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In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the
rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes
equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate
representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the
selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions
is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field,
and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche
variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the
proposed method is verified with some examples.

1. Introduction

Comparing with traditional finite element method, spline
element method (on the basis of Galerkin Principle and
Spline Function Theory) involves less calculation, higher
precision, and fewer pending unknowns and it is easier to
construct high-order coordination unit.Thus, it has attracted
much attention, and Chinese scholars have gained much
achievement [1, 2]. However, it mainly focuses on structural
problems [3], such as elastic beam, shell, vibration, and
dynamic response and the research onnonstructural problem
like fluid is far fromenough.Currently, the twomainmethods
of the application of spline function in fluid mechanics are
Collocation Method and Galerkin Method.

Spline Collocation Method is similar to Chebyshev Spec-
trum Method in its less calculation and higher efficiency. So
Botella [4] applied it to calculate the incompressible Navier-
Stokes. Aiming at solving false oscillation by suppressing
the pressure value, Botella [5] proposed a staggered grid
collocation scheme and achieved stable numerical results.
Comparing to the collocation method, Galerkin Method

has higher numerical precision and maturer error analy-
sis theory. However, an element type (e.g., Taylor-Hood
Element) that satisfies inf-sup stability condition [6] needs
to be constructed when Galerkin Method is applied for
Navier-Stokes Equations. In the field of spline element,
Kumar et al. [7] had adopted weighted extended B-splines
(WEB-spline) to compute Stokes. Then, they extended to
Navier-Stokes equations [8] containing nonlinear convection
term and constructed stable grid discrete format. The basic
idea was that the degree of spline function approaching
velocity field was one order higher than that approaching
pressure field while only two kinds of discrete formats,
namely, linear-constant and quadratic-linear, are designed.
Meanwhile, WEB-spline Method is a meshless method. It
avoided cockamamie grid division by replacing unstructured
grid of finite element with regular net, but boundary elements
require special treatment. B-Spline Element Method was
adopted by Kravchenko et al. [9, 10] to analyze turbulent flow
problem to decrease the calculation amounts of large eddy
simulation and direct numericalmethod as well as to increase
resolution ratio of boundary layer by embedding partitioned
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grid. In addition, they adopted divergence-free B-spline to
expand and eliminate pressure term in governing equations
to decrease numerical disturbance of calculating results.

Moreover, two disadvantages of Spline Element Method
have been noticed. One is that it is restricted by “low
geometric versatility” and is only appropriate for the solving
domain of specially simple geometric shape (e.g., rectangular
or those that can be converted into rectangular). The other
is that B-spline function has no interpolation property,
and the function value is in the convex hull. So Dirichlet
boundary condition cannot be imposed directly at the junc-
tion. Mingquan [13] solved the first problem by converting
quadrilateral area into rectangular region through double
linear coordinate transformation. Ronglin et al. [14] calcu-
lated boundary value of the one with arc boundary through
polar mapping. However, these attempts have failed to fully
address this issue. Hughes et al. [15] put forward Isogeometric
Analysis Method to bridge geometric modeling and finite
element analysis. It can be applied in any complex geometric
area, but the primary function needs to be rational function
and it is less efficient than finite element and spline element.

This paper aims at solving incompressible Navier-Stokes
equation and the main idea is as follows. (1) On the basis
of Isogeometric Analysis Method, solution domain can be
precisely represented by making rational Bezier patches as
geometric mapping and the spline element can be ascer-
tained with the geometry that evens the B-spline function
approaching physical field. Appropriate function space can
be more flexibly chosen by separating the expressions of
geometric solving domain and physical field; (2) construct
discrete format of stable spline element that meets inf-sup
conditions; (3) impose essential boundary condition through
Nitsche variational principle for B-spline function’s lack of
interpolation property.

2. Flow of Navier-Stokes

Assume that the boundary 𝜕Ω of a 2D closed connected
regionΩ ∈ 𝑅2 satisfies Lipschitz succession.The incompress-
ible Navier-Stokes flow equation in dimensionless form is

−𝜇Δu + (u ⋅ ∇) u + ∇𝑝 = f , ∇u = 0,

in Ω,
(1)

u = (𝑢, V) refers to velocity vector of fluid,𝑝 refers to the pres-
sure, and f = (𝑓

1
, 𝑓
2
) refers to volume force source term.

