mathematical analysis brought by
the delay (ordinary or partial differential equations become
functional differential equations thus implying an infinite
number of degrees of freedom). There are, however, some
advantages. For instance, a harmonic oscillator augmented
with time delay shows stable “robust” oscillations [5]. The
“fragile” character of linear oscillations and linearwaveswhen
unfolded in space precludes their utility in reliably carrying
information. An interesting point, however, is that a har-
monic oscillator augmented with white noise permits trans-
ferring the latter into a colored noise thus creating amemory-
like stochastic process and so a kind of delay process. In [6]
this idea has been used to model quasiharmonic oscillations
observed in inferior olive.The spiking propagation process in
the brain comes indeed from robust oscillations as known by
many authors.This fact permitsmodeling the dynamics using
harmonic oscillators with appropriate nonlinearity which is
like in the case of a van der Pol-Bonhöffer oscillator and
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Figure 1: Lattice ring. (a) Network architecture with 𝑛 units unidirectionally coupled. Each unit receives a delayed output from the preceding
unit. (b) Transfer (synaptic) function.

the Fitzhugh-Nagummo excitability dynamics underlying
the Hodgkin-Huxley equation. An alternative to van der
Pol’s idea was earlier suggested by Lord Ragleigh who also
proposed augmenting the harmonic oscillator with suitable
active fiction thus allowing maintained oscillations. In both
cases we have systems where there is an appropriate input-
output energy balance and thus driven-dissipative systems.

Focusing on robots or neuron inspired artifacts, the
use of ring lattice models has shown potential in different
applications, for example, from electron transport to the
dynamical decentralized gait control in robotics [7]. In the
latter casemovement of each robot leg is associated (coupled)
with the behavior of the corresponding unit in the ring.Then
standing waves excited in the ring can be used to reproduce
the leg movement without the need of a computer, unlike
what happens in nature, which uses central pattern generators
(CPG) designing artificial locomotion for this purpose [8]. It
has been shown in [9] for a hexapod robot that a ring of six
units is able to reproducemetachronal, caterpillar, and tripod
gaits. However, ripple gait, widely employed by insects for
medium speed movement, is difficult to mimic. We foresee
that the use of delays may help in CPGs to control the robot
walking behavior.

Since Marcus and Westervelt [10] incorporated a single
time delay into the connection term of Hopfield’s model and
observed sustained oscillations resulting from this time delay,
there has been a growing interest to the dynamical properties
of neural networks when the time delay cannot be neglected.
It is known that delay can significantly alter the dynamics of
neural networks [10–12], for example, leading to instability
of a delay-free stable solution [13]. There have been lots of
researches on the neural networks with delay (see, e.g., [14–
18] and references therein).

A ring with identical elements often has a kind of
topological symmetry. Considering these symmetries helps
in the analysis of wave solutions in a ring lattice. Golubitsky
et al. [19] have shown that systems with symmetry can
exhibit different oscillatory patterns, which are predictable

based on the theory of equivariant bifurcations. Later, in a
series of papers, Wu and coworkers [20–22] have extended
the theory of equivariant Hopf bifurcations to functional
differential equations. These theoretical advances have led
to a vast literature on the mechanisms of spatiotemporal
activity in neural networks with symmetry and delays (see,
e.g., [22–35]). The majority of these studies have focused
on a ring structure with bidirectional couplings between the
neighboring elements. From the view point of group theory,
the symmetry in a ring with such bidirectional coupling if
there is a reflection symmetry is given by a dihedral group
𝐷
𝑛
(the symmetry of a regular 𝑛-gon: 𝑛 is the number of

units). Another type of symmetry in a ring is a cyclic group𝑍
𝑛

(the symmetry of a direct 𝑛-gon) if one direction is preferred;
that is, the coupling goes in one direction. The latter type of
symmetry is more natural for the neural networks. In 1994,
Baldi andAtiya [11] proposed a neural network consisting of 𝑛
neurons connected in a ring by undirectional couplings with
delays (Figure 1(a)):

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼

𝑖+1
𝑓
𝑖+1

(𝑥
𝑖+1

(𝑡 − 𝜏
𝑖+1

)) , 𝑖 (mod 𝑛) , (1)

where 𝑥
𝑖
is the state of the 𝑖th unit (related to the membrane

potential), 𝑓 is the transfer function, which describes chemi-
cal interaction between pre- and postsynaptic neurons, and 𝛼
accounts for the coupling strength. For positive or negative 𝛼
we can speak of excitatory or inhibitory coupling, respectively.
The nonnegative constants 𝜏

𝑖
represent the transmission

delays between neighboring neurons.
Baldi and Atiya [11] investigated the effects of delays on

the ring dynamics, in particular on the oscillatory properties,
showing numerically that when the ring has odd number of
units and the coupling is inhibitory (𝛼 < 0), the origin (the
zero solution) is the only fixed point, and if it is unstable, the
dynamics of the network always converges to a stable limit
cycle. They also argued that, for even 𝑛 and 𝛼 < 0, there are
no stable limit cycles. But a strict mathematical proof is still
lacking. Model (1) has been studied by several researchers.
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In [36, 37], the authors studied a ring with two and three
units and obtained sufficient conditions for the asymptotic
stability of the zero equilibrium and for the existence of
Hopf bifurcations. Later Wei and Li investigated the global
existence of multiple periodic solutions in a ring of three
units [38]. The stability analysis and local Hopf bifurcation
of the zero solution in a ring of four units have been given in
[39]. In the above-mentioned studies the authors considered
nonidentical elements, where the theory of equivariant bifur-
cations is not applicable. Besides, the properties of nonzero
equilibria have not been addressed. To fill this gap Guo
[40] studied a ring (1) consisting of four identical neurons
coupled with the same delay. He provided conditions on the
linear stability of zero solution, spatiotemporal patterns of
nonlinear oscillations, albeit restricting consideration to the
case of excitatory coupling (𝛼 > 1).The direction and stability
of bifurcating periodic solutions and steady state bifurcations
were not considered. Thus there is no result on the case
of the undirectional ring consisting of arbitrary number of
units. In particular, little is known about the patterns of
nonlinear oscillations and their stability even in a ring of
more than four identical neurons.The steady state bifurcation
patterns are also lacking. This paper is a generalization of
the previous investigation for the case of the undirectional
ring consisting of two or three neurons with discrete delay in
[37].We obtain not only the stability and delay-inducedHopf
bifurcation but also the spatiotemporal patterns of periodic
oscillations. We would also like to mention that the rings of
neural networks with unidirectional coupling and distributed
delays have recently been considered in [41–43]. The paper
also can be considered the complement of the results in [41–
43] for the case of distributed delays.

In this paper, we consider model (1) consisting of 𝑛

(arbitrary) identical neurons; that is, 𝛼
𝑖

≡ 𝛼, 𝑓
𝑖

≡ 𝑓

coupled with the same delay 𝜏
𝑖

≡ 𝜏. We assume that
the synaptic coupling is described by a sufficiently smooth
sigmoidal function (Figure 1(b)). A widely used example in
the literature is 𝑓(𝑥) = tanh(𝑥). However, here we only
assume 𝑓(0) = 0, 𝑓 ∈ 𝐶

1
(R) for the stability analysis, and

we require 𝑓 ∈ 𝐶
3
(R), 𝑓(0)𝑓(0) ̸= 0, 𝑓(0) = 𝑓


(0) = 0

for the bifurcation analysis. We investigate the global and
local stability, Hopf bifurcations, pitchfork bifurcations, and
spatiotemporal patterns of bifurcating periodic solutions.We
also derive normal forms on center manifolds and determine
direction and stability of the Hopf bifurcations.

2. Background

For convenience, we recall results for the model (1) for the
case of a ring composed of 𝑛 identical neurons

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼𝑓 (𝑥

𝑖+1
(𝑡 − 𝜏)) , 𝑖 (mod 𝑛) . (2)

System (2) admits the zero as an equilibrium solution 𝑥
0
=

(0, 0, . . . , 0), which we will refer to as the rest state.
Every initial state𝜑 ∈ 𝐶uniquely defines a solution𝑥(𝜑, 𝑡)

of system (2) for all 𝑡 ≥ −𝜏. Due to the uniqueness of the
Cauchy initial value problem of system (2), every initial state

𝜑 satisfying 𝜑
1
= 𝜑
2
= ⋅ ⋅ ⋅ = 𝜑

𝑛
(called synchronous phase

point) gives a synchronous solution 𝑥(𝜑, 𝑡), that is, 𝑥
1
(𝜑, 𝑡) =

𝑥
2
(𝜑, 𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑛
(𝜑, 𝑡), and the solution𝑥

𝑖
(𝜑, 𝑡) of system (2)

can be characterized by the scalar delay differential equation

𝑑𝑥

𝑑𝑡

= −𝑥 (𝑡) + 𝛼𝑓 (𝑥 (𝑡 − 𝜏)) . (3)

System (3) has been studied by many researchers. For exam-
ple, Mallet-Paret and Nussbaum [44] have obtained some
results on global continuation and asymptotical behavior
of periodic solutions, and Krisztin et al. [45] and Krisztin
and Walther [46] give a complete description of the global
attractor of (3) as a three-dimensional smooth solid spindle
when 𝜏 is in a certain range. A few results from Mallet-Paret
and Nussbaum [44] are needed for our subsequent work.

Lemma 1. Assume that 𝑓 is a smooth sigmoid-like function,
𝑥
∗
is a steady state of (3), and 𝜏

0,𝑗
is defined by (13) with 𝑗 =

0, 1, . . . .

