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The concept of Levitin-Polyak well-posedness of an equilibrium-like problem in Banach spaces is introduced. Under suitable
conditions, some characterizations of its Levitin-Polyak well-posedness are established. Some conditions under which an
equilibrium-like problem in Banach spaces is Levitin-Polyak well-posed are also derived.

1. Introduction

In 1966, Tykhonov [1] first established the well-posedness
of a minimization problem, which has been known as
Tykhonov well-posedness. Since it is important in optimiza-
tion problems, various concepts of well-posedness have been
introduced and studied in past decades. For more about
the well-posedness, we refer to [2–4] and the references
therein.

The Tykhonov well-posedness of a constrained mini-
mization problem requires that every minimizing sequence
should lie in the constraint set. In many situations, the
minimizing sequence produced by a numerical optimization
method usually fails to be feasible but gets closer and closer
to the constraint set. Levitin and Polyak [5] generalized
the concept of Tykhnov well-posedness by requiring the
existence and uniqueness of minimizer and the convergence
of every generalized minimizing sequence toward the unique
minimizer, which has been known as Levitin and Polyakwell-
posedness.There are a lot of results concernedwithTykhonov
well-posedness, LP well-posedness, and their generalizations
for minimization problems. For details, we refer to [1–3, 5–7].

Recently, the concept of well-posedness has been
extended to many other fields, including Nash equilibrium

[8], inclusion problems, and fixed point problems [9–13].
Lemaire [12, 13] studied the relations between the well-
posedness of minimization problems, inclusion problems,
and fixed point problems. Fang et al. [11] proved that the
well-posedness of a general mixed variational inequality
is equivalent to the existence and the uniqueness of its
solution in the Hilbert space. Recently, Ceng and Yao [9]
got some results for the well-posedness of the generalized
mixed variational inequality, the corresponding inclusion
problem, and the corresponding fixed point problem. On the
other hand, Li and Xia [14] considered the Levitin-Polyak
well-posedness of a generalized variational inequality in
Banach space. And they showed that the Levitin-Polyak
well-posedness of a generalized variational inequality is
equivalent to the uniqueness and existence of its solutions.
However, there has been no result for the Levitin-Polyak
well-posedness of an equilibrium-like problem.

Motivated and inspired by the research work going on in
this field, in this paper, we extend the notion of Levitin-Polyak
well-posedness to an equilibrium-like problem in Banach
spaces and give some metric characterizations of its Levitin-
Polyak well-posedness. Finally, we derive some conditions
under which an equilibrium-like problem is Levitin-Polyak
well-posed.
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2. Preliminaries

Let 𝑋 be a real reflexive Banach space with its dual 𝑋∗ and
let 𝐾 be a nonempty, closed, and convex subset of 𝑋. Let 𝐹 :

𝑋 → 2
𝑋
∗

be a set-valuedmapping, and let 𝜙 : 𝑋∗×𝑋×𝑋 →

R be a functional. In this paper, we consider the following
equilibrium-like problem associated with (𝐹, 𝜙, 𝐾):

ELP (𝐹, 𝜙, 𝐾) : find 𝑥 ∈ 𝐾 such that for some 𝑢 ∈ 𝐹 (𝑥) ,

𝜙 (𝑢, 𝑥, 𝑦) ≤ 0, ∀𝑦 ∈ 𝐾.

(1)

Definition 1. Let 𝐴, 𝐵 be nonempty subsets of 𝑋. The Haus-
dorff metricH(⋅, ⋅) between 𝐴 and 𝐵 is defined by

H (𝐴, 𝐵) = max {𝑒 (𝐴, 𝐵) , 𝑒 (𝐵, 𝐴)} , (2)

where 𝑒(𝐴, 𝐵) = sup
𝑎∈𝐴

𝑑(𝑎, 𝐵) with 𝑑(𝑎, 𝐵) = inf
𝑏∈𝐵

‖𝑎 − 𝑏‖.

Lemma 2 (Nadler’s theorem [7]). Let (𝑋, ‖ ⋅ ‖) be a normed
vector space and let H(⋅, ⋅) be the Hausdorff metric on the
collection 𝐶𝐵(𝑋) of all nonempty, closed, and bounded subsets
of 𝑋, induced by a metric 𝑑 in terms of 𝑑(𝑢, V) = ‖𝑢 − V‖,
which is defined by H(𝑈, 𝑉) = max{𝑒(𝑈, 𝑉), 𝑒(𝑉, 𝑈)}, for
𝑈 and 𝑉 in 𝐶𝐵(𝑋), where 𝑒(𝑈, 𝑉) = sup

𝑥∈𝑈
𝑑(𝑥, 𝑉) with

𝑑(𝑥, 𝑉) = inf
𝑦∈𝑉

‖𝑥 − 𝑦‖. If 𝑈 and 𝑉 lie in 𝐶𝐵(𝑋), then, for
any 𝜖 > 0 and any 𝑢 ∈ 𝑈, there exists V ∈ 𝑉 such that
‖𝑢 − V‖ ≤ (1 + 𝜖)H(𝑈, 𝑉). In particular, whenever 𝑈 and 𝑉
are compact subsets in 𝑋, one has ‖𝑢 − V‖ ≤ H(𝑈, 𝑉).