𝜇 = 1/Re stands for scale-free viscosity coefficient, in which
Reynolds number Re = 𝜌𝑈𝐿/] is a dimensionless num-
ber of representational fluid property. Nonlinear term of
convection form u⋅∇u = 𝑢

𝑗
(𝜕𝑢
𝑖
/𝜕𝑥
𝑗
) is adopted in this paper,

mainly because of its simple format and numerical stability of
high Reynolds number. Additional boundary condition and
distribution constraint of pressure field should be added to
solve the above equation:

u = g, on 𝜕Ω,

∫
Ω

𝑝 d𝑥 d𝑦 = 0, in Ω,
(2)

where 𝑔 = (𝑔
1
, 𝑔
2
) refers to Dirichlet boundary condition of

speed on boundary 𝜕Ω. The second equation means that the
average pressure is zero.

Assume that a function space 𝑊 = {𝑝 ∈ 𝐿2(Ω) :

∫
Ω
𝑝 d𝑥 d𝑦 = 0}, and a vector function space 𝑆 = {𝑢 ∈

𝐻1(Ω) × 𝐻1(Ω), 𝑢 = 𝑔}, 𝑉 = {𝑢 ∈ 𝐻1(Ω) × 𝐻1(Ω), 𝑢 = 0}

exist; then the weak form solution of constant Navier-Stokes
equation can be expressed as search function (u, 𝑝) ∈ S ×𝑊,
and it satisfies

∫
Ω

𝜇∇w : ∇u dx + ∫
Ω

w (u ⋅ ∇u) dx

− ∫
Ω

(∇ ⋅ w) 𝑝 dx = ∫
Ω

wf dx

−∫
Ω

𝜃∇ ⋅ u dx = 0.

(3)

In the equation, arbitrary function (w, 𝜃) ∈ V ×𝑊, Galerkin
discretization assumes to project physical quantities into a
finite dimensional subspace, and the speed and pressure are
approximately expressed as u

ℎ
= ∑
𝑛
𝑢

𝑖=1
𝑁𝑢
𝑖
(x) { 𝑢𝑖V

𝑖

} and 𝑝
ℎ
=

∑
𝑛
𝑝

𝑖=1
𝑁
𝑝

𝑖
(x)𝑝
𝑖
, respectively.𝑁𝑢

𝑖
and𝑁𝑝

𝑖
, respectively, stand for

the primary functions of finite element space of speed and
pressure field. 𝑛

𝑢
and 𝑛

𝑝
are numbers of primary functions.

This study is different from traditional finite element method
in adopting B-spline function as the primary function.

3. Solution of Navier-Stokes Equation

3.1. Nitsche Type VariationalWeak Form. In order to simplify
the derivation of variational weak form, nonlinear term u ⋅

∇u can be ignored, and the equitation is reduced to Stokes
flow equation: −𝜇Δu + ∇𝑝 = f . Its weak form is equivalent to
variational extremum: search u ∈ S and then obtained as

𝐽 (u) = min
w∈S

𝐽 (w) ,

𝐽 (w) = 1

2
∫
Ω

𝜇∇w : ∇w dx − ∫
Ω

wf dx.
(4)

Then the following constraints should be obeyed: (1)
incompressible condition: ∇ ⋅ u = 0; (2) pressure constraint:
∫
Ω
𝑝 d𝑥 d𝑦 = 0. It should be noticed that the above conclusion

is made on the basis of natural variational principle, so
Dirichlet boundary condition u|

𝜕Ω
= g should be met when

finite element space is constructed. But it can be known from
the above analysis that B-spline has no interpolation property,
so the constraints are hard to be directly imposed as to
traditional polynomial unit (e.g., interpolation of Lagrangian
unit).

This paper obtained unconstrained functional by impos-
ing Dirichlet boundary condition with Nitsche method [16]
and incompressibility and pressure condition with Lagran-
gian multiplier method:

𝐽
𝐿
(w) = 𝐽 (w) − ∫

Ω

𝑝 (∇ ⋅ w) dx + 𝛾∫
Ω

𝑝 dx

+ ∫
𝜕Ω

𝜆 (w − g) d𝑠 +
𝛽

2
∫
𝜕Ω

(w − g)2d𝑠.
(5)
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In the equation, 𝑝, 𝛾, 𝜆 = {𝜆
1
, 𝜆
2
} stands for Lagrangianmul-

tipliers and constant 𝛽 is the penalty factor that depends on
mesh size ℎ. After taking the stationary value of above uncon-
strained functional and several transformations, Lagrangian
multipliers 𝜆