(i) If |𝛼𝑓(𝑥
∗
)| < 1, then 𝑥

∗
is asymptotically stable for

any 𝜏 ≥ 0.
(ii) If 𝛼𝑓(𝑥

∗
) < −1, then 𝑥

∗
is asymptotically stable for

𝜏 ∈ [0, 𝜏
0,0
) and unstable for 𝜏 > 𝜏

0,0
.

(iii) If 𝛼𝑓(𝑥
∗
) > 1, then 𝑥

∗
is unstable for any 𝜏 ≥ 0.

(iv) If |𝛼𝑓(𝑥
∗
)| > 1, then (3) undergoes a Hopf bifurcation

at 𝑥
∗
when 𝜏 = 𝜏

0,𝑗
.

(v) If |𝛼𝑓(𝑥
∗
)| > 1, then (3) has at least (𝑗 + 1) periodic

solution for 𝛼 < −1 with 𝜏 > 𝜏
0,𝑗

or 𝛼 > 1 with 𝜏 >

𝜏
0,𝑗+1

.

3. Stability and Hopf Bifurcations of
the Rest State

In this section, we assume

(H1) 𝑓 ∈ 𝐶
1
(R), 𝑓(0) = 0, 𝑓


(0) = 1.

Let us first study the global stability of the rest solution 𝑥
0
.

Lemma 2. If |𝛼| < 1, then the solution 𝑥
0
of system (2) is

globally asymptotically stable for any 𝜏 ≥ 0.

The proof is given in Appendix A.
Lemma 2 shows that the dynamics of the network (2) is

simple when |𝛼| < 1. Any perturbation of the network state
decays in time. Therefore, in the remainder of this paper, we
will investigate the dynamics of (2) with |𝛼| ≥ 1.

The linearization of system (2) around the rest state 𝑥
0
is

given by

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼𝑥

𝑖+1
(𝑡 − 𝜏) , 𝑖 (mod 𝑛) . (4)

The characteristic matrix associated with system (4) is

𝑀
𝑛
(𝜏, 𝜆) = (𝜆 + 1) 𝐼 − 𝛼𝑒

−𝜆𝜏
𝑀, (5)
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where 𝐼 is 𝑛 × 𝑛 identity matrix and

𝑀 = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (6)

Let 𝜒 = 𝑒
(2𝜋/𝑛)𝑖

, V
𝑘
= (1, 𝜒

𝑘
, 𝜒
2𝑘
, . . . , 𝜒

(𝑛−1)𝑘
)

𝑇

, 𝑘 = 0, 1, . . . , 𝑛−

1. Then, we get

𝑀
𝑛
(𝜏, 𝜆) V

𝑘
= (𝜆 + 1 − 𝛼𝜒

𝑘
𝑒
−𝜆𝜏

) V
𝑘
. (7)

It follows that the characteristic equation is

det𝑀
𝑛
(𝜏, 𝜆) =

𝑛−1

∏

𝑘=0

Δ
𝑘
(𝜏, 𝜆) = 0, (8)

where

Δ
𝑘
(𝜏, 𝜆) = 𝜆 + 1 − 𝛼𝑒

(2𝑘𝜋/𝑛)𝑖
𝑒
−𝜆𝜏

. (9)

An equilibrium solution of a delay differential equation is
locally asymptotically stable if all roots of the corresponding
characteristic equation have negative real parts and unstable
if at least one root has positive real part (see, e.g., [47]).
Thus, in order to investigate the stability of the rest state,
it is necessary to study the distribution of roots of the
characteristic equation (8) andwhen they cross the imaginary
axis.

It is straightforward to see that if |𝛼| > 1, then 𝜆 = 0 is
not a root of Δ

𝑘
(𝜏, 𝜆) = 0 for any 𝑘 ∈ {0, 1, 2, . . . , 𝑛 − 1} and

𝜏 ≥ 0.Therefore, in what follows we assume that two complex
roots cross the imaginary axis at some positive critical values
of time delay; that is, 𝜆(𝜏) = 𝑖V. Then from (8) and (9) it
follows that V satisfies

𝑖V + 1 − 𝛼𝑒
(2𝑘𝜋/𝑛−V𝜏)𝑖

= 0, (10)

which gives

1 = 𝛼 cos(2𝑘𝜋
𝑛

− V𝜏) ,

V = 𝛼 sin(2𝑘𝜋
𝑛

− V𝜏) .

(11)

Then for |𝛼| > 1, V = ±𝜔
0
with 𝜔

0
= √𝛼

2
− 1. Let us first

consider 𝛼 < −1. Set

𝜏
+

𝑘,𝑗
=

1

𝜔
0

{

2𝑘𝜋

𝑛

+ arccos 1
𝛼

+ (𝑗 − 1) 2𝜋} ,

𝜏
−

𝑘,𝑗
=

1

𝜔
0

{−

2𝑘𝜋

𝑛

+ arccos 1
𝛼

+ 2𝑗𝜋} ,

(12)

where 𝑘 = 0, 1, . . . , 𝑛 − 1 and 𝑗 ∈ {0, 1, . . .}. It is easy to verify
that Δ

𝑘
(𝜏, 𝜆) has a purely imaginary root 𝜔

0
𝑖 for 𝜏 = 𝜏

+

𝑘,𝑗
and

−𝜔
0
𝑖 for 𝜏 = 𝜏

−

𝑘,𝑗
. Since 𝜏−

𝑘,𝑗
= 𝜏
+

𝑛−𝑘,𝑗
, one can conclude that the

characteristic equation (8) with 𝛼 < −1 has a pair of simple
purely imaginary roots ±𝑖𝜔

0
at 𝜏 = 𝜏

−

𝑘,𝑗
. Proceeding for the

case 𝛼 > 1 exactly as done above we can get similar results. In
fact, we can set

𝜏
𝑘,𝑗

=

{
{
{
{

{
{
{
{

{

1

𝜔
0

{−

2𝑘𝜋

𝑛

+ arccos 1
𝛼

+ 2𝑗𝜋} , for 𝛼 < −1,

1

𝜔
0

{

2𝑘𝜋

𝑛

− arccos 1
𝛼

+ 2𝑗𝜋} , for 𝛼 > 1,

(13)

with 𝑘 = 0, 1, . . . , 𝑛 − 1 and 𝑗 ∈ {0, 1, . . .} such that 𝜏
𝑘,𝑗

>

0. Then the characteristic equation (8) has a pair of simple
purely imaginary roots ±𝑖𝜔

0
at 𝜏 = 𝜏

𝑘,𝑗
.

Differentiating Δ
𝑘
(𝜏, 𝜆) with respect to 𝜆 we obtain that

𝜕

𝜕𝜆

Δ
𝑘
(𝜏, 𝜆)








𝜆=𝑖𝜔0 ,𝜏=𝜏𝑘,𝑗

= 1 + 𝜏𝛼𝑒
(2𝑘𝜋/𝑛)𝑖

𝑒
−𝜆𝜏



𝜆=𝑖𝜔0 ,𝜏=𝜏𝑘,𝑗

= 1 + 𝜏
𝑘,𝑗

(1 + 𝑖𝜔
0
) ̸= 0.

(14)

Thus, the implicit function theorem implies that there exist
𝛿 > 0 and a smooth curve 𝜆 : (𝜏

𝑘,𝑗
−𝛿, 𝜏
𝑘,𝑗
+𝛿) → C such that

Δ
𝑘
(𝜏, 𝜆(𝜏)) = 0 and 𝜆(𝜏

𝑘,𝑗
) = 𝑖𝜔

0
. Differentiating Δ

𝑘
(𝜏, 𝜆)

with respect to 𝜏 after some algebraic calculus we get

Re{𝑑𝜆
𝑑𝜏

}

𝜏=𝜏𝑘,𝑗

=

𝜔
2

0

𝜏
2

𝑘,𝑗
𝜔
2

0
+ (1 + 𝜏

𝑘,𝑗
)

2
> 0. (15)

Nowwe can state the following results about the distribu-
tion of roots of (8).

Lemma 3. Assume that 𝜏
𝑘,𝑗

is defined by (13) with 𝑘 =

0, 1, . . . , 𝑛 − 1 and 𝑗 ∈ {0, 1, . . .} such that 𝜏
𝑘,𝑗

> 0.

(I) If 𝑛 is even, then when |𝛼| > 1 the characteristic
equation (8) has at least one root with positive real part
for all 𝜏 ≥ 0.

(II) If 𝑛 is odd, then

(i) when 𝛼 < sec((𝑛 − 1)𝜋/𝑛) or 𝛼 > 1 the
characteristic equation (8) has at least one root
with positive real part for all 𝜏 ≥ 0;

(ii) when sec((𝑛 − 1)𝜋/𝑛) < 𝛼 < −1 all roots
of the characteristic equation (8) have negative
real parts for 𝜏 ∈ [0, 𝜏

(𝑛−1)/2,0
) and all roots of

the characteristic equation (8) except ±𝑖𝜔
0
have

negative real parts at 𝜏 = 𝜏
(𝑛−1)/2,0

, but the
characteristic equation (8) has at least two roots
with positive real parts for 𝜏 > 𝜏

(𝑛−1)/2,0
.

(III) If |𝛼| > 1, then when 𝜏 = 𝜏
𝑘,𝑗
, the characteristic

equation (8) has a pair of simple purely imaginary roots
±𝑖𝜔
0
.

The proof is given in Appendix B.
From Lemma 3, the transversality condition (15), and

the standard Hopf bifurcation theorem of delay differential
equations (see, e.g., [47]), we can state the following theorem.



Abstract and Applied Analysis 5

Theorem 4. Assume that |𝛼| > 1 and 𝜏
𝑘,𝑗

is defined by (13).