Definition 3 (see [9]). A nonempty set-valued mapping 𝐹 :

𝑋 → 2
𝑋
∗

is said to be

(i) H-hemicontinuous if, for any 𝑥, 𝑦 ∈ 𝑋, the function
𝑡 󳨃→ H(𝐹(𝑥 + 𝑡(𝑦 − 𝑥), 𝐹(𝑥))) from [0, 1] into
R+ = [0, +∞) is continuous at 0+, whereH(⋅, ⋅) is the
Hausdorff metric defined on 𝐶𝐵(𝑋);

(ii) H-uniformly continuous if, for all 𝜖 > 0, there exists
𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑋 with ‖𝑥 − 𝑦‖ < 𝛿, one
hasH(𝐹(𝑥), 𝐹(𝑦)) < 𝜖, whereH(⋅, ⋅) is the Hausdorff
metric defined on 𝐶𝐵(𝑋).

Definition 4. Let 𝑋 and 𝑌 be two topological spaces and
𝑥 ∈ 𝑋. A set-valued mapping 𝐹 : 𝑋 → 2

𝑌 is said to
be upper semicontinuous (u.s.c. in short) at 𝑥, if for any
neighbourhood 𝑉 of 𝐹(𝑥), there exists a neighbourhood 𝑈
of 𝑥 such that 𝐹(𝑦) ⊂ 𝑉, for all 𝑦 ∈ 𝑈. If 𝐹 is u.s.c. at each
point of𝑋, we say that 𝐹 is u.s.c. on𝑋.

Definition 5 (see [15]). Let 𝐴 be a nonempty subset of𝑋. The
measure of noncompactness 𝜇 of the set 𝐴 is defined by

𝜇 (𝐴) = inf {𝜖 > 0 :

𝐴 ⊂

𝑛

⋃

𝑖=1

𝐴
𝑖
, diam𝐴

𝑖
< 𝜖,

𝑖 = 1, 2, . . . , 𝑛} ,

(3)

where diam𝐴
𝑖
denotes the diameter of the set 𝐴

𝑖
, for 𝑖 =

1, 2, . . . , 𝑛.

Definition 6. Let 𝑋 be a real reflexive Banach space with its
dual 𝑋∗ and let 𝐹 : 𝑋 → 2

𝑋
∗

be a set-valued mapping. A
functional 𝜙 : 𝑋

∗

× 𝑋 × 𝑋 → R is said to be monotone
with respect to 𝐹, if for any 𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝐹(𝑥), V ∈ 𝐹(𝑦),
𝜙(𝑢, 𝑥, 𝑦) ≥ 𝜙(V, 𝑥, 𝑦).

Remark 7. If 𝜙(𝑢, 𝑥, 𝑦) = ⟨𝑢, 𝑥 − 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝑋 and
𝑢 ∈ 𝐹(𝑥), it is easy to know that 𝜙 is monotone with respect
to 𝐹 which reduces to 𝐹 being monotone.

We first prove the following proposition.

Proposition8. Let𝐾 be a nonempty, closed, and convex subset
of 𝑋 and let 𝐹 : 𝑋 → 2

𝑋
∗

be a nonempty compact-valued
mappingwhich isH-hemicontinuous. Let𝜙 : 𝑋∗×𝑋×𝑋 → R

be monotone with respect to 𝐹, continuous in first argument,
and concave in third argument. Moreover, 𝜙(𝑢, 𝑥, 𝑥) = 0, for
all 𝑢 ∈ 𝑋

∗, 𝑥 ∈ 𝐾. Then, for a given 𝑥 ∈ 𝐾, the following
statements are equivalent:

(i) there exists 𝑢 ∈ 𝐹(𝑥) such that 𝜙(𝑢, 𝑥, 𝑦) ≤ 0, for all
𝑦 ∈ 𝐾;

(ii) 𝜙(V, 𝑥, 𝑦) ≤ 0, for all 𝑦 ∈ 𝐾, V ∈ 𝐹(𝑦).

