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The paper is concerned with eigenvalues of complex Sturm-Liouville boundary value problems. Lower bounds on the real parts of
all eigenvalues are given in terms of the coefficients of the corresponding equation and the bound on the imaginary part of each
eigenvalue is obtained in terms of the coefficients of this equation and the real part of the eigenvalue.

1. Introduction

Consider the regular complex Sturm-Liouville problem

𝜏𝑦 := −𝑦

+ 𝑞𝑦 = 𝜆𝑤𝑦 (1)

in 𝐿
2

𝑤
[0, 1] associated with theDirichlet boundary conditions

𝑦 (0) = 𝑦 (1) = 0, (2)

where 𝑞 is a complex-valued function and 𝑤 is a real-valued
function subjected to

𝑤 (𝑥) > 0, a.e. 𝑥 ∈ [0, 1] , 𝑞, 𝑤 ∈ 𝐿
1

[0, 1] ; (3)

𝜆 is a spectral parameter, 𝐿2
𝑤
[0, 1] is the weighted Hilbert

space of all Lebesgue measurable complex-valued functions
𝑓 on [0, 1] satisfying ∫

1

0
𝑤|𝑓|
2

< ∞ with the inner product
⟨𝑓, 𝑔⟩ = ∫

1

0
𝑤𝑓𝑔 and the norm ‖𝑓‖ = ⟨𝑓, 𝑓⟩

1/2, and 𝐿
1
[0, 1] is

the set of all Lebesgue measurable complex-valued functions
𝑓 on [0, 1] for which ∫

1

0
|𝑓| < ∞.

Equation (1) is formally self-adjoint, if and only if 𝑞 is a
real-valued function. Hence, (1) is formally non-self-adjoint,
when the imaginary part of 𝑞 is nonzero. The boundary
value problems associated with (1) with real coefficients have
been deeply studied (cf., e.g., [1–5] and their references).
Similar to regular self-adjoint boundary value problems,

one can prove that (1) and (2) also have only countable
eigenvalues without finite accumulation points using the
spectral theory of compact operators in Hilbert spaces when
(1) is formally non-self-adjoint. Unlike self-adjoint boundary
value problems, (1) and (2) may have infinitely many nonreal
eigenvalues, when the imaginary part of 𝑞 is nonzero (see
[6, Theorem 1.1]). The asymptotic behavior of eigenvalues of
boundary value problems associatedwith (1) has been studied
(cf. [7–9]). Sufficient conditions were given in [10] for all
eigenvalues of (1) with the periodic, antiperiodic, Dirichlet,
or Neumann boundary conditions to be simple. For more
related results for non-self-adjoint differential expressions,
the reader is referred to [11–14] and the references cited
therein.

In this paper, we are interested in the bounds on the
eigenvalues of (1) and (2). In the case where (1) is formally
self-adjoint, the bounds on eigenvalues of (1) and (2) were
constructed in terms of the coefficients of (1), the coefficients
of a comparing equation, and the eigenvalues of the com-
paring eigenvalue problem using the comparison theorem
in [4]. The Rayleigh-Ritz method was used in [3] to obtain
the bounds of eigenvalues of (1) and (2), when 𝑞 is positive
and 𝑤 ≡ 1. It is noted that the comparison theorem and the
Rlayleigh-Ritz method are not applicable to boundary value
problems (1) and (2), for the case where (1) is formally non-
self-adjoint. Here, we obtain lower bounds on the real parts of
all eigenvalues of (1) and (2) in terms of the coefficients of (1)
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and get the bound on the imaginary part of each eigenvalue
in terms of the coefficients of (1) and the real part of the
eigenvalue.

In the next section, we will present themain results of this
paper.

2. The Bounds on the Eigenvalues

We denote by ‖ ⋅ ‖
𝐶
the maximum norm of 𝐶[0, 1], which

is the set of the continuous functions on [0, 1], by ‖ ⋅ ‖
1
the

norm of the space 𝐿1[0, 1] and by ‖ ⋅ ‖
2
the norm of the space

𝐿
2
[0, 1]. Let 𝑞

1
and 𝑞

2
be the real and imaginary parts of

𝑞, respectively; that is, 𝑞
1

= Re 𝑞 and 𝑞
2

= Im 𝑞. Then,
𝑞 = 𝑞
1
+ 𝑖𝑞
2
, where 𝑖 = √−1. For convenience, we set

𝑞
−

𝑘
:= −min {𝑞

𝑘
, 0} , 𝑞

+

𝑘
:= max {𝑞

𝑘
, 0} , 𝑘 = 1, 2. (4)

In addition, we denote
𝑆
1
(𝜀) := {𝑥 ∈ [0, 1] : 𝑤 (𝑥) < 𝜀} , 𝑚

1
(𝜀) := mes 𝑆

1
(𝜀) ,

(5)

𝑆
2
(𝜀) := {𝑥 ∈ [0, 1] : 𝑤

2

(𝑥) < 𝜀} , 𝑚
2
(𝜀) := mes 𝑆

2
(𝜀) .