(I) If 𝑛 is even, then the rest state 𝑥
0
of system (2) is

unstable for all 𝜏 ≥ 0.
(II) If 𝑛 is odd, then

(i) when 𝛼 < sec((𝑛 − 1)𝜋/𝑛) or 𝛼 > 1 the rest state
𝑥
0
of system (2) is unstable for all 𝜏 ≥ 0;

(ii) when sec((𝑛 − 1)𝜋/𝑛) < 𝛼 < −1 the rest state
𝑥
0
of system (2) is asymptotically stable for 𝜏 ∈

[0, 𝜏
(𝑛−1)/2,0

) and unstable for 𝜏 > 𝜏
(𝑛−1)/2,0

.

(III) The system (2) undergoes aHopf bifurcation at 𝜏 = 𝜏
𝑘,𝑗
.

That is, there exists a unique branch of periodic solu-
tions𝑥(𝑘,𝑗)(𝑡, 𝜏)with period𝑝(𝑘,𝑗)(𝜏), and𝑥(𝑘,𝑗)(𝑡, 𝜏) →

0, 𝑝
(𝑘,𝑗)

(𝜏) → 2𝜋/𝜔
0
as 𝜏 → 𝜏

𝑘,𝑗
.

Theorem 5. (I) Assume that 𝛼 = 1. Then for all 𝜏 ≥ 0 the
characteristic equation (8) has one simple root 𝜆 = 0, and other
roots have negative real parts.

(II) Assuming that 𝛼 = −1 and 𝑛 is even, then, for all 𝜏 ≥ 0,
the characteristic equation (8) has one simple root 𝜆 = 0, and
other roots have negative real parts.

The proof is given in Appendix C.

4. Stability and Steady State Bifurcations

In this section, we study the properties of the equilibrium of
the system (2) and assume

(H2) 𝑓 ∈ 𝐶
2
(R), 𝑓(0) = 0, 𝑓


(0) = 1, 𝑓(𝑥) > 0 ∀𝑥 ∈

R, 𝑥𝑓(𝑥) < 0 ∀𝑥 ̸= 0, lim
𝑥→±∞

|𝑓(𝑥)| < +∞.

From system (2), we immediately have the following
lemma.

Lemma 6. If (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is an equilibrium of system (2)

and there exists one component 𝑥
𝑖
= 0, then it must be the zero

equilibrium 𝑥
0
= (0, 0, . . . , 0).

Theorem 7. Assuming that 𝛼 > 1, every equilibrium of system
(2) must be synchronous and system (2) has exactly three
synchronous equilibria: the zero equilibrium 𝑥

0
, the negative

equilibrium𝑥
−
= (𝑢
−
, 𝑢
−
, . . . , 𝑢

−
), and the positive equilibrium

𝑥
+
= (𝑢
+
, 𝑢
+
, . . . , 𝑢

+
), where 𝑢

±
are nonzero solutions of the

equation 𝑢 = 𝛼𝑓(𝑢). Moreover, these two nonzero equilibria
𝑥
−
and 𝑥

+
are both asymptotically stable for all 𝜏 ≥ 0.

The proof is given in Appendix D.

Theorem 8. Assuming that 𝑛 is odd and 𝛼 ≤ 1, system (2) has
just one zero equilibrium 𝑥

0
.

The proof is given in Appendix E.

Theorem 9. If 𝑛 is even and 𝛼 < −1, then system (2) has
exactly three equilibria: 𝑥

0
, 𝑥
∗

1
= (𝑢
+
, 𝑢
−
, . . . , 𝑢

+
, 𝑢
−
), 𝑥
∗

2
=

(𝑢
−
, 𝑢
+
, . . . , 𝑢

−
, 𝑢
+
), where 𝑢

±
are the nonzero solutions of 𝑢 =

𝛼𝑓(𝛼𝑓(𝑢)). Moreover, these two nonzero equilibria are both
asymptotically stable for all 𝜏 ≥ 0.

The proof is given in Appendix F. From Theorems 7, 8,
and 9, we have the following.

Theorem 10. System (2) undergoes a pitchfork bifurcation at
|𝛼| = 1 when 𝑛 is even and at 𝛼 = 1 when 𝑛 is odd.

Remark 11. From Theorems 7, 8, and 9, we also know that
the size of the network does not affect the position of the
steady states (see Figures 2 and 3 obtained from numerical
simulations) and their stability.

5. Center Manifold Reduction and
Normal Forms

In this section, we will apply the method of Faria and Mag-
alhães [48, 49] to obtain normal forms on center manifold.
After that, we will study the properties of Hopf and steady
state bifurcations. Without loss of generality, we assume

(H3) 𝑓 ∈ 𝐶
3
(R), 𝑓(0) = 𝑓


(0) = 0, 𝑓


(0) = 1, 𝑓


(0) ̸= 0.

Firstly, we introduce a new time scale 𝑡 → 𝑡/𝜏 to normalize
the delay and give universalities to our analysis. Then system
(2) can be written as

�̇� (𝑡) = 𝐹 (𝑧
𝑡
, 𝜏) , (16)

in the phase space 𝐶 = 𝐶([−1, 0],R𝑛). For 𝜑 =

(𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
)
𝑇
∈ 𝐶, we have

(𝐹 (𝜑, 𝜏))
𝑖
= −𝜏𝜑

𝑖
(0) + 𝜏𝛼𝑓 (𝜑

𝑖+1
(−1)) , 𝑖 (mod 𝑛) . (17)

Under the assumption (H3), we can expand 𝑓 in the Taylor
series

𝑓 (𝑧) = 𝑧 + 𝛾𝑧
3
+ h.o.t., (18)

where 𝛾 = (1/3!)𝑓

(0) and h.o.t. stands for the higher order

terms.

5.1. Properties ofHopf Bifurcations: |𝛼|>1. FromLemma3 and
Theorem 4, we know that for |𝛼| > 1 the characteristic equa-
tion (8) has a pair of simple purely imaginary roots ±𝑖𝜔

0
and

system (2) undergoes a Hopf bifurcation at the critical delay
values 𝜏

𝑘,𝑗
. In this subsection, we will determine the direction

and stability of Hopf bifurcations by calculating explicitly the
normal formof system (2) on the associated two-dimensional
(2D) center manifold. For a Hopf bifurcation, the normal
form on the center manifold is given in polar coordinates 𝜌, 𝜉
by

̇𝜌 = 𝐾
1
𝜇𝜌 + 𝐾

2
𝜌
3
+ 𝑂 (𝜇

2
𝜌 +





(𝜌, 𝜇)






4

) ,

̇
𝜉 = −𝜔

∗
+ 𝑂 (





(𝜌, 𝜇)





) .

(19)

Here, 𝜇 = 𝜏 − 𝜏
𝑘,𝑗

is the bifurcation parameter, 𝜔
∗

=

𝜔
0
𝜏
𝑘,𝑗
, and the coefficients 𝐾

1
and 𝐾

2
are real numbers. The

qualitative behavior of the asymptotic solutions of (16) (or
equivalently of (2)) is the same as the behavior of solutions
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Figure 2: Steady state pitchfork bifurcation of system (2) for 𝑛 odd.

of (19), which, in turn, only depends on the signs of the
two coefficients 𝐾

1
and 𝐾

2
. The sign of the product 𝐾

1
𝐾
2

determines the direction of the bifurcation (supercritical if
𝐾
1
𝐾
2

< 0 and subcritical if 𝐾
1
𝐾
2

> 0), and the sign of
𝐾
2
determines the stability of the nontrivial periodic orbits

(stable if𝐾
2
< 0 and unstable if 𝐾

2
> 0) (see, e.g., [50]).

The derivation of the normal form coefficients𝐾
1
and𝐾

2

are given in Appendix G. According to Appendix G, we have

𝐾
1
=

𝜔
2

0
𝜏
𝑘,𝑗

(1 + 𝜏
𝑘,𝑗
)

2

+ (𝜔
0
𝜏
𝑘,𝑗
)

> 0,

𝐾
2
= 3𝛾𝜏

𝑘,𝑗
Re {(𝑎)−1 (1 + 𝑖𝜔

0
)}

=

1

2

𝑓

(0) 𝜏
𝑘,𝑗

1 + 𝜏
𝑘,𝑗

+ 𝜔
2

0
𝜏
𝑘,𝑗

(1 + 𝜏
∗
)
2
+ (𝜔
0
𝜏
𝑘,𝑗
)

2
.

(20)

Consequently, we have the following theorem.

Theorem 12. If 𝑓(0) < 0 (resp., 𝑓(0) > 0), then the
Hopf bifurcations occurring on the center manifold of system
(2) at 𝑥 = 0, 𝜏 = 𝜏

𝑘,𝑗
are supercritical (resp., subcritical), with

nontrivial periodic stable (resp., unstable) orbits on the center
manifold.

Remark 13. From Lemma 3, we know that the characteristic
equation (8) has at least one root with positive real part if one
of the following conditions is satisfied:

(i) 𝑛 is even and |𝛼| > 1;

(ii) 𝑛 is odd and either 𝛼 < sec((𝑛 − 1)𝜋/𝑛) or 𝛼 > 1;

(iii) 𝑛 is odd, 𝜏 > 𝜏
(𝑛−1)/2,0

, and sec((𝑛 − 1)𝜋/𝑛) < 𝛼 < −1.

Therefore, if one of the above three conditions is satisfied,
then the periodic solutions bifurcating from the rest state at
the critical value of 𝜏 must be unstable in the whole phase
space although they are stable on the center manifold.

However, when 𝑛 is odd and sec((𝑛 − 1)𝜋/𝑛) < 𝛼 < −1,
all roots of the characteristic equation (8) except ±𝑖𝜔

0
have

negative real parts at 𝜏 = 𝜏
(𝑛−1)/2,0

. Thus in this case the
stability of periodic solutions bifurcating at 𝜏 = 𝜏

(𝑛−1)/2,0
on

the center manifold is equivalent to that of periodic solutions
in the whole phase space.