Proof. First, we assume that for some 𝑢 ∈ 𝐹(𝑥),𝜙(𝑢, 𝑥, 𝑦) ≤ 0,
for all 𝑦 ∈ 𝐾. Because 𝜙 is monotone with respect to 𝐹, we
have

𝜙 (V, 𝑥, 𝑦) ≤ 0, ∀𝑦 ∈ 𝐾, V ∈ 𝐹 (𝑦) . (4)

Conversely, suppose that for all 𝑦 ∈ 𝐾, V ∈ 𝐹(𝑦), we
obtain

𝜙 (V, 𝑥, 𝑦) ≤ 0. (5)

For any given 𝑦 ∈ 𝐾, we define 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥 for all

𝑡 ∈ (0, 1). Replacing 𝑦 by 𝑦
𝑡
in the left-hand side of the last

inequality, we have that, for each V
𝑡
∈ 𝐹(𝑦

𝑡
),

0 ≥ 𝜙 (V
𝑡
, 𝑥, 𝑦
𝑡
)

= 𝜙 (V
𝑡
, 𝑥, 𝑡𝑦 + (1 − 𝑡) 𝑥)

≥ 𝑡𝜙 (V
𝑡
, 𝑥, 𝑦) + (1 − 𝑡) 𝜙 (V

𝑡
, 𝑥, 𝑥)

= 𝑡𝜙 (V
𝑡
, 𝑥, 𝑦) .

(6)

This implies that

𝜙 (V
𝑡
, 𝑥, 𝑦) ≤ 0, ∀V

𝑡
∈ 𝐹 (𝑦

𝑡
) , 𝑡 ∈ (0, 1) . (∗)
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Since 𝐹 : 𝑋 → 2
𝑋
∗

is a nonempty compact-valued mapping,
𝐹(𝑦
𝑡
) and 𝐹(𝑥) are nonempty compact and hence lie in

𝐶𝐵(𝑋). From Lemma 2, we get that, for each 𝑡 ∈ (0, 1) and
for each fixed V

𝑡
∈ 𝐹(𝑦

𝑡
), there exists a 𝑢

𝑡
∈ 𝐹(𝑥) such that

󵄩󵄩󵄩󵄩V𝑡 − 𝑢𝑡
󵄩󵄩󵄩󵄩 ≤ (1 + 𝑡)H (𝐹 (𝑦

𝑡
) , 𝐹 (𝑥)) . (7)

Since 𝐹(𝑥) is compact, without loss of generality, we assume
that 𝑢

𝑡
→ 𝑢 ∈ 𝐹(𝑥) as 𝑡 → 0

+. Since 𝐹 is H-
hemicontinuous, we get that as 𝑡 → 0

+,

󵄩󵄩󵄩󵄩V𝑡 − 𝑢𝑡
󵄩󵄩󵄩󵄩 ≤ (1 + 𝑡)H (𝐹 (𝑦

𝑡
) , 𝐹 (𝑥)) 󳨀→ 0. (8)

This implies that V
𝑡
→ 𝑢 ∈ 𝐹(𝑥) as 𝑡 → 0

+. Since 𝜙
is continuous in first argument, by (∗) we obtain that there
exists an 𝑢 ∈ 𝐹(𝑥) such that

𝜙 (𝑢, 𝑥, 𝑦) ≤ 0, ∀𝑦 ∈ 𝐾. (9)

This completes the proof.

3. Levitin-Polyak Well-Posedness of
ELP(𝐹, 𝜙, 𝐾)

In this section, we extend the concepts of Levitin-Poylakwell-
posedness to the equilibrium-like problem and establish its
metric characterizations. Let 𝛼 ≥ 0 be a given number, and
let𝑋, 𝐾, 𝐹, and 𝜙 be defined as the previous section.

Definition 9. A sequence {𝑥
𝑛
} ⊂ 𝑋 is called an LP 𝛼-

approximating sequence for ELP(𝐹, 𝜙, 𝐾), if there exist 𝑤
𝑛
∈

𝑋 with 𝑤
𝑛
→ 0 and 0 < 𝜖

𝑛
→ 0 such that 𝑥

𝑛
+ 𝑤
𝑛
∈ 𝐾 for

all 𝑛 ∈ 𝑁 and there exists 𝑢
𝑛
∈ 𝐹(𝑥

𝑛
) such that

𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
𝑛
, ∀𝑦 ∈ 𝐾, 𝑛 ∈ 𝑁. (10)

If 𝛼
1
> 𝛼
2
≥ 0, then every LP 𝛼

2
-approximating sequence

is LP 𝛼
1
-approximating. When 𝛼 = 0, we say that {𝑥

𝑛
} is an

LP approximating sequence for ELP(𝐹, 𝜙, 𝐾).

Definition 10. ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed if
ELP(𝐹, 𝜙, 𝐾) has an unique solution and every LP 𝛼-
approximating sequence converges strongly to the unique
solution. In the sequel, strong LP 0-well-posedness is always
called as strong LPwell-posedness. If𝛼

1
> 𝛼
2
≥ 0, then strong

LP 𝛼
1
-well-posedness implies strong LP 𝛼

2
-well-posedness.

