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Affected by special underground circumstances of coal mine, the image clarity ofmost images captured in themine is not very high,
and a large amount of image noise is mingled with the images, which brings further downhole images processing many difficulties.
Traditional image denoising method easily leads to blurred images, and the denoising effect is not very satisfactory. Aimed at
the image characteristics of low image illumination and large amount of noise and based on the characteristics of color detail
blindness and simultaneous contrast of human visual perception, this paper proposes a new method for image denoising based
on visual characteristics. The method uses CIELab uniform color space to dynamically and adaptively decide the filter weights,
thereby reducing the damage to the image contour edges and other details, so that the denoised image can have a higher clarity.
Experimental results show that thismethod has a brilliant denoising effect and can significantly improve the subjective and objective
picture quality of downhole images.

1. Introduction

The application environment in the coal industry is always
special, and downhole images are always mingled with large
amount of image noise interfered by complex underground
environment, mechanical vibration, and dust noise. This
brings many difficulties for the subsequent processing of the
image. Therefore, the denoising process on images captured
and transmitted from downhole becomes very necessary
so as to provide better image quality and better followup
processing.

There are many ways in terms of denoising, such as the
mean denoising, median denoising, and wavelet denoising.
A representative study is from Narendra, who raised the
row-column decomposition median filtering algorithm [1];
moreover, He et al. have put forward a multimedian filter
algorithm [2] which can effectively remove the image impulse
noise; additionally, Darsow and Olsen have proposed three
denoising methods based on phases of wavelet: local phase
variance threshold, edge tracking, and scale phase fluctuation
threshold method [3]. In order to overcome the weakness
that wavelet transform can only carry out point singularity

detection, Minh N. Do and Martin Vetterli proposed con-
tourlet transform in 2002 [4]. With the gradual deepening
of the various branches of mathematics in the theory and
applications, great progress in image denoising technology
has been achieved in terms of mathematical morphology,
partial differential equations, genetic algorithms, information
theory, and so forth, producing a number of new denoising
algorithms [5–8], including denoising algorithm based on
mathematicalmorphology [9–12], denoising algorithmbased
on fuzzy theory [13, 14], denoising algorithmbased on genetic
algorithms [15], neural network-based denoising algorithm
[16], and denoising algorithm based on information entropy.

Although, with the maturity and improvement of the
various theories, image denoising methods have gained a lot
of progress; these methods have their respective advantages,
disadvantages, and application areas. For example, the mean
denoising is suitable for removing grain noise in images, but
the images always easily become blur because this method
is too average; median denoising is good for removing
impulse noise in the image, but the denoising effect is
not very ideal when the noise area inside the window is
too large; Wiener filter is suitable for removing the white
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noise in the image; however, the calculation amount is too
large; wavelet denoising has a wide range of algorithms and
superior performances, but the realization is very difficult
and complex. Moreover, the effect of the above algorithms
will not be satisfactory when an image is simultaneously
interfered by a variety of noise; in other words, while the
image smoothens, the quality declines. Besides, denoising
research on specific areas with complex environment is also
very rare. The aforementioned are the current research status
of image denoising; therefore, with the combination of noise
characteristics of the coal mine, finding a method that can
preserve the image detail and textural features while at the
same time reducing image noise has become the research goal
of this paper.

2. CIELab Color Space

CIELab color space is defined by the International Commis-
sion on Illumination (CIE) in 1976, and it is currently one of
the most uniform color spaces with a set data of 𝐿, 𝑎, and
𝑏 representing one color, and one Lab values group formed
one corresponding relationship with one color. In the set, 𝐿
indicates the luminance value; 𝑎 and 𝑏 are the chromaticity
coordinates. Value 𝑎 indicates the color change direction of
red-green, +𝑎 indicates the change towards the red direction,
and −𝑎 shows the change in the direction of green. 𝑏 shows
the change in the yellow-blue direction, +𝑏 shows the change
in the direction of yellow, and−𝑏 shows the change in the blue
direction. As shown in Figure 1, 𝑎 represents axis of red and
green and 𝑏 represents axis of yellow and blue. Their values
range from 0 to 10. 𝑎 = 𝑏 = 0 means colorlessness, and 𝐿

represents scale factor from black to white.