5.2. The Steady State, Pitchfork Bifurcation: |𝛼| = 1. We first
consider the case when 𝑛 is even and 𝛼 = −1. From
Theorem 5, we know that the characteristic equation (8) has
a simple root 𝜆 = 0 for all 𝜏 ≥ 0. To study the bifurcation in
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Figure 3: Steady state pitchfork bifurcation of system (2) for 𝑛 even.

detail we introduce a new bifurcation parameter 𝛼 = −1 + ].
Then the normal form (H.4) becomes (see Appendix H)

�̇� = −

𝜏

1 + 𝜏

]𝑥 +

𝛾𝜏

1 + 𝜏

𝑥
3
+ ⋅ ⋅ ⋅ . (21)

This normal form, together with the results in [51], permits
the following theorem to hold.

Theorem 14. Suppose that 𝑛 is even and 𝛼 = −1. Then the rest
state 𝑥

0
of system (2) is stable if 𝑓(0) < 0 and unstable if

𝑓

(0) > 0 for any 𝜏 ≥ 0.

Next if 𝛼 = 1, letting 𝛼 = 1 + ], one can obtain

Φ (𝜃) = (1, 1, . . . , 1)
𝑇
, −1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) =

1

𝑛 (1 + 𝜏)

(1, 1, . . . , 1) , 0 ≤ 𝑠 ≤ 1,

(22)

and then get the same normal form (21). So, we can obtain the
following theorem.

Theorem 15. The rest state 𝑥
0
of system (2) is stable if𝑓(0) <

0 and unstable if 𝑓(0) > 0 for any 𝜏 ≥ 0 and 𝛼 = 1.

Now we can explicitly determine the stability of the zero
solution of the system (2) on the (𝛼, 𝜏) plane. According to the
results stated inTheorems 4, 5, 14, and 15, the stable regions of

1−1 0 𝛼

𝜏

Figure 4: Stable region (shaded area) of the rest state 𝑥
0
of system

(2) for 𝑛 even.

the rest state of system (2) with 𝑓

(0) < 0 can be illustrated

graphically in Figures 4 and 5.

6. Spatiotemporal Patterns of Bifurcating
Periodic Solutions

Earlier we have described the Hopf bifurcation at the critical
value 𝜏

𝑘,𝑗
leading to a family of periodic solutions. In this

section, we will investigate the spatiotemporal patterns of



8 Abstract and Applied Analysis

1−1 0 𝛼

𝜏𝜏(𝛼) =
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(𝜋 − n(𝜋 − arccos 1

𝛼
))

sec (n − 1)𝜋

n

Figure 5: Stable region (shaded area) of the rest state 𝑥
0
of system

(2) for 𝑛 odd.

these bifurcating periodic solutions and refer to [22] for
explanations of notations involved.

Let us first introduce notations from the theory of
compact groups.

(i) 𝑍
𝑛
is the cyclic group of order 𝑛, which corresponds

to rotations of 2𝜋/𝑛. Denoting the generator of this
group by 𝜌, its action on R𝑛 is given by

(𝜌𝑥
𝑖
) = 𝑥
𝑖+1

, ∀𝑖 (mod 𝑛) , 𝑥 ∈ R
𝑛
. (23)

(ii) Let 𝐺 : 𝐶 → R𝑛 and Γ be a compact group. The
system �̇�(𝑡) = 𝐺(𝑥

𝑡
) is said to be Γ-equivariant if

𝐺(𝛾𝑥
𝑡
) = 𝛾𝐺(𝑥

𝑡
) for all 𝛾 ∈ Γ.

It is clear that system (2) is 𝑍
𝑛
equivariant. Let 𝜔 = 2𝜋/𝜔

0
.

Denote by 𝑃
𝜔
the Banach space of all continuous 𝜔-periodic

mappings from R into R𝑛, equipped with the supremum
norm.Then, for the circle group 𝑆1, 𝑍

𝑛
× 𝑆
1 acts on 𝑃

𝜔
by

(𝜌, 𝑒
𝑖𝜃
) 𝑥 (𝑡) = 𝜌𝑥 (𝑡 +

𝜔

2𝜋

𝜃) ,

(𝜌, 𝑒
𝑖𝜃
) ∈ 𝑍
𝑛
× 𝑆
1
, 𝑥 ∈ 𝑃

𝜔
.

(24)

Denote by 𝑆𝑃
𝜔
the subspace of 𝑃

𝜔
of all 𝜔-periodic solutions

of (4) with 𝜏 = 𝜏
𝑘,𝑗
. Then

𝑆𝑃
𝜔
= {𝑦
1
𝜖
1
(𝑡) + 𝑦

2
𝜖
2
(𝑡) , 𝑦
1
, 𝑦
2
∈ R} , (25)

where 𝜖1(𝑡) and 𝜖2(𝑡) are 𝑛-dimensional vector functions with
the 𝑗th components defined by 𝜖

1

𝑗
(𝑡) = cos(𝜔

0
𝑡 + 2(𝑗 −

1)𝑘𝜋/𝑛), 𝜖
2

𝑗
(𝑡) = sin(𝜔

0
𝑡 + 2(𝑗 − 1)𝑘𝜋/𝑛), respectively. For

each subgroup Σ ≤ 𝑍
𝑛
× 𝑆
1, it is clear that the fixed point set

Fix (Σ, 𝑆𝑃
𝜔
) = {𝑥 ∈ 𝑆𝑃

𝜔
; (𝜌, 𝑒
𝑖𝜃
) 𝑥 = 𝑥 ∀ (𝜌, 𝑒

𝑖𝜃
) ∈ Σ}

(26)

is a subspace.

Lemma 16. Consider

𝜌𝜖
1
(𝑡) = 𝜖

1
(𝑡 +

𝑘𝜔

𝑛

) , 𝜌𝜖
2
(𝑡) = 𝜖

2
(𝑡 +

𝑘𝜔

𝑛

) . (27)

The proof is given in Appendix I.

It is known from [19] that the subgroups of 𝑍
𝑛
× 𝑆
1, up

to conjugacy, describe the symmetry of periodic solutions
of system (2) which exhibit certain spatiotemporal patterns
given by

Σ = {(𝜌, 𝑒
(2𝑘𝜋/𝑛)𝑖

) ; 0 ≤ 𝑘 ≤ 𝑛 − 1} . (28)

Form Lemma 16, it follows that Fix(Σ, 𝑆𝑃
𝜔
) = 𝑆𝑃

𝜔
which

means that

dim Fix (Σ, 𝑆𝑃
𝜔
) = 2. (29)

This, together with Lemma 16, allows us to apply the symmet-
ric Hopf bifurcation theorem for delay differential equations
due to Wu [22] to obtain the following results.

Theorem 17. Suppose that |𝛼| > 1 and 𝜏
𝑘,𝑗

is defined by (13)
with 𝑘 = 0, 1, . . . , 𝑛 − 1 and 𝑗 ∈ {0, 1, . . .} such that 𝜏

𝑘,𝑗
> 0.

Then near 𝜏
𝑘,𝑗

there exists a branch of small-amplitude periodic
solutions of system (2) with period 𝑝 near 2𝜋/𝜔

0
, satisfying

𝑥
𝑖+1

(𝑡) = 𝑥
𝑖
(𝑡 −

𝑘

𝑛

𝑝) , 𝑖 (mod 𝑛) . (30)

7. Examples and Numerical Simulations

In this section, we consider two examples with four neurons
and seven neurons, respectively, to justify our theoretical
results.

7.1. Four-Neural Network Model (𝑛, Even). Consider a four-
neuron network model

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼 tanh (𝑥

𝑖+1
(𝑡 − 𝜏)) , 𝑖 (mod 4) . (31)

From (13), we get the Hopf bifurcation curves

𝜏
𝑘,𝑗

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

√𝛼
2
− 1

×{−

(𝑘 − 2) 𝜋

2

− arccos 1

|𝛼|

+ 2𝑗𝜋} , for 𝛼 < −1,

1

√𝛼
2
− 1

{

𝑘𝜋

2

− arccos 1
𝛼

+ 2𝑗𝜋} , for 𝛼 > 1,

(32)

with 𝑘 = 0, 1, 2 and 𝑗 ∈ {0, 1, . . .} such that 𝜏
𝑘,𝑗

> 0. It follows
that these Hopf bifurcation curves are symmetric about 𝜏-
axis (see Figure 6). From Sections 2 and 3, we can obtain the
following results.

Corollary 18. (i) If −1 ≤ 𝛼 ≤ 1, then the rest state 𝑥
0
of system

(31) is stable for all 𝜏 ≥ 0.
(ii) If |𝛼| > 1, then the rest state 𝑥

0
of system (31) is unstable

but the other two nonzero steady states are both stable for all
𝜏 ≥ 0.

(iii) System (31) undergoes a Hopf bifurcation at 𝜏
𝑘,𝑗

(as
shown in Figure 6) and bifurcating periodic solutions are all
unstable in the phase space (although stable on the center
manifold).
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Figure 6: The curves of Hopf and pitchfork bifurcations of system
(31).

For 𝛼 = −1.5, the system (31) has three equilibria 𝑥
0
, 𝑥∗
1
=

(1.2878, −1.2878, 1.2878, −1.2878) and 𝑥
∗

2
= (−1.2878,

1.2878, −1.2878, 1.2878). Figure 7 shows the evolution of
system (31) startingwith the initial value (0.3, 0.5, −0.5, 1) and
𝜏 = 2.