Definition 11. ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed in the
generalized sense if ELP(𝐹, 𝜙, 𝐾) has nonempty solution set
𝑆 and every LP 𝛼-approximating sequence has a subsequence
which converges strongly to some point of 𝑆. In the sequel,
strong LP 0-well-posedness in the generalized sense is always
called as strong LP well-posedness in the generalized sense.
If 𝛼
1
> 𝛼
2
≥ 0, then strong LP 𝛼

1
-well-posedness in the

generalized sense implies strong LP 𝛼
2
-well-posedness in the

generalized sense.

Remark 12. If𝜙(𝑢, 𝑥, 𝑦) = ⟨𝑢, 𝑥−𝑦⟩+𝜑(𝑥)−𝜑(𝑦), for all𝑥, 𝑦 ∈
𝑋, 𝑢 ∈ 𝐹(𝑥), then Definitions 10 and 11 reduce to Definitions
3.3 and 3.4 of [14], respectively.Moreover, when𝑋 is a Hilbert
space, 𝐾 = 𝑋, and 𝑤

𝑛
≡ 0, Definitions 10 and 11 reduce to

Definitions 3.2 and 3.3 of [11], respectively.

To obtain the metric characterizations of LP 𝛼-well-
posedness, we consider the following LP 𝛼-approximating
solution set of ELP(𝐹, 𝜙, 𝐾):

Ω
𝛼
(𝜖) = {𝑥 ∈ dom𝜙 :

𝑑 (𝑥, 𝐾) ≤ 𝜖,

and there exists 𝑢 ∈ 𝐹 (𝑥)

such that ∀𝑦 ∈ 𝐾, 𝜙 (𝑢, 𝑥, 𝑦) ≤ 𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖} ,

∀𝜖 ≥ 0.

(11)

Theorem 13. Let 𝐾 be a nonempty, closed, and convex subset
of 𝑋 and let 𝐹 : 𝑋 → 2

𝑋
∗

be a H-hemicontinuous and
nonempty compact-valued mapping. Let 𝜙 : 𝑋

∗

× 𝑋 × 𝑋 →

R be monotone with respect to 𝐹, lower semicontinuous in
second argument, and concave in third argument. Moreover,
𝜙(𝑢, 𝑥, 𝑥) = 0, for all 𝑢 ∈ 𝑋

∗, 𝑥 ∈ 𝐾. Then, ELP(𝐹, 𝜙, 𝐾) is
strongly LP 𝛼-well-posed if and only if

Ω
𝛼
(𝜖) ̸= 0, ∀𝜖 > 0 and diam (Ω

𝛼
(𝜖)) 󳨀→ 0 as 𝜖 󳨀→ 0.

(12)

Proof. First, we assume that ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-
well-posed and 𝑥∗ ∈ 𝐾 is the unique solution of ELP(𝐹, 𝜙, 𝐾).
It is easy to see that 𝑥∗ ∈ Ω

𝛼
(𝜖). If diam(Ω

𝛼
(𝜖)) 󴀀󴀂󴀠 0 as 𝜖 →

0, then there exist constant 𝑙 > 0 and sequences {𝜖
𝑛
} ⊂ R

+

with 𝜖
𝑛
→ 0 and {𝑥(1)

𝑛
}, {𝑥
(2)

𝑛
} with 𝑥(1)

𝑛
, 𝑥
(2)

𝑛
∈ Ω
𝛼
(𝜖
𝑛
) such

that
󵄩󵄩󵄩󵄩󵄩
𝑥
(1)

𝑛
− 𝑥
(2)

𝑛

󵄩󵄩󵄩󵄩󵄩
> 𝑙, ∀𝑛 ∈ 𝑁. (13)

Because of 𝑥(1)
𝑛
, 𝑥
(2)

𝑛
∈ Ω
𝛼
(𝜖
𝑛
), by the definition ofΩ

𝛼
(𝜖
𝑛
), for

𝑥
(1)

𝑛
, we obtain

𝑑 (𝑥
(1)

𝑛
, 𝐾) ≤ 𝜖

𝑛
< 𝜖
𝑛
+
1

𝑛
, (14)

and there exists 𝑢
𝑛
∈ 𝐹(𝑥

(1)

𝑛
) such that

𝜙 (𝑢
𝑛
, 𝑥
(1)

𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩󵄩
𝑥
(1)

𝑛
− 𝑦

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜖
𝑛
, ∀𝑦 ∈ 𝐾. (15)

Since 𝐾 is closed and convex, then there exists 𝑥(1)
𝑛

∈ 𝐾 such
that ‖𝑥(1)

𝑛
−𝑥
(1)

𝑛
‖ < 𝜖
𝑛
+(1/𝑛). Let𝑤

𝑛
= 𝑥
(1)