1
= −(𝜕𝑢/𝜕n)+𝑝𝑛

1
and 𝜆

2
= −(𝜕V/𝜕n)+𝑝𝑛

2
can

be identified, whichmeans the normal component of velocity
gradient and pressure. Here 𝑛 = (𝑛

1
, 𝑛
2
) refers to normal

vector outside the unit. After substituting it into variational
weak form and adding nonlinear convection term, the follow-
ing equation can be obtained:

∫𝜇∇w : ∇u dx − ∫
𝜕Ω

𝜇
𝜕w
𝜕n

u d𝑠 − ∫
𝜕Ω

𝜇w𝜕u
𝜕n

d𝑠

+ 𝛽∫
𝜕Ω

wu d𝑠 + ∫
Ω

w (u ⋅ ∇u) dx − ∫
Ω

(∇ ⋅ w) 𝑝 d𝑥

+ ∫
𝜕Ω

wn𝑝 d𝑠

= ∫
Ω

wf dx − ∫
𝜕Ω

𝜇
𝜕w
𝜕n

g d𝑠 + 𝛽∫
𝜕Ω

wg d𝑠 − ∫ 𝜃∇ ⋅ u d𝑥

+ ∫
𝜕Ω

𝜃nu d𝑠 + (∫
Ω

𝜃 d𝑥) 𝛾 = ∫
𝜕Ω

𝜃ng d𝑠,

∫
Ω

𝑝 d𝑥 = 0.

(6)

Equation (6) is different from (29) in [17] in that Lagrangian
multiplier 𝜆

𝑖
contains pressure part 𝑛

𝑖
, which makes the first

two equations of above formula contain boundary pressure
term ∫

𝜕Ω
wn𝑝 d𝑠, ∫

𝜕Ω
𝜃nu d𝑠, and ∫

𝜕Ω
𝜃ng d𝑠. It should be

noticed that the modified weak form equation can ensure
optimal order convergence of numerical solution.

Assume that the speed u = (𝑢
1
, 𝑢
2
) = (𝑢, V) and pressure

field 𝑝 can be approximately expressed by adopting spline
function:

𝑢 =

𝑛
𝑢

∑
𝑖=1

𝑁
𝑢
1

𝑖
(𝑥, 𝑦) 𝑢

𝑖
, V =

𝑛V

∑
𝑖=1

𝑁
𝑢
2

𝑖
(𝑥, 𝑦) 𝑝

𝑖

𝑝 =

𝑛
𝑝

∑
𝑖=1

𝑁
𝑝

𝑖
(𝑥, 𝑦) 𝑝

𝑖
.

(7)

In above equation, velocity components 𝑢, V and pressure
𝑝 adopt different primary functions, namely, 𝑁𝑢

𝑖
, 𝑁V
𝑖
, and

𝑁
𝑝

𝑖
. Then nonlinear simultaneous equations can be obtained

through settlement after substituting them into the formula

[
[
[

[

A
1
+ C
1

0 −G
1
+ R
1

0

0 A
2
+ C
2

−G
2
+ R
2

0

−GT
1
+ RT
1

−GT
2
+ RT
2

0 W
0 0 WT 0

]
]
]

]

(

û
k̂
p̂
𝛾

) = (

B
1

B
2

Q
0

) .

(8)

In the equation, û = {𝑢
𝑖
}, k̂ = {V

𝑖
}, and p̂ = {𝑝

𝑖
} vectors need

to be solved. Partitionedmatrix:A
𝑘
= K
𝑘
−[H
𝑘
+HT
𝑘
]+𝛽M

𝑘
,

𝑘 = 1, 2. Element of matrixK
𝑘
:𝐾𝑘
𝑖𝑗
= ∫
Ω
𝜇∇𝑁
𝑢
𝑘

𝑖
⋅ ∇𝑁
𝑢
𝑘

𝑗
d𝑥 d𝑦;

element of matrix H
𝑘
: 𝐻𝑘
𝑖𝑗
= ∫
𝜕Ω

𝜇(𝜕𝑁
𝑢
𝑘

𝑖
/𝜕n)𝑁𝑢𝑘

𝑗
d𝑠; element

of matrix M
𝑘
: 𝑀𝑘
𝑖𝑗
= ∫
𝜕Ω

𝑁
𝑢
𝑘

𝑖
𝑁
𝑢
𝑘

𝑗
d𝑠; element of nonlinearity

matrix C
𝑘
: 𝐶𝑘
𝑖𝑗

= ∫
Ω
𝑁
𝑢
𝑘

𝑖
(𝑢(𝜕𝑁

𝑢
𝑘

𝑗
/𝜕𝑥) + V(𝜕𝑁𝑢𝑘

𝑗
/𝜕𝑦))d𝑥 d𝑦.