Taking 𝛼 = 1.5, system (31) has three equilibria 𝑥
0
, 𝑥∗
1
=

(1.2878, 1.2878, 1.2878, 1.2878) and 𝑥
∗

2
= (−1.2878,

−1.2878, −1.2878, −1.2878). The zero equilibrium is unstable
and the other two nonzero equilibria are both stable (see
Figure 8).

7.2. Seven-Neuron Network Model (𝑛, Odd). Consider a
seven-neuron network model

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼 tanh (𝑥

𝑖+1
(𝑡 − 𝜏)) , 𝑖 (mod 7) . (33)

Let

𝜏
𝑘,𝑗

=

{
{
{

{
{
{

{

1

√𝛼
2
− 1

{−

2𝑘𝜋

7

+ arccos 1
𝛼

+ 2𝑗𝜋} , for 𝛼 < −15

1

√𝛼
2
− 1

{

2𝑘𝜋

7

− arccos 1
𝛼

+ 2𝑗𝜋} , for 𝛼 > 1,

(34)

with 𝑘 = 0, 1, . . . , 6 and 𝑗 ∈ {0, 1, . . .} such that 𝜏
𝑘,𝑗

> 0. Then
from Sections 2 and 3, we have the following results.

Corollary 19. (i) If −1 ≤ 𝛼 ≤ 1, then the rest state 𝑥
0
of system

(33) is stable for all 𝜏 ≥ 0.
(ii) If 𝛼 < sec(6𝜋/7) or 𝛼 > 1, then the rest state 𝑥

0
of

system (33) is unstable for all 𝜏 ≥ 0.
(iii) If sec(6𝜋/7) < 𝛼 < −1, then the rest state 𝑥

0
of system

(33) is asymptotically stable for 𝜏 ∈ [0, 𝜏
3,0
] and unstable for

𝜏 > 𝜏
3,0
.

(iv) System (33) undergoes a Hopf bifurcation at 𝜏
𝑘,𝑗

(as
shown in Figure 9) and the bifurcating periodic solutions satisfy

𝑥
𝑖+1

= 𝑥
𝑖
(𝑡 −

𝑘

7

𝑝) , 𝑖 (mod 7) . (35)
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Figure 7: Evolution of system (31) with 𝛼 = −1.5, 𝜏 = 2. The rest
state𝑥

0
of system (2) is unstable and the other twononzero equilibria

are stable. (a) shows the time evolution for system (33) and (b) is the
phase portrait for the first three components 𝑥

1
, 𝑥
2
, and 𝑥

3
of system

(2).

Moreover, the bifurcating periodic solutions at the first
bifurcating point 𝜏

3,0
are stable and others unstable in the phase

space.

To perform the numerical calculation, we consider the
parameter value sec(6𝜋/7) < 𝛼 = −1.08 < −1. It follows from
(34) that

0 < 𝜏
3,0

≈ 0.1507 < 𝜏
2,0

≈ 2.3511 < 𝜏
1,0

≈ 4.5516 < ⋅ ⋅ ⋅ .

(36)

Taking 𝜏 = 0.1 < 𝜏
3,0
, Figure 10 shows that the rest state

𝑥
0
of system (33) is asymptotically stable.
For 𝜏
3,0

< 𝜏 = 0.2 < 𝜏
2,0
, it follows from Corollary 19

that the rest state 𝑥
0
of system (33) becomes unstable and

there exists a small-amplitude phase-locked oscillation with
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Figure 8: Evolution of (31) with 𝛼 = 1.5, 𝜏 = 2. The rest state 𝑥
0

of system (2) is unstable and the other two nonzero equilibria are
stable. (a) shows the time evolution for system (33) and (b) is the
phase portrait for the first three components 𝑥

1
, 𝑥
2
, and 𝑥

3
of system

(2).

period𝑝 satisfying 𝑥
𝑖+1

= 𝑥
𝑖
(𝑡−(3/7)𝑝), 𝑖(mod 7).This result

is illustrated in Figure 11.
Taking 𝜏 = 4.5 far away from the first critical value

𝜏
3,0
, the numerical simulation shows the existence of phase-

locked oscillations with period 𝑝 satisfying 𝑥
𝑖+1

= 𝑥
𝑖
(𝑡 −

(3/7)𝑝), 𝑖(mod7) (see Figure 12). The amplitude of this
periodic oscillation is larger than that of periodic oscilla-
tion shown in Figure 11. This large-amplitude phase-locked
oscillation is very similar to the square waves reported
in [52, 53] for singularly perturbed delay equations. This
phase-locked oscillation with period 𝑝 satisfying 𝑥

𝑖+1
=

𝑥
𝑖
(𝑡−(3/7)𝑝), 𝑖(mod 7) also shows that this stable bifurcating

periodic solution comes from the first critical value 𝜏
3,0

not
from other critical values.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

Pitchfork

Hopf

Stable region

𝜏
𝜏3,0

𝜏2,0

𝜏1,0
𝜏3,0

𝜏2,0

𝜏1,0

𝛼

Figure 9: Stable region and curves of Hopf and pitchfork bifurca-
tions of system (33) for the rest state 𝑥

0
.

Taking 𝛼 = 1.5, system (33) has three synchronous
equilibria 𝑥

0
, 𝑥∗
1

= (1.2878, 1.2878, . . . , 1.2878) and 𝑥
∗

2
=

(−1.2878, −1.2878, . . . , −1.2878). The zero equilibrium is
unstable and the other two nonzero equilibria are both stable
(see Figure 13).

8. Conclusions

In this paper, we have studied a lattice ring of 𝑛 identical
neurons coupled with the same delay. We have analyzed the
global stability and delay dependent local stability regions
and conditions and explored the different types of bifurcation
after the stability is lost. We also have shown that the stability
of the zero equilibrium state depends not only on the synaptic
strength 𝛼 and time delay 𝜏 but also on the parity of the
network size. However, if the nonzero equilibrium exists, it
is always stable.

We have also studied the stability of the zero equilibrium
on the pitchfork values |𝛼| = 1 and have given easy-to-check
conditions on the stability and direction of Hopf bifurcations.
For example, if 𝑓(0) < 0, then when 𝑛 is odd the periodic
orbits bifurcating from the first critical value 𝜏

(𝑛−1)/2,0
are

stable in the phase space, but when 𝑛 is even all bifurcating
periodic orbits are unstable in the phase space.

On the other hand, we have analyzed the spatiotemporal
patterns of nonlinear oscillations by using the symmetric
bifurcation theory of delay differential equations coupled
with representation theory of cyclic groups. Finally, using
MATLAB software, we have done some numerical simula-
tions showing the existence of the stable equilibrium and
phase-locked periodic waves arising from Hopf bifurcations.

We have generalized recently results for lattice rings with
a few units to an arbitrary number. The results obtained are
expected to be of interest to neurodynamics and to scientists
interested in robots. Indeed we have shown that there are
significant features different for 𝑛 even at qualitative level and
oddwhich do not disappear when 𝑛 goes to large. A finding of
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Figure 10: (a) shows the time evolution for system (33) and (b) is the
phase portrait for the first three components 𝑥

1
, 𝑥
2
, and 𝑥

3
of system

(33) at 𝜏 = 0.1 < 𝜏
3,0
.

practical interest is that for what enough time intervals these
differences are not so relevant.

Appendices

A. Proof of Lemma 2

Using the assumption (H1), we can write 𝑓(𝑥
𝑖
(𝑡 − 𝜏)) as

𝑓 (𝑥
𝑖
(𝑡 − 𝜏)) = 𝑝

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜏) , (A.1)

where

𝑝
𝑖
(𝑡) = ∫

1

0

𝑓

(𝑠𝑥
𝑖
(𝑡 − 𝜏)) 𝑑𝑠, (A.2)
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Figure 11: (a) shows the time evolution for system (33) and (b) is the
phase portrait for the first three components 𝑥

1
, 𝑥
2
, and 𝑥

3
of system

(33) at 𝜏 = 0.2 ∈ (𝜏
3,0
, 𝜏
2,0
).

and find 𝑝
∗
∈ (0, 1] such that 𝑝

𝑖
(𝑡) ≤ 𝑝

∗ for all 𝑡 ≥ 0 and 𝑖.
Thus, system (2) becomes

𝑑𝑥
𝑖

𝑑𝑡

= −𝑥
𝑖
(𝑡) + 𝛼𝑝

𝑖+1
(𝑡) 𝑥
𝑖+1

(𝑡 − 𝜏) , 𝑖 (mod 𝑛) . (A.3)

Using the Lyapunov functional

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑡) + |𝛼|

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏

𝑥
2

𝑖+1
(𝑠) 𝑑𝑠, (A.4)
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Figure 12: (a) shows the time evolution for system (33) and (b) is the
phase portrait for the first three components 𝑥

1
, 𝑥
2
, and 𝑥

3
of system

(33) at 𝜏 = 4.5 far away from the first critical value 𝜏
3,0
.

we obtain

𝑑𝑉

𝑑𝑡








(A.3)

= 2

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡) �̇�
𝑖
(𝑡) + |𝛼|

𝑛

∑

𝑖=1

(𝑥
2

𝑖+1
(𝑡) − 𝑥

2

𝑖+1
(𝑡 − 𝜏))

= 2

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑡) (−𝑥

𝑖
(𝑡) + 𝛼𝑝

𝑖+1
(𝑡) 𝑥
𝑖+1

(𝑡 − 𝜏))

+ |𝛼|

𝑛

∑

𝑖=1

(𝑥
2

𝑖+1
(𝑡) − 𝑥

2

𝑖+1
(𝑡 − 𝜏))

≤ −2

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

2 |𝛼|




𝑥
𝑖
(𝑡)










𝑥
𝑖+1
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Figure 13: Evolution of system (33) with 𝛼 = 1.5, 𝜏 = 2 starting from
different initial values. (a) shows the time evolution for system (33)
and (b) is the phase portrait for the first three components 𝑥

1
, 𝑥
2
,

and 𝑥
3
. The rest state 𝑥

0
of system (2) is unstable and two nonzero

equilibria 𝑥∗
1
and 𝑥

∗

2
are stable.