3. Interconversion of RGB and CIELab Color
Space

The interconversion of RGB and CIELab color space needs to
convert RGB to CIEXYZ color space first and then to CIELab
color space [5].

The conversion formula of RGB color space to𝑋𝑌𝑍 color
space is
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Then, convert 𝑋𝑌𝑍 color space to LAB color space, and the
conversion formula is
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Figure 1: CIELab color space.
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4. New Adaptive Image Denoising Method
Based on Visual Characteristic

The classic image denoising methods are done in the RGB
color space, while RGB color space is a nonuniform color
space, and it does not take into account important infor-
mation such as the image brightness and chroma. Due to
the fact that images captured from downhole are affected
by low light or uneven illumination, it is very hard to reach
satisfactory denoising effect by adopting the classic image
denoising method. In order to improve the image denoising
performance, a more uniform CIELab color space is needed.
In this color space, human visual sensitivity to the color
differences of different wavelengths is not the same; the
relevant data are shown in Table 1. Aimed at the special
downhole circumstances and based on CIELab uniform
color space, the characteristics of color detail blindness, and
simultaneous contrast of human visual perception, this paper
presents a new image denoising method to improve the
subjective and objective image quality.

4.1. Algorithm Thought. In uniform color space, the chro-
matism value of two human-eye distinguishable colors is
equal; that is, when the chromatism is smaller than a certain
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Table 1: Value of chromatism and sensitivity level to the color
differences.

Value of
chromatism Sensitivity level to the color differences

0.0∼0.50 (Tiny chromatic aberration) trivial feeling
0.5∼1.51 (Small chromatic aberration) slight feeling
1.5∼3 (Lesser chromatic aberration) noticeable feeling
3∼6 (Larger chromatic aberration) appreciable feeling
Above 6 (Large chromatic aberration) strong feeling

threshold, human eyes consider them as the same color; but
when the chromatism is greater than a threshold, human eye
will be able to distinguish the two different colors. In CIELab
color space, the value of this threshold is generally 3. In view
of this, the paper will divide image noise into two types:
flat region noise and nonflat region noise. The algorithm
carries out different processing self-adaptively according to
the different region of the pixel.

In a region, let 𝑥
𝑖𝑗
represent the polluted pixel value of

point (𝑖, 𝑗), and then let the CIELabmedian of the pixel in the
area with 𝑥

𝑖𝑗
being the center point and neighborhood being

(2𝑁 + 1) × (2𝑁 + 1) be

𝑦
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Let the CIELab chromatic aberration of current pixel point
and center point be 𝑑 = |𝑥
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|; preset a threshold 𝑡, and
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(6)

If 𝛼
𝑖𝑗
of all pixels within the neighborhood of (2𝑁+1)×(2𝑁+

1) are 1, then, it is called flat region noise; the color of flat
region noise point can be affected by the rest of pixels within
the same neighborhood, and convolution denoising can be
conducted by using traditional Gaussian filter template. If
there are pixels within the neighborhood of (2𝑁+1) × (2𝑁+

1) whose 𝛼
𝑖𝑗
are 0; then, this area is nonflat region. Noise

in nonflat region is not entirely affected by other pixels in
the neighborhood and is only related to pixels in the same
area; that is, the noise is only related to pixels whose CIELab
chromatic aberration is less than the relevant threshold; if
it is greater than the threshold, then it is considered that
the contribution of the pixel color value to the center point
remains conforming to Gaussian distribution; otherwise, the
pixel does not have any contribution to the center point.
Let the convolution weights be 0. Thus, the pixel color will
be more consistent within the same region, achieving the
purpose of preserving image detail.