Element of matrix G
1
: 𝐺1
𝑖𝑗
= ∫
Ω
(𝜕𝑁𝑢
𝑖
/𝜕𝑥)𝑁

𝑝

𝑗
d𝑥 d𝑦, element

of matrix G
2
: 𝐺2
𝑖𝑗
= ∫
Ω
(𝜕𝑁V
𝑖
/𝜕𝑦)𝑁

𝑝

𝑗
d𝑥 d𝑦; element of matrix

Rk: 𝑅
𝑘

𝑖𝑗
= ∫
𝜕Ω

𝑁
𝑢
𝑘

𝑖
𝑛
𝑘
𝑁
𝑝

𝑗
d𝑠. Element of vector W: 𝑊

𝑖
=

∫
Ω
𝑁
𝑝

𝑖
(x)d𝑥 d𝑦. Right-hand member of term: B

𝑘
= F
𝑘
−T
𝑘
+

𝛽S
𝑘
; element of vector F

𝑘
: 𝐹𝑘
𝑖
= ∫
Ω
𝑁
𝑢
𝑘

𝑖
𝑓
𝑘
d𝑥 d𝑦; element of

vector T
𝑘
: 𝑇𝑘
𝑖
= ∫
𝜕Ω

𝜇(𝜕𝑁
𝑢
𝑘

𝑖
/𝜕n)𝑔

𝑘
d𝑠; element of vector S

𝑘
:

𝑆𝑘
𝑖
= ∫
𝜕Ω

𝑁
𝑢
𝑘

𝑖
𝑔
𝑘
d𝑠; element of vectorQ:𝑄

𝑖
= ∫
𝜕Ω

𝑁
𝑝

𝑖
(g ⋅ n)d𝑠.

3.2. Solving of Nonlinear Equation. This study adopts
Newton-Raphson method to solve the nonlinear equations
(9) because matrix C

𝑘
contains nonlinear term of displace-

ment field. First, (9) is expressed as vector form L(a) ≡ 0,
in which L(a) = (L

1
, L
2
, L
3
, 𝐿
4
) and vector quantity

a = (û, k̂, p̂, 𝛾):

L
1
= A
1
û + C

1
(û) û − G

1
p̂ + R
1
p̂ − B
1
,

L
2
= A
2
k̂ + C
2
(û) k̂ − G

2
p̂ + R
2
p̂ − B
2
,

L
3
= (−GT

1
+ 𝑅

T
1
) û + (−GT

2
+ 𝑅

T
2
) k̂ + 𝛾W,

𝐿
4
= WTp.

(9)

Conduct Taylor expansion on vector L(a) and ignore high-
order term and then obtain 0 ≡ L(a(𝑛) + Δa(𝑛)) ≈ L(u(𝑛)) +
(𝜕L/𝜕a)a=a(𝑛)Δa

(𝑛), in which Jacobian matrix is

𝐾
𝑇
=
𝜕L
𝜕a

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕L
1

𝜕û
𝜕L
1

𝜕k̂
𝜕L
1

𝜕p̂
𝜕L
1

𝜕𝛾
𝜕L
2

𝜕û
𝜕L
2

𝜕k̂
𝜕L
2

𝜕p̂
𝜕L
2

𝜕𝛾
𝜕L
3

𝜕û
𝜕L
3

𝜕k̂
𝜕L
3

𝜕p̂
𝜕L
3

𝜕𝛾
𝜕𝐿
4

𝜕û
𝜕𝐿
4

𝜕k̂
𝜕𝐿
4

𝜕p̂
𝜕𝐿
4

𝜕𝛾

]
]
]
]
]
]
]
]
]
]
]

]

. (10)