+ |𝛼|

𝑛

∑

𝑖=1

(𝑥
2

𝑖+1
(𝑡) − 𝑥

2

𝑖+1
(𝑡 − 𝜏))

≤ −2

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑡) + |𝛼|

𝑛

∑

𝑖=1

(𝑥
2

𝑖
(𝑡) + 𝑥

2

𝑖+1
(𝑡 − 𝜏))

+ |𝛼|

𝑛

∑

𝑖=1

(𝑥
2

𝑖+1
(𝑡) − 𝑥

2

𝑖+1
(𝑡 − 𝜏))

= −2 (1 − |𝛼|)

𝑛

∑

𝑖=1

𝑥
2

𝑖
(𝑡) . (A.5)

For 𝑥(𝑡) ̸= 0 and |𝛼| < 1, 𝑑𝑉/𝑑𝑡|
(A.3) < 0, which completes

the proof.
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B. Proof of Lemma 3

Conclusion (III) follows from the fact that the characteristic
equation (8) has a pair of simple purely imaginary roots ±𝑖𝜔

0

at 𝜏 = 𝜏
𝑘,𝑗

and the transversality condition (15) holds.
Denote by 𝜆

𝑘
a zero of Δ

𝑘
(𝜏, 𝜆) with 𝜏 = 0. From (9), we

have

Re 𝜆
𝑘
= 𝛼 cos 2𝑘𝜋

𝑛

− 1. (B.1)

Clearly, Re 𝜆
0
= 𝛼 − 1 > 0 for 𝛼 > 1. If 𝑛 is even, then

Re 𝜆
𝑛/2

= −𝛼 − 1 > 0 for 𝛼 < −1. These, together with (15)
and the Rouché-Froebenius theorem, imply that conclusion
(I) is true.

If 𝑛 is odd with 𝛼 < sec((𝑛− 1)𝜋/𝑛), then Re 𝜆
(𝑛−1)/2

> 0.
If 𝑛 is odd with sec((𝑛 − 1)𝜋/𝑛) < 𝛼 < −1, then

Re 𝜆
(𝑛−1)/2

< 0. (B.2)

Just then from (B.1), we have

Re 𝜆
0
< Re 𝜆

1
= Re 𝜆

𝑛−1
< Re 𝜆

2

= Re 𝜆
𝑛−2

< ⋅ ⋅ ⋅ < Re 𝜆
(𝑛−1)/2

= Re 𝜆
(𝑛+1)/2

.

(B.3)

It follows that the root of Δ
𝑘
(0, 𝜆) = 0 has negative real parts

for any 𝑘 ∈ {0, 1, 2, . . . , 𝑛 − 1}. In addition, from (13), we have

𝜏
𝑘,𝑗

< 𝜏
𝑘−1,𝑗

, 𝜏
0,𝑗

< 𝜏
𝑛−1,𝑗+1

, (B.4)

which means

𝜏
𝑛−1,0

< ⋅ ⋅ ⋅ < 𝜏
(𝑛+1)/2,0

< 𝜏
(𝑛−1)/2,0

< ⋅ ⋅ ⋅ < 𝜏
0,0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗=0

< 𝜏
𝑛−1,1

< ⋅ ⋅ ⋅ < 𝜏
(𝑛+1)/2,1

< 𝜏
(𝑛−1)/2,1

< ⋅ ⋅ ⋅ < 𝜏
0,1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗=1

< ⋅ ⋅ ⋅ .

(B.5)

From (13), we also have, for 𝑛 being oddwith sec((𝑛−1)𝜋/𝑛) <
𝛼 < −1,

𝜏
(𝑛−1)/2,0

=

1

𝜔
0

[−𝜋 +

𝜋

𝑛

+ arccos 1
𝛼

]

=

1

𝑛𝜔
0

[𝜋 − 𝑛 (𝜋 − arccos 1
𝛼

)] > 0,

(B.6)

but

𝜏
(𝑛+1)/2,0

=

1

𝜔
0

[−𝜋 −

𝜋

𝑛

+ arccos 1
𝛼

] < 0. (B.7)

Consequently, 𝜏
(𝑛−1)/2,0

is the first positive critical value for
the occurrence of purely imaginary roots ±𝑖𝜔

0
. Thus, by

(15) and the Rouché-Froebenius theorem, conclusion (II) is
proved.

C. Proof of Theorem 5

It can be verified that 𝜆 = 0 is a simple zero of Δ
𝑘
(𝜏, 𝜆) only

for 𝑘 = 0 when 𝛼 = 1. When 𝛼 = −1 and 𝑛 is even, 𝜆 = 0 is a
simple zero of Δ

𝑘
(𝜏, 𝜆) with 𝑘 = 𝑛/2.

On the other hand, suppose that 𝜆 = 𝑢+ 𝑖V ̸= 0 is a root of
Δ
𝑘
(𝜏, 𝜆) = 0. Then from (9)

𝑢 + 1 = 𝛼𝑒
−𝜏𝑢 cos(2𝑘𝜋

𝑛

− 𝜏V) ,

V = 𝛼𝑒
−𝜏𝑢 sin(2𝑘𝜋

𝑛

− 𝜏V) .

(C.1)

For 𝛼 = ±1, the latter implies

(𝑢 + 1)
2
+ V2 = 𝑒

−2𝜏𝑢
, (C.2)

which can be only satisfied for 𝑢 < 0. This completes the
proof.

D. Proof of Theorem 7

For 1 ≤ 𝑖 ≤ 𝑛, every equilibrium 𝑥 of system (2) must satisfy

𝑥
𝑖
− 𝑥
𝑖+1

= 𝛼 (𝑓 (𝑥
𝑖+1

) − 𝑓 (𝑥
𝑖+2

)) . (D.1)

Using the monotonicity of 𝑓 and the assumption 𝛼 > 1,
we obtain that if 𝑥

𝑖
̸= 𝑥
𝑖+1

, say 𝑥
𝑖
> 𝑥
𝑖+1

, then 𝑥
𝑖+1

> 𝑥
𝑖+2

.
Repeating the above procedure, we have

𝑥
𝑖
> 𝑥
𝑖+1

> 𝑥
𝑖+2

> 𝑥
𝑖+3

> ⋅ ⋅ ⋅ > 𝑥
𝑛
> 𝑥
1
⋅ ⋅ ⋅ > 𝑥

𝑖−1
> 𝑥
𝑖
,

(D.2)

which is a contradiction, implying 𝑥
𝑖
= 𝑥
𝑖+1

. Thus, 𝑥 is an
equilibrium of system (2) if and only if 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

satisfy the equation 𝑢 = 𝛼𝑓(𝑢). According to the assumption
(H2) when 𝛼 = 1 it has just one zero root, and when
𝛼 > 1 it has exactly three roots 𝑢

−
, 0, 𝑢
+
and 𝛼𝑓


(𝑢
±
) < 1.

Consequently, when 𝛼 > 1 system (2) has exactly three
equilibria:

𝑥
−
= (𝑢
−
, 𝑢
−
, . . . , 𝑢

−
) , 𝑥

0
= (0, 0, . . . , 0) ,

𝑥
+
= (𝑢
+
, 𝑢
+
, . . . , 𝑢

+
) .

(D.3)

In addition, note that the characteristic equation of system (2)
at 𝑥
±
is

det𝑀
𝑛
(𝜏, 𝜆) =

𝑛−1

∏

𝑘=0

Δ
𝑘
(𝜏, 𝜆) = 0, (D.4)

where

Δ
𝑘
(𝜏, 𝜆) = 𝜆 + 1 − 𝛼𝑓


(𝑢
±
) 𝑒
(2𝑘𝜋/𝑛)𝑖

𝑒
−𝜆𝜏

. (D.5)

Thus, from Section 3 and the fact that 0 < 𝛼𝑓

(𝑢
±
) < 1, we

have these two equilibria𝑥
−
and𝑥
+
both asymptotically stable

for all 𝜏 ≥ 0. This completes the proof.
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E. Proof of Theorem 8

Lemma 2 says that system (2) has just the zero equilibrium
𝑥
0
for −1 < 𝛼 < 1. In fact, from the proof of Theorem 7 we

also obtain that system (2) has just the zero equilibriumwhen
𝛼 = 1. We now consider the case 𝛼 ≤ −1. From system (2),
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is an equilibrium of system (2) if and only if

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) satisfies

𝑥
1
= 𝛼𝑓 (𝑥

2
) , 𝑥

2
= 𝛼𝑓 (𝑥

3
) , . . . , 𝑥

𝑛
= 𝛼𝑓 (𝑥

1
) . (E.1)

This means that 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, satisfy

𝑥 − 𝛼𝑓 (𝛼𝑓 (𝛼 (⋅ ⋅ ⋅ 𝛼𝑓 (𝛼𝑓 (𝑥)) ⋅ ⋅ ⋅ ))) = 0. (E.2)

Let

𝑔 (𝑥) = 𝑥 − 𝛼𝑓 (𝛼𝑓 (𝛼 (⋅ ⋅ ⋅ 𝛼𝑓 (𝛼𝑓 (𝑥)) ⋅ ⋅ ⋅ ))) . (E.3)

Then we have 𝑔(0) = 0 and

𝑔

(𝑥) = 1 − 𝛼

𝑛
𝑓

(𝛼𝑓 (𝛼 (⋅ ⋅ ⋅ 𝛼𝑓 (𝛼𝑓 (𝑥)) ⋅ ⋅ ⋅ )))

⋅ ⋅ ⋅ 𝑓

(𝛼𝑓 (𝑥)) 𝑓


(𝑥) .