4.2. Gaussian Filter. Gaussian filter [7] is the linear smooth-
ing filter which determines weights according to the shape of
the Gaussian function. One-dimensional Gaussian function
is

𝑔 (𝑥) = 𝑒
−𝑥
2
/2𝜎
2

, (7)

wherein 𝜎 determines the width of the Gaussian filter. The
greater 𝜎 becomes, the wider the band of the Gaussian filter
will be and the better the smoothness will be. Moreover, 𝑎
compromise can be obtained by adjusting the smoothness
degree parameter 𝜎, when the image features are too vague
and when excessive unwelcome break variables are caused by
noise and texture in smooth images. For image processing,
two-dimensional Gaussian function is commonly used as
smoothing filter. The function expression is
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The convolution and denoising formula of the input image
𝑓[𝑖, 𝑗] via Gaussian filter is
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In order to reduce the time complexity of Gaussian fil-
ter convolution calculation, the two-dimensional Gaussian
function can be converted to the combination of two one-
dimensional convolution templates [8]. First, convolve the
input image𝑓[𝑖, 𝑗] and the Gaussian template in the horizon-
tal direction; set a temporary array; store the result in the
temporary array; then convolve the image and the Gaussian
template in the horizontal direction and transpose the result;
the final smooth image can be obtained.

Figure 2 is a schematic diagram of the separability of the
Gaussian function convolution. This method is completed
through the combination of two horizontal convolution tem-
plates. First, convolve the input image𝑓[𝑖, 𝑗] and theGaussian
function in the horizontal direction, and then transpose and
store the result in the temporary array; after that, take the
temporary array as the input, and carry out the convolution
with the same Gaussian function to realize the purpose
of replacing the vertical convolution with the horizontal
convolution. Transpose the output information after the
second convolution, and then the final smoothed output
image can be obtained. Since the separability of the Gaussian
function is high, Gaussian filter can be effectively achieved.
Two-dimensional Gaussian function can be carried out in
two steps. First, convolve the imagewith the one-dimensional
Gaussian function; then, convolve the result with the same
one-dimensionalGaussian function perpendicular to the first
result. Therefore, the calculation amount of two-dimensional
Gaussian filter presents a linear growth along with the width
of the filter template rather than a square growth.

4.3. Algorithm Flow. Define the size of denoising template as
𝛿 × 𝛿 and the distinguishable color threshold as 𝑇; traverse
any pixel (𝑟, 𝑔, 𝑏) in the image; the specific realization steps
of this algorithm are as follows.
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(a) Longitudinal template convolution (b) Horizontal template convolution

Figure 2: Schematic diagram of the separability of Gaussian function convolution.

(1) Input the pending image𝑓 and initialize the Gaussian
convolution template whose size is 𝛿 × 𝛿.

(2) Use the chromatic aberration computational formula
of CIELab space color to calculate the value of chro-
matism between the center pixel and pixels within
neighborhood 𝛿; collect number 𝑛 which stands for
the value of chromatism that is greater than the
threshold 𝑇.

(3) If 𝑛 = 𝛿 × 𝛿 − 1, then it indicates that except the
center pixel all the values of chromatism between
any two pixels in the region are greater than the
threshold 𝑇. This is flat region noise; convolution and
denoising can be reached via traditional Gaussian
filter template. Turn to Step (4).

(4) If 𝑛 ̸= 𝛿 × 𝛿 − 1, 𝑛 ̸= 0, and if the value of chromatism
between center pixel and pixel (𝑖, 𝑗) in the region
is greater than threshold 𝑇, then this is nonflat
region noise. Set the value of pixel (𝑖, 𝑗) in Gaussian
convolution template to be 0. Turn to Step (5).

(5) If none of the above is satisfied, no operation is
required; keep the original value.

(6) Process the next pixel and turn to Step (2).

(7) Judge whether all the pixels are processed; if yes,
end the algorithm; otherwise, turn to Step (6) and
continue the processing.