In the equations, for matrix 𝜕L
1
/𝜕û = A

1
+ C
1
+ D
1
,

element of matrix D
1
: 𝐷1
𝑖𝑗
= ∫
Ω
𝑁𝑢
𝑖
(𝜕𝑢/𝜕𝑥)𝑁𝑢

𝑗
d𝑥 d𝑦, matrix

𝜕L
1
/𝜕k̂ = E

1
, its element: 𝐸1

𝑖𝑗
= ∫
Ω
𝑁
𝑢

𝑖
(𝜕𝑢/𝜕𝑦)𝑁

V
𝑗
d𝑥 d𝑦,

matrix 𝜕L
1
/𝜕p̂ = −G

1
+ R
1
, vector 𝜕L

1
/𝜕𝛾 = 0. For matrix

𝜕L
2
/𝜕û = E

2
, its element: 𝐸2

𝑖𝑗
= ∫
Ω
𝑁

V
𝑖
(𝜕V/𝜕𝑥)𝑁𝑢

𝑗
d𝑥 d𝑦,

matrix 𝜕L
2
/𝜕k̂ = A

2
+ C
2
+ D
2
, in which, element of matrix

D
2
:𝐷2
𝑖𝑗
= ∫
Ω
𝑁V
𝑖
(𝜕V/𝜕𝑦)𝑁V

𝑗
d𝑥 d𝑦, 𝜕L

2
/𝜕p̂ = −G

2
+R
2
, vector

𝜕L
2
/𝜕𝛾 = 0. For matrix 𝜕L

3
/𝜕û = −GT

1
+RT
1
, matrix 𝜕L

3
/𝜕k̂ =

−GT
2
+ RT
2
, matrix 𝜕L

3
/𝜕p̂ = 0, vector 𝜕L

3
/𝜕𝛾 = W. Vector

𝜕𝐿
4
/𝜕û = 0, vector 𝜕𝐿

4
/𝜕k̂ = 0, vector 𝜕𝐿

4
/𝜕p̂ = WT, scalar

𝜕𝐿
4
/𝜕𝛾 = 0.
The equation can be solved with Newton-Raphson itera-

tion method:

K
𝑇
Δa(𝑛) = −L (a(𝑛)) ,

a(𝑛+1) = a(𝑛) + 𝜔Δa(𝑛).
(11)
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Figure 1: Mesh refinement.
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Figure 2: Grid division.

In the equations, 𝑛 refers to iterative times and 0 < 𝜔 ≤ 1

refers to relaxation factor.

4. Stable Grid Discretization

Approximate function space that satisfies LBB condition [6]
(or called inf-sup condition) should be constructed when
mixed finite elementmethod is applied to solveNavier-Stokes
equation

inf
𝑝∈𝑊

sup
u∈S

(
−∫
Ω
𝑝∇ ⋅ udΩ

|u|1
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩0
) ≥ 𝛼 > 0. (12)

In the equation, 𝛼 refers to the constant that is independent
of grid discretization. It is theoretically difficult to prove that
certain unit format meets above condition. Moreover, perfect
error analysis theory on spline element method has not been
established and there are only a small amount of literatures
for [18]. Therefore, the stability of grid discretization is
verified with a kind of numerical test called “inf-sup test,”
which is similar to the patch test that proves whether the

nonconforming finite element is in convergence. It is an
effective tool to verify unit quality.

Here the method of inf-sup test mentioned in [19] is
briefly introduced.The above LBB condition can be expressed
as a discrete version

𝛼
ℎ
= inf

û
ℎ

sup
p̂
ℎ

(
ûT
ℎ
Gp̂
ℎ

√ûT
ℎ
Kû
ℎ
√kT
ℎ
Qk
ℎ

), (13)

where element of matrix Q: Q
𝑖𝑗
= ∫
Ω
𝑁
𝑝

𝑖
𝑁
𝑝

𝑗
d𝑥, matrix K =

[
K
1
0

0 K
2

], and matrix G = [
G
1

G
2

]. Then generalized eigenvalue
problem can be approached through a series of transforma-
tions:

P𝜑 = 𝜆Q𝜑. (14)

In the equation, matrix P = GTK−1G. If the eigenvalue
sequence of above problem is 0 = 𝜆

1
= 𝜆
2
⋅ ⋅ ⋅ = 𝜆

𝑘−1
< 𝜆
𝑘
≤

𝜆
𝑘+1

⋅ ⋅ ⋅ 𝜆
𝑛
, then inf-sup constant is 𝛼

ℎ
= √𝜆

𝑘
, namely, the
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Figure 3: Inf-sup constant.

square root of the smallest nonzero eigenvalue. Inf-sup test
requires that the inf-sup constant 𝛼

ℎ
should be independence

of mesh size ℎ.
The approximation capability of spline function depends

on the function power and grid density, so the approximation
precision could be improved through the promotion of power
and grid density. Assume that parameter region 𝐷 is equally
divided into 𝑛 shares along arbitrary coordinate direction;
then the total number of units is 𝑁2 and the mesh size is
ℎ = 1/𝑁, and initial mesh is denoted by 𝜋

0
(ℎ). As shown

in Figure 1, take a unit from the grid (Figure 1(a)) and then
equally divide them into four small units (Figure 1(b)). After
the refinement, the total number of units is (2𝑁)

2, the mesh
size is ℎ/2, and the new grid is denoted by 𝜋

1
(ℎ/2).