(E.4)

Note that 𝑓(𝑥) > 0 for all 𝑥 ∈ R, 𝑛 is odd, and 𝛼 ≤ −1 < 0.
Thus, we have 𝑔(𝑥) > 0 for all 𝑥 ∈ R and hence 𝑥 = 0 is the
unique root of 𝑔(𝑥). This completes the proof.

F. Proof of Theorem 9

Clearly, 𝑥
0
is an equilibrium. Let (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) be a nonzero

equilibrium of system (2). At first, suppose that 𝑥
1

= 𝑥
2
,

which, together with (D.1), implies 𝑥
2
= 𝑥
3
, then 𝑥

3
= 𝑥
4
, and

so on. Consequently, we obtain that 𝑥
1
= 𝑥
2
= ⋅ ⋅ ⋅ = 𝑥

𝑛
.Thus,

𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, satisfy 𝑢 = 𝛼𝑓(𝑢). Using the monotonicity

of 𝑓 and 𝛼 < −1 < 0, we get 𝑥
𝑖
= 0 for any 𝑖 = 1, 2, . . . , 𝑛.

This contradiction leads to 𝑥
1

̸= 𝑥
2
. In fact, we can also obtain

𝑥
𝑖
̸= 𝑥
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑛, 𝑖(mod𝑛). By (E.4), we know that
𝑔

(0) < 0 when 𝑛 is even and 𝛼 < −1. Therefore, there exists

a sufficiently small positive number 𝛿 such that 𝑔(𝑥) < 0 for
𝑥 ∈ (−𝛿, +𝛿). From 𝑔(0) = 0 we have 𝑔(𝑥) < 0 for 𝑥 ∈ (0, +𝛿)

and 𝑔(𝑥) > 0 for 𝑥 ∈ (−𝛿, 0). On the other hand, since 𝑓(𝑥)
is bounded, we have 𝑔(𝑥) → +∞ as 𝑥 → +∞ and 𝑔(𝑥) →

−∞ as 𝑥 → −∞. This means that there exist 𝑢
−
< 0 and

𝑢
+
> 0 such that 𝑔(𝑢

−
) = 𝑔(𝑢

+
) = 0, 𝑔(𝑥) > 0 for 𝑥 ∈ (𝑢

−
, 0)

and 𝑔(𝑥) < 0 for 𝑥 ∈ (0, 𝑢
+
), and 𝑔


(𝑢
−
), 𝑔

(𝑢
+
) ≥ 0. In

addition, by 𝑓(𝑥) < 0 for 𝑥 > 0 and 𝑓(𝑥) > 0 for 𝑥 < 0, we
obtain, for 𝑥 > 𝑢

+
,

𝑓

(𝑥) < 𝑓


(𝑢
+
) ,

𝑓

(𝛼𝑓 (𝑥)) < 𝑓


(𝛼𝑓 (𝑢

+
)) , . . . ,

𝑓

(𝛼𝑓 (𝛼 (⋅ ⋅ ⋅ 𝛼𝑓 (𝛼𝑓 (𝑥)) ⋅ ⋅ ⋅ )))

< 𝑓

(𝛼𝑓 (𝛼 (⋅ ⋅ ⋅ 𝛼𝑓 (𝛼𝑓 (𝑢

+
)) ⋅ ⋅ ⋅ ))) .

(F.1)

So,

𝑔

(𝑥) > 𝑔


(𝑢
+
) ≥ 0, for 𝑥 > 𝑢

+
. (F.2)

Similarly, we can obtain

𝑔

(𝑥) > 𝑔


(𝑢
−
) ≥ 0, for 𝑥 < 𝑢

−
. (F.3)

These imply that when 𝑛 is even and 𝛼 < −1, 𝑔(𝑥) has exactly
three roots: 𝑢

−
, 0, 𝑢
+
. Thus, from Lemma 6 and 𝑥

𝑖
̸= 𝑥
𝑖+1

it follows that system (2) has exactly three roots: the zero
equilibrium 𝑥

0
= (0, 0, . . . , 0) and

𝑥
∗

1
= (𝑢
+
, 𝑢
−
, 𝑢
+
, 𝑢
−
, . . . , 𝑢

+
, 𝑢
−
) ,

𝑥
∗

2
= (𝑢
−
, 𝑢
+
, 𝑢
−
, 𝑢
+
, . . . , 𝑢

−
, 𝑢
+
) .

(F.4)

From (E.1) and (F.4) we can get 𝑢
+
= 𝛼𝑓(𝑢

−
), 𝑢
−
= 𝛼𝑓(𝑢

+
),

and 𝑢
−
, 𝑢
+
are roots of the following equation:

𝑢 = 𝛼𝑓 (𝛼𝑓 (𝑢)) . (F.5)

So,

𝛼
2
𝑓

(𝑢
+
) 𝑓

(𝑢
−
) = 𝛼
2
𝑓

(𝛼𝑓 (𝑢

−
)) 𝑓

(𝑢
−
) = 1. (F.6)

Again using the assumption (H1), we have

0 < 𝑓

(𝑢
+
) , 𝑓


(𝑢
−
) < 1. (F.7)

Therefore,

𝛼
2
𝑓
2

(𝑢
+
) 𝑓
2

(𝑢
−
) < 𝛼
2
𝑓

(𝑢
+
) 𝑓

(𝑢
−
) = 1, (F.8)

and then

−1 < 𝛼𝑓

(𝑢
+
) 𝑓

(𝑢
−
) < 0. (F.9)

Letting V
𝑘
= (𝑓

(𝑢
−
), 𝑓

(𝑢
+
)𝜒
𝑘
, 𝑓

(𝑢
−
)𝜒
2𝑘,. . . , 𝑓(𝑢

+
)𝜒
(𝑛−1)𝑘

),
we can obtain that the characteristic equation of the system
at 𝑥∗
1
is

det𝑀
𝑛
(𝜏, 𝜆) =

𝑛−1

∏

𝑘=0

Δ
𝑘
(𝜏, 𝜆) = 0, (F.10)

where

Δ
𝑘
(𝜏, 𝜆) = 𝜆 + 1 − 𝛼𝑓


(𝑢
+
) 𝑓

(𝑢
−
) 𝑒
(2𝑘𝜋/𝑛)𝑖

𝑒
−𝜆𝜏

. (F.11)

Thus, from Section 3 and (F.9) we get that the equilibrium 𝑥
∗

1

is asymptotically stable for all 𝜏 ≥ 0. Similarly, we can also
obtain that the equilibrium 𝑥

∗

2
is asymptotically stable for all

𝜏 ≥ 0. This completes the proof.

G. Derivation of Coefficients 𝐾
1
, 𝐾
2

of the
Normal Form (19)

The linearized equation at the zero equilibrium of (16) is

�̇� (𝑡) = 𝐿 (𝜏) 𝑧
𝑡
, (G.1)

where

𝐿 (𝜏) 𝜑 = −𝜏𝜑 (0) + 𝜏𝛼𝑀𝜑 (−1) . (G.2)
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The linear operator 𝐿(𝜏) can be expressed in the integral form

𝐿 (𝜏) 𝜑 = ∫

0

−1

[𝑑𝜂
𝜏
(𝜃)] 𝜑 (𝜃) , (G.3)

where 𝜂
𝜏
: [−1, 0] → R𝑛 × R𝑛 is a function of bounded

variation.
Denoting 𝜏

∗
= 𝜏
𝑘,𝑗

and introducing the new parameter
𝜇 = 𝜏 − 𝜏

∗ so that 𝜇 = 0 corresponds to the Hopf bifurcation,
we rewrite (16) as

�̇� (𝑡) = 𝐿 (𝜏
∗
) 𝑧
𝑡
+ 𝐹 (𝑧

𝑡
, 𝜇) , (G.4)

where

𝐹 (𝑧
𝑡
, 𝜇) = 𝐿 (𝜇) 𝑧

𝑡

+ 𝛾𝛼𝜏
∗
𝑀(𝑧
3

1
(𝑡 − 1) , 𝑧

3

2
(𝑡 − 1) , . . . , 𝑧

3

𝑛
(𝑡 − 1))

𝑇

+ h.o.t.
(G.5)

Let 𝜔
∗

= 𝜔
0
𝜏
∗ and Λ

0
= {𝑖𝜔

∗
, −𝑖𝜔
∗
}. It is clear from

Lemma 3 that the characteristic equation of �̇�(𝑡) = 𝐿(𝜏
∗
)𝑧
𝑡

has a pair of simple imaginary roots ±𝑖𝜔
∗
and no other roots

in the imaginary axis which are multiple of ±𝑖𝜔
∗
. Thus, the

nonresonance conditions relative to Λ
0
are satisfied.

Let Φ = (𝜙
1
, 𝜙
2
) be a matrix whose columns form

a basis of the center space 𝑃 of �̇�(𝑡) = 𝐿(𝜏
∗
)𝑧
𝑡
with

𝜙
1
(𝜃) = 𝑒

𝑖𝜔∗𝜃V, 𝜙
2
(𝜃) = 𝑒

−𝑖𝜔∗𝜃V, where the bar means complex
conjugation and V is a vector in C𝑛 such that

𝐿 (𝜏
∗
) 𝜙
1
= 𝑖𝜔
∗
V. (G.6)

Suppose Ψ = col(𝜓
1
, 𝜓
2
) is a matrix whose rows form a

basis for the adjoint space 𝑃
∗ with ⟨Ψ(𝑠), Φ(𝜃)⟩ = 𝐼 (the

𝑛 × 𝑛 identity matrix) for the adjoint bilinear form on 𝐶
∗
×𝐶

defined by

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂
𝜏
∗ (𝜃) 𝜙 (𝜉) 𝑑𝜉,

for 𝜓 ∈ 𝐶
∗
, 𝜙 ∈ 𝐶

(G.7)

with 𝐶
∗

= 𝐶([0, 1],R𝑛∗), where R𝑛∗ is the 𝑛-dimensional
space of row vectors.