(6)

Then the result below is one of the main results of the paper.

Theorem 1. If 𝜆 is an eigenvalue of (1) and (2), then

Re 𝜆 ≥ −

8

𝜀
1

(




𝑞
+

1




1

+ 2




𝑞
−

1




1
)




𝑞
−

1




1
; (7)

if 𝜆 is an eigenvalue of (1) and (2), with Re 𝜆 ≤ 0, then

|Im 𝜆| ≤

8

𝜀
1





𝑞
2




1





𝑞
−

1




1
, (8)

where 𝜀
1

> 0 satisfies 8‖𝑞
−

1
‖
2

1
𝑚
1
(𝜀
1
) < 1; and if 𝜆 is an

eigenvalue of (1) and (2), with Re 𝜆 > 0, then

|Im 𝜆| ≤

8

𝜀
1





𝑞
2




1

(




𝑞
−

1




1

+ Re 𝜆‖𝑤‖
1
) , (9)

where 𝜀
1
> 0 satisfies 8(‖𝑞−

1
‖
1
+ Re 𝜆‖𝑤‖

1
)
2
𝑚
1
(𝜀
1
) < 1.

Proof. We first consider the case where 𝜆 is an eigenvalue of
(1) and (2), with Re 𝜆 ≤ 0. Let 𝜆 be such an eigenvalue and
let 𝜙(𝑥) be the corresponding eigenfunction with ‖𝜙‖

2
= 1.

Then, 𝜙(0) = 𝜙(1) = 0 and

−𝜙

+ 𝑞𝜙 = 𝜆𝑤𝜙. (10)

By multiplying both sides of (10) by 𝜙 and integrating over
the interval [0, 1], we have

∫

1

0






𝜙





2

+ ∫

1

0

𝑞




𝜙





2

= 𝜆∫

1

0

𝑤




𝜙





2

. (11)

By separating the real and imaginary parts of both sides of
(11), we get that

Re 𝜆∫

1

0

𝑤




𝜙





2

= ∫

1

0






𝜙





2

+ ∫

1

0

𝑞
1





𝜙





2

, (12)

Im 𝜆∫

1

0

𝑤




𝜙





2

= ∫

1

0

𝑞
2





𝜙





2

. (13)

From Re 𝜆 ≤ 0 and (12), it follows that

∫

1

0






𝜙





2

≤ ∫

1

0

𝑞
−

1





𝜙





2

. (14)

Now, let 𝑄
1
(𝑥) = ∫

𝑥

0
𝑞
−

1
(𝑡)d𝑡; then we have

max
𝑥∈[0,1]

|𝑄
1
(𝑥)| ≤ ‖𝑞

−

1
‖
1
and

∫

1

0

𝑞
−

1





𝜙





2

= ∫

1

0

𝑄


1





𝜙





2

= −∫

1

0

𝑄
1
(𝜙

𝜙 + 𝜙𝜙


)

= − 2Re∫
1

0

𝑄
1
𝜙

𝜙 ≤ 2





𝑞
−

1




1

∫

1

0






𝜙










𝜙







≤ 2




𝑞
−

1




1






𝜙



2

≤ 2




𝑞
−

1






2

1
+

1

2






𝜙





2

2

(15)

by the Cauchy-Schwarz inequality. It can be obtained from
(14) and (15) that






𝜙





2

2
≤ 2





𝑞
−

1






2

1
+

1

2






𝜙





2

2
, (16)

and, hence,






𝜙





2

2
≤ 4





𝑞
−

1






2

1
, ∫

1

0

𝑞
−

1





𝜙





2

≤ 4




𝑞
−

1






2

1
. (17)