This paper adopts such a stable discrete format, namely,
the power of spline function closed to velocity field u is one
order higher than that of spline function closed to pressure
field 𝑝. What is more, velocity field u adopts one grid refine-
ment 𝜋

1
(ℎ/2) and pressure field 𝑝 adopts original grid 𝜋

0
(ℎ).

As a contrast, in another unstable discrete format, velocity
field and pressure field share the grids with same density and
same power of primary function. For the convenience of later
reference, we called the former as 4/1 format and the later as
1/1 format. What is more, such a mark 𝑢

𝑎

𝑐
𝑝𝑏
𝑑
is adopted, in

which 𝑢 refers to velocity field and 𝑝 refers to pressure field.
The superscript 𝑎 (or 𝑏) refers to power of spline function and
the subscript 𝑐 (or 𝑑) is 0 or 1, in which value 0 refers to origin
gird and value 1 refers to refined grid.

Now, a test on a group of numbers is conducted using two
kinds of geometry regions shown on Figure 2. Equally divide
them in parameter regions and adopt 𝑛 = 1, 2, . . . , 5 for the
power of spline function closed to pressure field, respectively.
For each group of splines, continuously defined grids 𝑁 ×

𝑁 will be adopted, in which the number of units in each
direction is𝑁 = 5, 10, 20, 40.Thenumerical results are shown
on Figure 3: horizontal ordinate is mesh size ℎ = 1/𝑁 and
vertical coordinate is constant 𝛼

ℎ
of inf-sup. It is shown in the

figure that the inf-sup constant of 4/1 format is independent of
mesh size ℎ, but the inf-sup constant of 1/1 format is gradually
decreased with continuous refinement of grids.

5. Examples of Numerical Calculation

5.1. Rectangular Area. Taking 2D Navier-Stokes flow that is
defined within unit rectangular area Ω = [0, 1] × [0, 1]

into account, assume the analysis formulas of flow function
𝜓(𝑥, 𝑦) and pressure function 𝑝(𝑥, 𝑦) are

𝜓 (𝑥, 𝑦) =
sin (𝜋𝑥) sin (𝜋y)

𝜋
,

𝑝 (𝑥, 𝑦) =
cos (𝜋𝑥)2 + cos (𝜋y)2

2
+ 2𝜋 cos (𝜋𝑥) cos (𝜋y) .

(15)

So the components of velocity field are 𝑢 = 𝜕𝜓/𝜕𝑦 =

sin(𝜋𝑥) cos(𝜋𝑦) and V = −𝜕𝜓/𝜕𝑥 = − cos(𝜋𝑥) sin(𝜋𝑦), and
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Figure 4: Convergence rate of velocity of Section 5.1.
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Figure 5: Convergence rate of pressure of Section 5.1.

the components of volume force source term are 𝑓
1
= 0 and

𝑓
2
= −4𝜋2 cos(𝜋𝑥) sin(𝜋𝑦). Adopt grid division shown on

Figure 3(a) and add Dirichlet velocity boundary conditions
on the assumption of viscosity coefficient being 𝜇 = 1.

After a group of tests, it is found that the unit number
from each direction is 𝑁 = 5, 10, 20, 40 when the degree of
spline function closed to pressure field is 𝑛 = 1, 2, . . . 5, and
𝑡. Figure 4(a) shows the convergence curve of approximate
velocity fieldu

ℎ
under L2-norm, inwhich horizontal ordinate

refers to mesh size ℎ and vertical coordinate refers to error of
𝐿
2
-norm. And the convergence rate value is marked beside

every curve. Similarly, Figure 4(b) and Figure 5(a) show the
convergence curves of approximate velocity field u

ℎ
under

𝐻1-normand approximate solution of pressure field𝑝
ℎ
under

L2-norm. It should be noticed that if 4/1 discrete format is
adopted, then solution of Navier-Stokes equation through
spline function can get optimal convergence rate (optimal
convergence rate refers to convergence of 𝑝 + 1 order under
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Figure 6: Lid-driven cavity flow.