Then we have Ψ(𝑠) = col(𝜓
1
(𝑠), 𝜓
2
(𝑠)) =

col(𝑢𝑇𝑒−𝑖𝜔∗𝑠, 𝑢𝑇𝑒𝑖𝜔∗𝑠), 𝑠 ∈ [0, 1], for 𝑢 ∈ C𝑛 such that

⟨𝜓
1
, 𝜙
1
⟩ = 1, ⟨𝜓

1
, 𝜙
2
⟩ = 0. (G.8)

From (7), (G.6), and (G.7), we can choose

V = V
𝑘
, 𝑢 =

1

𝑛

(𝑎)
−1V
𝑘
, (G.9)

where 𝑎 = 1 + 𝜏
∗
− 𝜔
∗
𝑖, V
𝑘
= (1, 𝜒

𝑘
, 𝜒
2𝑘
, . . . , 𝜒

(𝑛−1)𝑘
)

𝑇

.
Following the procedure [48, 49] very closely, we can

obtain the normal form associated with the Hopf singularity

�̇� = 𝐵𝑥 +

1

2!

𝑔
1

2
(𝑥, 0, 𝜇) +

1

3!

𝑔
1

3
(𝑥, 0, 𝜇) + h.o.t., (G.10)

where

1

2

𝑔
1

2
(𝑥, 0, 𝜇) = (

𝑖𝜔
0
(𝑎)
−1
𝑥
1
𝜇

−𝑖𝜔
0
𝑎
−1
𝑥
2
𝜇

) ,

1

3!

𝑔
1

3
(𝑥, 0, 0) = 3𝛾𝜏

∗
(

(𝑎)
−1
(1 + 𝑖𝜔

0
) 𝑥
2

1
𝑥
2

𝑎
−1
(1 − 𝑖𝜔

0
) 𝑥
1
𝑥
2

2

) .

(G.11)

Moreover, the normal form (G.10) can be written in real
coordinates 𝑤 through the change of variables 𝑥

1
= 𝑤
1
−

𝑖𝑤
2
, 𝑥
2
= 𝑤
1
+ 𝑖𝑤
2
. Transformed to polar coordinates 𝑤

1
=

𝜌 cos 𝜉, 𝑤
2
= 𝜌 sin 𝜉, this normal form becomes (19), where

𝐾
1
= R𝑒𝐴

1
and𝐾

2
= R𝑒𝐴

2
.

H. Derivation of the Normal Form (21)
It is convenient to write (16) as the following delay system:

�̇� (𝑡) = 𝐿
0
𝑧
𝑡
+ 𝐹 (𝑧

𝑡
, ]) , (H.1)

with the phase space 𝐶 = 𝐶([−1, 0],R𝑛), where, for 𝜑 =

(𝜑
1
, 𝜑
2
)
𝑇
∈ 𝐶,

𝐿
0
(𝜑) = −𝜏𝜑 (0) − 𝜏𝑀𝜑 (−1) ,

𝐹 (𝑧
𝑡
, ]) = 𝐿

1
(]) 𝜑 (−1) + 𝜏 (−1 + ]) 𝛾𝑀(𝜑 (−1))

3

+ h.o.t., 𝑖 (mod 𝑛)

(H.2)

with 𝐿
1
(])𝜑(−1) = 𝜏]𝑀𝜑(−1).

Let Λ
0
= {0} and consider the center space 𝑃 for �̇�(𝑡) =

𝐿
0
𝑥
𝑡
and its dual space 𝑃∗, as in the previous appendix. We

can choose normalized dual bases Φ of 𝑃 and Ψ of 𝑃∗ as
follows:

Φ (𝜃) = (1, −1, . . . , 1, −1)
𝑇
, −1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) =

1

𝑛 (1 + 𝜏)

(1, −1, . . . , 1, −1) , 0 ≤ 𝑠 ≤ 1,

(H.3)

with Φ̇ = Φ𝐵, −Ψ̇ = 𝐵Ψ, and 𝐵 = 0.
As the procedure introduced in Section 5.1, decomposing

𝑧
𝑡
in (H.1) according to the decomposition of 𝐵𝐶 as the form

𝑧
𝑡
= Φ𝑥(𝑡) + 𝑦

𝑡
, with 𝑥 ∈ R and 𝑦

𝑡
∈ Ker𝜋 ∩ 𝐷(𝐴) =

𝑄∩𝐶
1 def
= 𝑄
1, we can obtain the normal form of (H.1) on the

center manifold of the origin

�̇� =

1

2

𝑔
1

2
(𝑥, 0, ]) +

1

3!

𝑔
1

3
(𝑥, 0, ]) + h.o.t., (H.4)

where 𝑥, ] ∈ R, h.o.t. stands for higher order terms, and
𝑔
1

2
(𝑥, 0, ]), 𝑔1

3
(𝑥, 0, ]) are the second and third order terms in

(𝑥, ]), respectively. Then it follows from [48, 49] that

𝑔
1

2
(𝑥, 0, ]) = Proj

(Im(𝑀1
2
))
𝑐𝑓
1

2
(𝑥, 0, ]) ,

𝑔
1

3
(𝑥, 0, ]) = Proj

(Im(𝑀1
3
))
𝑐
̃
𝑓
1

3
(𝑥, 0, ]) ,

(H.5)

where (Im(𝑀
1

𝑗
))

𝑐 is a complementary space of Im(𝑀
1

𝑗
) in

𝑉
2

𝑗
(R) with 𝑗 = 2, 3 and (1/3!)

̃
𝑓
1

3
(𝑥, 0, ]) denotes the third
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order terms after the calculation of the normal form up to the
second order terms.

Since 𝐵 is the 𝑛 × 𝑛 zero matrix, it is easy to check that

(Im(𝑀
1

2
))

𝑐

= span {𝑥2, 𝑥], ]2} = 𝑉
2

2
(R) ,

(Im(𝑀
1

3
))

𝑐

= span {𝑥3, 𝑥2], 𝑥]2, ]3} = 𝑉
2

3
(R) .

(H.6)

From (H.2), we get

1

2!

𝑓
1

2
(𝑥, 0, ]) = Ψ (0) 𝐿

1
(]) (Φ𝑥)

=

𝜏]𝑥
𝑛 (1 + 𝜏)

(1, −1, . . . , 1, −1)

×(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0

)(

1

−1

...
1

−1

)

= −

𝜏

1 + 𝜏

]𝑥,

(H.7)

which, together with (H.4) and (H.5), leads to

1

2!

𝑔
1

2
(𝑥, 0, ]) = −

𝜏

1 + 𝜏

]𝑥. (H.8)

For the bifurcation analysis, it is sufficient to compute the
coefficient of 𝑥3 in the normal form (see, e.g., [51]). Hence,
we write

1

3!

𝑔
1

3
(𝑥, 0, ])

=

1

3!

Proj
𝑆1

̃
𝑓
1

3
(𝑥, 0, 0) +

1

3!

Proj
𝑆2

̃
𝑓
1

3
(𝑥, 0, ]) ,

(H.9)

where 𝑆
1
= span{𝑥3}, 𝑆

2
= span{𝑥2], 𝑥]2, ]3}. It is clear that

𝑓
1

2
(𝑥, 0, 0) = 𝑔

1

2
(𝑥, 0, 0) = 0. Thus, we have

1

3!

̃
𝑓
1

3
(𝑥, 0, 0) =

1

3!

𝑓
1

3
(𝑥, 0, 0) = −Ψ (0) 𝜏𝛾𝑀(Φ (−1) 𝑥)

3

=

−𝜏𝛾𝑥
3

𝑛 (1 + 𝜏)

(1, −1, . . . , 1, −1)

×(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0

)(

1

−1

...
1

−1

)

=

𝛾𝜏

1 + 𝜏

𝑥
3
.

(H.10)

Consequently, the normal form (H.4) becomes (21).

I. Proof of Lemma 16

It is easy to verify that, for the generator 𝜌 of 𝑧
𝑛
and 𝑗(mod 𝑛),

(𝜌𝜖
1
(𝑡))
𝑗
= 𝜖
1

𝑗+1
(𝑡)

= cos(𝜔
0
𝑡 +

2𝑗𝑘𝜋

𝑛

)

= cos(𝜔
0
(𝑡 +

2𝑘𝜋

𝑛𝜔
0

) +

2 (𝑗 − 1) 𝑘𝜋

𝑛

)

= 𝜖
1

𝑗
(𝑡 +

2𝑘𝜋

𝑛𝜔
0

) ,

= 𝜖
1

𝑗
(𝑡 +

𝑘𝜔

𝑛

) ,

(𝜌𝜖
2
(𝑡))
𝑗
= 𝜖
2

𝑗+1
(𝑡)

= sin(𝜔
0
𝑡 +

2𝑗𝑘𝜋

𝑛

)

= sin(𝜔
0
(𝑡 +

2𝑘𝜋

𝑛𝜔
0

) +

2 (𝑗 − 1) 𝑘𝜋

𝑛

)

= 𝜖
2

𝑗
(𝑡 +

2𝑘𝜋

𝑛𝜔
0

)

= 𝜖
2

𝑗
(𝑡 +

𝑘𝜔

𝑛

) .

(I.1)

This completes the proof.
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