𝑛
−𝑥
(1)

𝑛
; we get𝑤

𝑛
+

𝑥
(1)

𝑛
= 𝑥
(1)

𝑛
∈ 𝐾 and ‖𝑤

𝑛
‖ = ‖𝑥

(1)

𝑛
− 𝑥
(1)

𝑛
‖ → 0. This implies

that 𝑤
𝑛
→ 0. Thus, {𝑥(1)

𝑛
} is an LP approximating sequence

for ELP(𝐹, 𝜙, 𝐾). By the similar argument, we obtain that
{𝑥
(2)

𝑛
} is an LP approximating sequence for ELP(𝐹, 𝜙, 𝐾). So
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they have to converge strongly to the unique solution of
ELP(𝐹, 𝜙, 𝐾), which contradicts condition (13).

Conversely, suppose that condition (12) holds. Let {𝑥
𝑛
} ⊂

𝑋be anLP𝛼-approximating sequence for ELP(𝐹, 𝜙, 𝐾).Then,
there exists𝑤

𝑛
∈ 𝑋 with𝑤

𝑛
→ 0 such that 𝑥

𝑛
+𝑤
𝑛
∈ 𝐾, and

there exist 0 < 𝜖󸀠
𝑛
→ 0 and 𝑢

𝑛
∈ 𝐹(𝑥

𝑛
) such that

𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
󸀠

𝑛
, ∀𝑦 ∈ 𝐾, 𝑛 ∈ 𝑁. (16)

Since 𝑥
𝑛
+ 𝑤
𝑛
∈ 𝐾, then there exists 𝑥

𝑛
∈ 𝐾 such that

𝑥
𝑛
+ 𝑤
𝑛
= 𝑥
𝑛
. It is obvious that 𝑑(𝑥

𝑛
, 𝐾) ≤ ‖𝑥

𝑛
− 𝑥
𝑛
‖ =

‖𝑤
𝑛
‖ → 0. Suppose that 𝜖

𝑛
= max{𝜖󸀠

𝑛
, ‖𝑤
𝑛
‖}; we get that 𝑥

𝑛
∈

Ω
𝛼
(𝜖
𝑛
). From (12), we have that {𝑥

𝑛
} is a Cauchy sequence and

converges strongly to a point𝑥 ∈ 𝐾. Since𝜙 ismonotonewith
respect to 𝐹 and lower semicontinuous in second argument,
it follows from (16) that, for any 𝑦 ∈ 𝐾, V ∈ 𝐹(𝑦),

𝜙 (V, 𝑥, 𝑦) ≤ lim inf
𝑛→∞

{𝜙 (V, 𝑥
𝑛
, 𝑦)}

≤ lim inf
𝑛→∞

{𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦)}

≤ lim inf
𝑛→∞

{
𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
󸀠

𝑛
}

=
𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

.

(17)

For any 𝑦 ∈ 𝐾, let 𝑦
𝑡
= 𝑥+𝑡(𝑦−𝑥), for all 𝑡 ∈ [0, 1]. Since𝐾 is

a nonempty, closed, and convex subset, we have that 𝑦
𝑡
∈ 𝐾.

Then, (17) implies that

𝜙 (V
𝑡
, 𝑥, 𝑦
𝑡
) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑡
󵄩󵄩󵄩󵄩

2

, ∀V
𝑡
∈ 𝐹 (𝑦

𝑡
) . (18)

Since 𝜙 is concave in third argument and 𝜙(𝑢, 𝑥, 𝑥) = 0, for
all 𝑢 ∈ 𝑋∗, 𝑥 ∈ 𝐾,

𝜙 (V
𝑡
, 𝑥, 𝑦) ≤

𝛼𝑡

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀V
𝑡
∈ 𝐹 (𝑦

𝑡
) , 𝑦 ∈ 𝐾. (19)

Since 𝐹 is a nonempty compact-valued mapping and H-
hemicontinuous, by Lemma 2, for each fixed V

𝑡
∈ 𝐹(𝑦

𝑡
)

and each 𝑡 ∈ (0, 1), there exists a 𝑢
𝑡
∈ 𝐹(𝑥) such that

‖V
𝑡
− 𝑢
𝑡
‖ ≤ H(𝐹(𝑦

𝑡
), 𝐹(𝑥)). Since 𝐹 is H-hemicontinuous,

we get that ‖V
𝑡
− 𝑢
𝑡
‖ ≤ H(𝐹(𝑦

𝑡
), 𝐹(𝑥)) → 0 as 𝑡 → 0

+.
Since 𝐹 is compact, without loss of generality, we assume that
𝑢
𝑡
→ 𝑢 ∈ 𝐹(𝑥) as 𝑡 → 0

+. Thus, we obtain that
󵄩󵄩󵄩󵄩V𝑡 − 𝑢

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩V𝑡 − 𝑢𝑡

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢

󵄩󵄩󵄩󵄩

≤ H (𝐹 (𝑦
𝑡
) , 𝐹 (𝑥)) +

󵄩󵄩󵄩󵄩𝑢𝑡 − 𝑢
󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑡 󳨀→ 0

+

.