𝐿
2
-norm, convergence of 𝑝 order under 𝐻1-norm.). But for

unstable 1/1 discrete format, false numerical oscillation will
exist on pressure field 𝑝

ℎ
(especially 𝑢2

0
𝑝2
0
and 𝑢3

0
𝑝3
0
, as is

shown as Figure 5(b)).

5.2. Cavity Flow. Lid-driven flowwithin unit square areaΩ =

[0, 1]× [0, 1] is approached in this part. As is shown in Figure
6, side wall and cavity bottom is fix as (𝑢 = 0, V = 0), the lid
is moving with constant velocity (𝑢 = 1, V = 0), and the fluid
in the cavity flows with the driven of surface viscous force.
Under moderate condition of Re number, except primary
vortex (PV) in the center of square cavity, there still exists
secondary vortex (SV) on the corner of cavity bottom.

Now, the postprocessing is presented. Due to the relation-
ship between flow function and velocity field u = (𝑢, V)

−(
𝜕
2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
) =

𝜕V
𝜕𝑥

−
𝜕𝑢

𝜕𝑦
𝜓
󵄨󵄨󵄨󵄨𝜕Ω = ℎ. (16)

In the equation, ℎ(𝑥) − ℎ(𝑥
0
) = ∫

(x̂
0
,x) ∇𝜓 ⋅ 𝜏 d𝑠, boundary

tangent vector 𝜏 = (−𝑛
2
, 𝑛
1
). After solving such a Dirichlet

poison equation, distribution of the stream-function can be
obtained through postprocessing.

Distribution of the stream-functions of Re = 100 and
Re = 1000 is, respectively, shown in Figure 7, in which power
of spline function closed to pressure field is 𝑛 = 3, unit
number from each direction is 𝑁 = 20. Values of contour
line in Figures 8(a) and 8(b) are −0.10, −0.09, −0.07, −0.05,
−0.03, −0.01, −0.001, −0.0001, 1×10−7, 1×10−6, 1×10−5, 0.001
and −0.115, −0.11, −0.10, −0.09, −0.07, −0.05, −0.03, −0.01,
−0.001, 1 × 10

−6, 0.001, 0.002, 0.005, 0.001, 0.0015, 0.0017,
respectively. After listing minimum stream function value
of primary vortex and vortex center position in Table 1 and
comparing with the date of literature [11, 12], it is found that
the results are basically identical.

Table 1: Comparison on minimum stream function value of
primary vortex and position of vortex center.

Case 𝑥 𝑦 𝜓min

Re = 100/present 0.6160 0.7360 −0.103523
Re = 100/reference [11] 0.6172 0.7344 −0.103423
Re = 1000/present 0.5320 0.5640 −0.118683
Re = 1000/reference [11] 0.5313 0.5625 −0.117929
Re = 1000/reference [12] 0.5300 0.5650 −0.118885

Table 2: Control vertexes and weight factors of Section 5.3.

𝑖 𝑑
𝑖,1

𝑑
𝑖,2

𝑑
𝑖,3

𝑤
𝑖,1

𝑤
𝑖,2

𝑤
𝑖,3

1 (0, 1) (−1, 1) (−1, 0) 1 1 1
2 (1, 1) (0, 0) (−1, 1) √2/2 1 √2/2

3 (1, 0) (1, −1) (0, −1) 1 1 1

At last, in order to visually compare the results, velocity
magnitudes on parallel centerline and vertical centerline are
given. In Figure 8, horizontal ordinate refers to 𝑥-coordinate
and vertical coordinate refers to velocity component V. In Fig-
ure 9, horizontal ordinate refers to velocity component 𝑢 and
vertical coordinate refers to 𝑦-coordinate vertical centerline.
The grid of 20×20 is adopted in the calculation, and power of
spline function closed to pressure field is 𝑛 = 1, 2, . . . , 5. The
data chosen as testing benchmark are from Literature [11, 12],
which coincides with the results in this paper.

5.3. Unit Circular Area. 2D Navier-Stokes flow in unit circu-
lar area (the center is on original point) is defined. Assume
the analysis formulas of flow function 𝜓(𝑥, 𝑦) and pressure
function 𝑝(𝑥, 𝑦) are

𝜓 (𝑥, 𝑦) =
(1 − 𝑥

2 − 𝑦2)
2

64
,

𝑝 (𝑥, 𝑦) =
𝑥2𝑦2 (𝑥2 + 𝑦2 − 2)

512
+
𝑥2 (3 − 3𝑥2 + 𝑥4)

1536

+
𝑦2 (3 − 3𝑦2 + 𝑦4)

1536
+
𝑥𝑦

2
−

1

2048
.