Similar to (15), we can get that

∫

1

0

𝑞
+

1





𝜙





2

≤ 2




𝑞
+

1




1






𝜙



2
, (18)

which, together with the first relation of (17), gives that

∫

1

0

𝑞
+

1





𝜙





2

≤ 4




𝑞
+

1




1





𝑞
−

1




1
. (19)

In addition, from 𝜙(𝑥) = ∫

𝑥

0
𝜙

(𝑡)d𝑡 and the Cauchy-Schwarz

inequality, we have





𝜙 (𝑥)






2

=










∫

𝑥

0

𝜙


(𝑡) d𝑡









2

≤ 𝑥∫

𝑥

0






𝜙


(𝑡)







2

d𝑡 ≤ ∫

1

0






𝜙





2

=






𝜙





2

2
,

𝑥 ∈ [0, 1] ,

(20)

by which, together with (17), the definition of 𝑚
1
(𝜀
1
) in (5),

and 8‖𝑞
−

1
‖
2

1
𝑚
1
(𝜀
1
) ≤ 1, we get that

∫

1

0

𝑤




𝜙





2

≥ ∫

[0,1]\𝑆
1
(𝜀
1
)

𝑤




𝜙





2

≥ 𝜀
1
∫

[0,1]\𝑆
1
(𝜀
1
)





𝜙





2

= 𝜀
1
(1 − ∫

𝑆
1
(𝜀
1
)





𝜙





2

)

≥ 𝜀
1
(1 −






𝜙





2

2
𝑚
1
(𝜀
1
)) ≥

𝜀
1

2

.

(21)

Using (12), (17), (19), and (21), we can easily conclude that, for
every eigenvalue 𝜆 with Re 𝜆 ≤ 0,

|Re 𝜆|
𝜀
1

2

≤ 4 (




𝑞
+

1




1

+ 2




𝑞
−

1




1
)




𝑞
−

1




1
, (22)
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which implies that (7) holds for all the eigenvalues of (1) and
(2).

Let 𝑄
2
(𝑥) = ∫

𝑥

0
𝑞
2
(𝑡)d𝑡. Then, from (17),

∫

1

0

𝑞
2





𝜙





2

≤ 2




𝑞
2




1






𝜙



2

≤ 4




𝑞
2




1





𝑞
−

1




1
, (23)

which, together with (13) and (21), implies that (8) holds for
every eigenvalue 𝜆 with Re 𝜆 ≤ 0.

Now, let𝜆
0
be an eigenvalue of (1) and (2), with Re 𝜆

0
> 0.

Then, we consider the problem

−𝑦

+ (𝑞 − Re 𝜆

0
𝑤)𝑦 = 𝜆𝑤𝑦 (24)

with the Dirichlet boundary conditions (2). It can be easily
verified that 𝜆

0
− Re 𝜆

0
is an eigenvalue of (24) and (2).

Clearly, Re(𝜆
0
− Re 𝜆

0
) = 0. Hence, by (8), there exists 𝜀

1

satisfying 8(‖𝑞
−

1
‖
1
+ Re 𝜆

0
‖𝑤‖
1
)
2
𝑚
1
(𝜀
1
) < 1 such that





Im 𝜆
0





=





Im (𝜆

0
− Re 𝜆

0
)




≤

8

𝜀
1





𝑞
2




1

(




𝑞
−

1




1

+ Re 𝜆
0
‖𝑤‖
1
) .

(25)

This completes the proof.

The following corollary is a direct consequence of
Theorem 1.

Corollary 2. If 𝑞
1

≥ 0, then all eigenvalues 𝜆 of (1) and (2)
satisfy that Re 𝜆 ≥ 0. Consequently, if there exists 𝑞

0
∈ R such

that 𝑞
1
≥ 𝑞
0
𝑤 on [0, 1], then all eigenvalues 𝜆 of (1) and (2)

satisfy that Re 𝜆 ≥ 𝑞
0
.

If𝑤 ∈ 𝐴𝐶[0, 1] and𝑤

∈ 𝐿
2
[0, 1], where𝐴𝐶[0, 1] denotes

the set of functions which are locally absolutely continuous
on [0, 1], then we have the following result.