The algorithm flow is as shown in Figure 3.

5. Experimental Performance and
Comparative Analysis

A noisy downhole image was selected and denoising process-
ing was carried out by, respectively, using methods of mean
denoising, median denoising, hybrid denoising, traditional

Noise point

Traverse pixels

Nonnoise point

Judging

Flat region noise Nonflat region noise

Keep the
original

value

Input image

Traditional Gaussian
denoising

Statistical-based
Gaussian template

denoising

End of algorithm

Processing all pixels

No

No

No

Yes

Figure 3: Algorithm flow.

Gaussian denoising, and the method proposed in this paper.
Image RMSE (root mean square error) and PSNR (peak
signal to noise ratio) were calculated, so as to evaluate the
performance of different algorithms.



Journal of Applied Mathematics 5

(a) Noise polluted image (b) Mean denoising

(c) Median denoising (d) Hybrid denoising

(e) Traditional Gaussian denoising (f) Paper-proposed denoising

Figure 4: Effect contrast of different denoising methods.

RMSE and PSNR are defined as follows [17, 18]:
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wherein 𝑔 indicates source image, 𝑓 stands for images which
goes through scales addressing first and then same multiple

processing second with the use of relevant algorithm, and 𝑀

and 𝑁 represent the length and width of the image. RMSE
reflects the approximate extent of the scaled image to the
source image; the smaller the RMSE is, themore approximate
the scaled image is to the source image; PSNR reflects the
image magnification effect. The higher the PSNR is, the
clearer the scaled image will be.

The experimental hardware environment is Pentium 4
CPU (2.80GHz), memory capacity 1.5 GB, and resolution
1024 × 768; the software environment is Microsoft Windows
XP Professional SP3 operating systems. The effect contrast of
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Table 2: Evaluation index of denoising effect of different denoising
algorithms.

Denoising method RMSE PSNR
Mean denoising 307.14593 21.03142
Median denoising 259.65736 32.73148
Hybrid denoising 242.47657 33.45765
Traditional Gaussian denoising 210.32459 34.87167
Paper-proposed denoising 190.10174 36.91472

different denoising methods is as shown in Figure 4, and the
comparison of denoising experimental data is as shown in
Table 2.

It can be seen from Table 2 that RMSE of mean denoising
is the maximum, and that of the PSNR is minimum, which
means the denoising effect of this method is the most unsat-
isfactory. RMSE of median and hybrid denoising method is
greatly lower than that of mean denoising, and PSNR has
also been improved. Compared with traditional Gaussian
denoising and other methods, the algorithm proposed by
this paper has further improved the objective quality of the
image. Moreover, it can also be seen from Figure 3 that
the contours of the image processed by mean denoising are
vague, and the image also contains a lot of noise; what is
worse, there is a serious loss of image detail information;
the performance of median and hybrid denoising is a little
bit better, but the processed image still contains residual
noise; traditionalGaussian denoisingmethod did notmanage
to eliminate the obvious noise within the visual range, and
the effect is not very ideal; the algorithm proposed in this
paper successfully improved the peak signal to noise ratio and
at the same time managed to reserve image detail features
and texture changing features well; more importantly, the
processed image has higher resolution and better visual
effects.

6. Conclusions

Denoising processing on underground images has been
conducted in this paper based on CIELab color space and
CIELab chromatism aberration computational formula. The
paper has proposed that weight should be determined by
visual chromatism aberration, which makes up the insuffi-
ciency of letting space coordinates distance decide weight in
RGB space; in the meantime, the characteristic that CIELab
color space is more uniform in visual perception is used,
taking fully into account the luminance and chrominance
information of the processed image, making the denoised
images and human vision maintain better correlation. The
experimental results have demonstrated the effectiveness of
the algorithm from aspects of the subjective quality and
the objective quality. This method is very helpful to further
processing and application of downhole images.
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