(17)

Velocity components are 𝑢 = (−1/16)𝑦(1 − 𝑥2 − 𝑦2) and V =

(1/16)𝑥(1−𝑥2−𝑦2); components of volume force source term
are 𝑓
1
= 0 and 𝑓

2
= 𝑥. Assume Dirichlet boundary condition

and viscosity coefficient 𝜇 = 1 are added. Parameterization
secondary rational Bezier carve surface should be adopted in
unit circular area, and its control vertexes and weight factors
are shown on Table 2.

The set of spline function power and parameter grid is the
same as that of Section 5.1. Figure 10 shows the convergence
curves of approximate velocity field u

ℎ
under 𝐿

2
-norm and

𝐻1-norm, both of which reached the optimal convergence
rate. For comparison, Figure 11 shows the convergence curves
of pressure numerical solution 𝑝

ℎ
under 𝐿

2
-norm calculated

in 4/1 grid and 1/1 grid, respectively. It is obvious that the
false numerical oscillation of unstable format causes the
degradation of convergence rate (Figure 11(b)).
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Figure 7: Streamline distribution of fluid (𝑝 = 3,𝑁 = 20).
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Figure 8: Velocity magnitude along parallel centerline.

5.4. Circular Couette Flow. Lastly, the typical problem of
Circular Couette Flow is considered. As is shown in Figure 12,
there are viscous incompressible fluids between two infinite-
length concentric cylinders. The radiuses of outer cylinder
and inner cylinder are 𝑅

1
and 𝑅

2
and they are rotated with

the constant angular velocity of Ω
1
and Ω

2
. Assume that the

rotating velocity is slower and the fluid is in steady laminar

flow phase; then there is an analytical solution of tangential
velocity:

𝑢
𝜃
= 𝐴𝑟 +

𝐵

𝑟
,

𝐴 =
Ω
2
𝑅2
2
− Ω
1
𝑅2
1

𝑅2
2
− 𝑅2
1

, 𝐵 =
(Ω
1
− Ω
2
) 𝑅2
1
𝑅2
2

𝑅2
2
− 𝑅2
1

.

(18)
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Figure 9: Velocity magnitude along vertical centerline.
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Figure 10: Convergence rate of velocity of Section 5.3.

In the equations, 𝑟 = √𝑥2 + 𝑦2 refers to radial coordinate.
This paper assumes that fixation of outer cylinder is Ω

2
=

0 and angular velocity of inner cylinder is Ω
1

= 1. Due
to its symmetry, 1/4 is taken for analysis and the settings
of geometric definition, grid, and boundary condition are
shown on Figure 13. Please refer to Table 3 for control vertex
and weight factor within defined geometry area.

Figure 14 shows the distribution of tangential velocity 𝑢
𝜃
.

The power of spline function approaching pressure field is 𝑛 =

3 and the grid is 20 × 20. Figure 15 shows the distribution of

Table 3: Control vertex and weight factor of Section 5.3.

𝑖 𝑑
𝑖,1

𝑑
𝑖,2

𝑑
𝑖,3

𝑤
𝑖,1

𝑤
𝑖,2

𝑤
𝑖,3

1 (1, 0) (1, 1) (0, 1) 1 √2/2 1
2 (2, 0) (2, 2) (0, 2) 1 √2/2 1

tangential velocity 𝑢
𝜃
on radial coordinate with angle of 45∘.

It can be noticed that they coincide with the analytical solu-
tion.
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Figure 11: Convergence rate of pressure of Section 5.3.
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Figure 12: Circular Couette flow.

6. Conclusion

This paper solved the problem of incompressible Navier-
Stokes flow through geometrical precise spline element
method. (1) This method overcame the poor geometric ver-
satility of spline element method; adoption of rational Bezier
surface patch in mapping function can accurately express
complex geometry areas. (2) It presents a stable discretemesh
format meeting in-sup condition, which expanded the spline
method into fluid.

This paper only discussed 2D fluid problem, but its
conclusion can be directly generalized to 3D conditions.
Problems to be solved are (1) variation of transient problems

Sy
m

m
et

ric

Symmetric

u
𝜃 =

1, u
r =

0

u
𝜃 =

0, u
r =

0

Figure 13: Settings of grid and boundary condition.

with time; (2) multiarea tiling problem, which shall adapt to
more complicated computational area of topology; (3) para-
meterized method of complex solution domain.
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