(20)

This implies that V
𝑡
→ 𝑢 as 𝑡 → 0

+. It follows from (19) that

𝜙 (𝑢, 𝑥, 𝑦) ≤ 0, ∀𝑦 ∈ 𝐾. (21)

Therefore, 𝑥 solves ELP(𝐹, 𝜙, 𝐾).
To complete the proof, we only need to prove that

ELP(𝐹, 𝜙, 𝐾)has a unique solution. Suppose that ELP(𝐹, 𝜙, 𝐾)
has two distinct solutions 𝑥

1
and 𝑥

2
. Then, it is obvious that

𝑥
1
, 𝑥
2
∈ Ω
𝛼
(𝜖) for all 𝜖 > 0 and

0 <
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 ≤ diam (Ω
𝛼
(𝜖)) 󳨀→ 0, (22)

a contradiction to (12). This completesthe proof.

Theorem 14. Let 𝐾 be a nonempty, closed, and convex subset
of 𝑋 and let 𝐹 : 𝑋 → 2

𝑋
∗

be a H-hemicontinuous and
nonempty compact-valued mapping. Let 𝜙 : 𝑋∗×𝑋×𝑋 → R

be monotone with respect to 𝐹 and lower semicontinuous in
second argument. Moreover, 𝜙(𝑢, 𝑥, 𝑥) = 0, for all 𝑢 ∈ 𝑋

∗,
𝑥 ∈ 𝐾. Then, ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed in the
generalized sense if and only if

Ω
𝛼
(𝜖) ̸= 0, ∀𝜖 > 0 and 𝜇 (Ω

𝛼
(𝜖)) 󳨀→ 0 as 𝜖 󳨀→ 0.

(23)

Proof. Assume that ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed
in the generalized sense. Let 𝑆 be the solution set of
ELP(𝐹, 𝜙, 𝐾). Then, 𝑆 is nonempty and compact. Indeed,
let {𝑥

𝑛
} be any sequence in 𝑆. Then, {𝑥

𝑛
} is an LP 𝛼-

approximating sequence for ELP(𝐹, 𝜙, 𝐾). Since ELP(𝐹, 𝜙, 𝐾)
is strongly 𝛼-well-posed in the generalized sense, {𝑥

𝑛
} has a

subsequence which converges strongly to some point of 𝑆.
Thus, 𝑆 is compact. It is easy to see that Ω

𝛼
(𝜖) ⊃ 𝑆 ̸= 0 for

all 𝜖 > 0. Now we show that

𝜇 (Ω
𝛼
(𝜖)) 󳨀→ 0 as 𝜖 󳨀→ 0. (24)

It is easy to see that, for every 𝜖 > 0,

H (Ω
𝛼
(𝜖) , 𝑆) = max {𝑒 (Ω

𝛼
(𝜖) , 𝑆) , 𝑒 (𝑆, Ω

𝛼
(𝜖))}

= 𝑒 (Ω
𝛼
(𝜖) , 𝑆) .

(25)

Taking into account the compactness of 𝑆, we obtain

𝜇 (Ω
𝛼
(𝜖)) ≤ 2H (Ω

𝛼
(𝜖) , 𝑆) + 𝜇 (𝑆) = 2𝑒 (Ω

𝛼
(𝜖) , 𝑆) . (26)

To prove (23), it is sufficient to show that

𝑒 (Ω
𝛼
(𝜖) , 𝑆) 󳨀→ 0 as 𝜖 󳨀→ 0. (27)

Indeed, if 𝑒(Ω
𝛼
(𝜖), 𝑆) 󴀀󴀂󴀠 0 as 𝜖 → 0, then there exist 𝑙 > 0

and {𝜖
𝑛
} ⊂ R+ with 𝜖

𝑛
→ 0, and 𝑥

𝑛
∈ Ω
𝛼
(𝜖
𝑛
) such that

𝑥
𝑛
∉ 𝑆 + 𝐵 (0, 𝑙) , ∀𝑛 ∈ 𝑁, (28)

where 𝐵(0, 𝑙) is the closed ball centered at 0 with radius 𝑙. By
the definition of Ω

𝛼
(𝜖
𝑛
), we know that 𝑑(𝑥

𝑛
, 𝐾) ≤ 𝜖

𝑛
< 𝜖
𝑛
+

(1/𝑛), and there exists 𝑢
𝑛
∈ 𝐹(𝑥

𝑛
) such that

𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
𝑛
, ∀𝑦 ∈ 𝐾. (29)

Thus, there exists 𝑥
𝑛
∈ 𝐾 such that ‖𝑥

𝑛
− 𝑥
𝑛
‖ < 𝜖
𝑛
+ (1/𝑛).