Theorem 3. Assume that𝑤 ∈ 𝐴𝐶[0, 1] and𝑤

∈ 𝐿
2
[0, 1]. If 𝜆

is an eigenvalue of (1) and (2), then

Re 𝜆 ≥ −

8

𝜀
2





𝑞
−

1






2

1
[‖𝑤‖
𝐶
(1 +





𝑞
1




1
) +






𝑤



2
] ; (26)

if 𝜆 is an eigenvalue of (1) and (2), with Re 𝜆 ≤ 0, then

|Im 𝜆| ≤

8

𝜀
2





𝑞
−

1






2

1
(‖𝑤‖
𝐶





𝑞
2




1

+






𝑤



2
) , (27)

where 𝜀
2

> 0 satisfies 8‖𝑞
−

1
‖
2

1
𝑚
2
(𝜀
2
) < 1; and if 𝜆 is an

eigenvalue of (1) and (2), with Re 𝜆 > 0, then

|Im 𝜆| ≤

8

𝜀
2

(




𝑞
−

1




1

+ Re 𝜆‖𝑤‖
1
)

2

(‖𝑤‖
𝐶





𝑞
2




1

+






𝑤



2
) ,

(28)

where 𝜀
2
> 0 satisfies 8(‖𝑞−

1
‖
1
+ Re 𝜆‖𝑤‖

1
)
2
𝑚
2
(𝜀
2
) < 1.

Proof . Let 𝜆 be an eigenvalue of (1) and (2) with Re 𝜆 ≤ 0 and
let 𝜙(𝑥) be the corresponding eigenfunction with ‖𝜙‖

2
= 1.

Then, 𝜙(0) = 𝜙(1) = 0 and (10) holds. By multiplying both

sides of (10) by𝑤𝜙 and integrating over the interval [0, 1], we
have

∫

1

0

𝑤






𝜙





2

+ ∫

1

0

𝑤

𝜙

𝜙 + ∫

1

0

𝑤𝑞




𝜙





2

= 𝜆∫

1

0

𝑤
2



𝜙





2

. (29)

By separating the real and imaginary parts of both sides of
(29), we get that

Re 𝜆∫

1

0

𝑤
2



𝜙





2

= ∫

1

0

𝑤






𝜙





2

+ Re(∫

1

0

𝑤

𝜙

𝜙) + ∫

1

0

𝑤𝑞
1





𝜙





2

,

(30)

Im 𝜆∫

1

0

𝑤
2



𝜙





2

= Im(∫

1

0

𝑤

𝜙

𝜙) + ∫

1

0

𝑤𝑞
2





𝜙





2

. (31)

On the other hand, it follows from (17) and (20) that

∫

1

0

𝑤






𝜙





2

≤ ‖𝑤‖
𝐶






𝜙





2

2
≤ 4‖𝑤‖

𝐶





𝑞
−

1






2

1
,











∫

1

0

𝑤𝑞
1





𝜙





2











≤ ‖𝑤‖
𝐶






𝜙





2

2





𝑞
1




1

≤ 4‖𝑤‖
𝐶





𝑞
−

1






2

1





𝑞
1




1
,











∫

1

0

𝑤

𝜙

𝜙











≤






𝑤



2






𝜙





2

2
≤ 4






𝑤



2





𝑞
−

1






2

1
,











∫

1

0

𝑤𝑞
2





𝜙





2











≤ ‖𝑤‖
𝐶





𝑞
2




1






𝜙





2

2
≤ 4‖𝑤‖

𝐶





𝑞
−

1






2

1





𝑞
2




1
.

(32)

In addition, by (17), the definition of 𝑚
2
(𝜀
2
) in (6), and

8‖𝑞
−

1
‖
2

1
𝑚
2
(𝜀
2
) < 1, it can be obtained that

∫

1

0

𝑤
2



𝜙





2

≥ ∫

[0,1]\𝑆
2
(𝜀
2
)

𝑤
2



𝜙





2

≥ 𝜀
2
∫

[0,1]\𝑆
2
(𝜀
2
)





𝜙





2

= 𝜀
2
(1 − ∫

𝑆
2
(𝜀
2
)





𝜙





2

)

≥ 𝜀
2
(1 − 4





𝑞
−

1






2

1
𝑚
2
(𝜀
2
)) ≥

𝜀
2

2

,

(33)

which, together with (30) and (32), implies that (26) holds for
every eigenvalue 𝜆 of (1) and (2), with Re 𝜆 ≤ 0, and, hence,
(26) holds for all eigenvalues of (1) and (2). Furthermore, if
𝜆 is an eigenvalue of (1) and (2), with Re 𝜆 ≤ 0, then (27)
follows from (31)–(33).With a similar argument to that in the
proof of Theorem 1, (28) can be proved. This completes the
proof.
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