Let 𝑤
𝑛

= 𝑥
𝑛
− 𝑥
𝑛
; then, we have 𝑤

𝑛
+ 𝑥
𝑛

∈ 𝐾 with
𝑤
𝑛
→ 0. So {𝑥

𝑛
} is an LP 𝛼-approximating sequence for

ELP(𝐹, 𝜙, 𝐾). Since ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed
in the generalized sense, there exists a subsequence {𝑥

𝑛
𝑘

}

of {𝑥
𝑛
} which converges strongly to some point of 𝑆. This

contradicts (28) and so

𝑒 (Ω
𝛼
(𝜖) , 𝑆) 󳨀→ 0 as 𝜖 󳨀→ 0. (30)

Conversely, suppose that (23) holds. We first show that
Ω
𝛼
(𝜖) is closed for all 𝜖 > 0. Let {𝑥

𝑛
} ⊂ Ω

𝛼
(𝜖) with 𝑥

𝑛
→ 𝑥;

then, there exists 𝑢
𝑛
∈ 𝐹(𝑥

𝑛
) such that 𝑑(𝑥

𝑛
, 𝐾) ≤ 𝜖 and

𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖, ∀𝑦 ∈ 𝐾, 𝑛 ∈ 𝑁. (31)
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Since 𝐹 is an upper semicontinuous and nonempty compact-
valuedmapping, there exist a sequence {𝑢

𝑛
𝑘

} of {𝑢
𝑛
} and some

𝑢 ∈ 𝐹(𝑥) such that 𝑢
𝑛
𝑘

→ 𝑢. Therefore, it follows from (31)
and the lower semicontinuity of 𝜙 that

𝜙 (𝑢, 𝑥, 𝑦) ≤
𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖, ∀𝑦 ∈ 𝐾. (32)

It is obvious that 𝑑(𝑥,𝐾) ≤ 𝜖. This implies that 𝑥 ∈ Ω
𝛼
(𝜖) and

so Ω
𝛼
(𝜖) is nonempty closed for all 𝜖 > 0. Observe that

𝑆 = ⋂

𝜖>0

Ω
𝛼
(𝜖) . (33)

Since 𝜇(Ω
𝛼
(𝜖)) → 0, the theorem in page 412 of [15] can be

applied and one concludes that 𝑆 is nonempty and compact
with

𝑒 (Ω
𝛼
(𝜖) , 𝑆) = H (Ω

𝛼
(𝜖) , 𝑆) 󳨀→ 0. (34)

Let {𝑥
𝑛
} ⊂ 𝑋 be an LP 𝛼-approximating sequence for

ELP(𝐹, 𝜙, 𝐾). Then, there exists 𝑤
𝑛
∈ 𝑋 with 𝑤

𝑛
→ 0 such

that 𝑥
𝑛
+𝑤
𝑛
∈ 𝐾, and there exist 𝑢̂

𝑛
∈ 𝐹(𝑥

𝑛
) and 0 < 𝜖󸀠

𝑛
→ 0

such that

𝜙 (𝑢̂
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
󸀠

𝑛
, ∀𝑦 ∈ 𝐾, 𝑛 ∈ 𝑁. (35)

Since𝑥
𝑛
+𝑤
𝑛
∈ 𝐾, then there exists𝑥

𝑛
∈ 𝐾 such that𝑥

𝑛
+𝑤
𝑛
=

𝑥
𝑛
. It follows that

𝑑 (𝑥
𝑛
, 𝐾) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (36)

Set 𝜖
𝑛
= max{‖𝑤

𝑛
‖, 𝜖
󸀠

𝑛
}; we get 𝑥

𝑛
∈ Ω
𝛼
(𝜖
𝑛
). From (23) and

the definition ofΩ
𝛼
(𝜖
𝑛
), we obtain

𝑑 (𝑥
𝑛
, 𝑆) ≤ 𝑒 (Ω

𝛼
(𝜖
𝑛
) , 𝑆) 󳨀→ 0. (37)

Since 𝑆 is compact, there exists 𝑝
𝑛
∈ 𝑆 such that

󵄩󵄩󵄩󵄩𝑝𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 𝑑 (𝑥𝑛, 𝑆) 󳨀→ 0. (38)

From the compactness of 𝑆, there exists a subsequence {𝑝
𝑛
𝑘

}

of {𝑝
𝑛
} which converges strongly to 𝑝 ∈ 𝑆. Hence, the

corresponding subsequence {𝑥
𝑛
𝑘

} of {𝑥
𝑛
} converges strongly

to 𝑝 ∈ 𝑆. Thus, ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed in
the generalized sense. The proof is complete.

4. Conditions for Levitin-Polyak
Well-Posedness

In this section, we get some conditions under which the
ELP(𝐹, 𝜙, 𝐾) in Banach spaces is Levitin-Polyak well-posed.

For any 𝛿
0
≥ 0, we denote𝑀(𝛿

0
) = {𝑥 ∈ 𝑋 : 𝑑

𝐾
(𝑥) ≤ 𝛿

0
}.

We have the following result.

Theorem 15. Let 𝐾 be a nonempty, closed, and convex subset
of 𝑋 and let 𝐹 : 𝑋 → 2

𝑋
∗

be a H-hemicontinuous and
nonempty compact-valued mapping. Let 𝜙 : 𝑋

∗

× 𝑋 × 𝑋 →

R be monotone with respect to 𝐹, lower semicontinuous in
first and second arguments, and concave in third argument.
Moreover, 𝜙(𝑢, 𝑥, 𝑥) = 0, for all 𝑢 ∈ 𝑋

∗, 𝑥 ∈ 𝐾. If there
exists some 𝛿

0
with 𝛿

0
> 0 such that 𝑀(𝛿

0
) is compact, then

ELP(𝐹, 𝜙, 𝐾) is strongly LP 𝛼-well-posed in the generalized
sense.

Proof. Let {𝑥
𝑛
} be an LP approximating sequence for

ELP(𝐹, 𝜙, 𝐾). Then, there exist 0 < 𝜖
󸀠

𝑛
→ 0 and 𝑤

𝑛
∈ 𝑋

with 𝑤
𝑛
→ 0 such that

𝑥
𝑛
+ 𝑤
𝑛
∈ 𝐾, (39)

and there exists 𝑢
𝑛
∈ 𝐹(𝑥

𝑛
) satisfying

𝜙 (𝑢
𝑛
, 𝑥
𝑛
, 𝑦) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜖
󸀠

𝑛
, ∀𝑦 ∈ 𝐾, 𝑛 ∈ 𝑁. (40)

Since𝑥
𝑛
+𝑤
𝑛
∈ 𝐾, then there exists𝑥

𝑛
∈ 𝐾 such that𝑥

𝑛
+𝑤
𝑛
=

𝑥
𝑛
. Thus,

𝑑 (𝑥
𝑛
, 𝐾) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (41)

Let 𝜖
𝑛
= max{𝜖󸀠

𝑛
, ‖𝑤
𝑛
‖}; we can get 𝑑(𝑥

𝑛
, 𝐾) ≤ 𝜖

𝑛
. Without

loss of generality, suppose that {𝑥
𝑛
} ⊂ 𝑀(𝛿

0
) for 𝑛 is

sufficiently large. By the compactness of𝑀(𝛿
0
), there exist a

subsequence {𝑥
𝑛
𝑘

} of {𝑥
𝑛
} and 𝑥 ∈ 𝑀(𝛿

0
) such that 𝑥

𝑛
𝑘

→ 𝑥.
It is easy to see that 𝑥 ∈ 𝐾. Furthermore, by the u.s.c. of
𝐹 at 𝑥 and compactness of 𝐹(𝑥), there exist a subsequence
{𝑢
𝑛
𝑘

} of {𝑢
𝑛
} and some 𝑢 ∈ 𝐹(𝑥) such that 𝑢

𝑛
𝑘

→ 𝑢. Since
𝜙 is lower semicontinuous in first and second arguments, it
follows from (40) that

𝜙 (𝑢, 𝑥, 𝑦) ≤
𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑦 ∈ 𝐾. (42)

For any 𝑦 ∈ 𝐾, let 𝑦
𝑡
= 𝑥 + 𝑡(𝑦 − 𝑥), for all 𝑡 ∈ (0, 1); it is

obvious that 𝑦
𝑡
∈ 𝐾. Now, from (42), we have

𝜙 (𝑢, 𝑥, 𝑦
𝑡
) ≤

𝛼

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑡
󵄩󵄩󵄩󵄩

2

. (43)

By the convexity of 𝜙, it follows that, for each 𝑡 ∈ (0, 1), we
obtain

𝜙 (𝑢, 𝑥, 𝑦) ≤
𝛼𝑡

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑦 ∈ 𝐾. (44)

Let 𝑡 → 0
+ in the last inequality; then, we have

𝜙 (𝑢, 𝑥, 𝑦) ≤ 0, ∀𝑦 ∈ 𝐾. (45)

This shows that 𝑥 solves ELP(𝐹, 𝜙, 𝐾). Thus, ELP(𝐹, 𝜙, 𝐾) is
strongly LP 𝛼-well-posed in the generalized sense.
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