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This paper considers the numerical solution of delay differential equations for solving the problem of small and vanishing lag
using multistep block method. This problem arises when the size of a delay value is smaller than the step size, 𝑥 − 𝜏 < ℎ, and
the delay time may even vanish when 𝜏 → 0 in a current step. The proposed approach that is based on interpolation of Newton
divided difference has been implemented by adapting this problem to the multistep block method. In order to achieve the required
accuracy, this approach considered the appropriate degree of interpolation polynomial in approximating the solution of delay term.
The developed code for solving small and vanishing lag is done using C program and we called it as DDEB5.The P-stability andQ-
stability of this method are also studied. Numerical results are presented and compared to the existing method in order to illustrate
the efficiency of the proposed method.

1. Introduction

Delay differential equation (DDE) is one of the mathematical
models that commonly possess the result in differential
equations with time delay. In general, the unknown function
of this derivative equation not only depends on the current
value but also depends on the past value which is called a
delay term. This equation can be given in the form of

𝑦
󸀠

(𝑥) = 𝑓 (𝑥, 𝑦 (𝑥) , 𝑦 (𝑥 − 𝜏)) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑦 (𝑥) = 𝜙 (𝑥) , 𝑥 ∈ [−𝜏, 𝑎] ,

(1)

where 𝜏 is a time delay or lagwhich is a positive constant,𝜙(𝑥)
is a prescribed initial function, and 𝑦(𝑥 − 𝜏) is the solution of
delay term.

There are two families of difficulties that may exist in the
numerical solution of DDEs: the occurrences of derivative
discontinuity along the integration interval and the small
and vanishing lag where the delay term is smaller than cur-
rent step size and the delay time may even vanish as 𝜏 → 0

in (𝑥 − 𝜏), respectively. In this paper, we will focus on the
study of dealing with the second difficulty in the adaptation
of multistep block method which is specifically 2-point
modified block method.

In the previous work, there are several authors that
have investigated the numerical solution of DDEs with the
problem of vanishing delay and small delay. For instance,
Enright and Hu [1] developed an approach which combines
an iteration scheme and interpolation technique that is based
on two time steps for Runge-Kutta methods to handle the
vanishing delay. Their main idea is to use all the information
from the last step including the early stages of the current step
in the interpolation technique.

Karoui and Vaillancourt [2] developed a SYSDEL code
which is based on the numerical method of Runge-Kutta for
the formula pair of order (5, 6) for solving the case of vanish-
ing lag and asymptotically vanishing lag of (1). In their study
of solving vanishing lag case, they have used interpolation or
extrapolation of 3-point Hermite polynomial to approximate
the solution of the delay term by depending on the location
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Figure 1: 2-point modified block method.

of delay time fall in the history queue or in a neighborhood of
vanishing lag point, respectively. Then for the asymptotically
vanishing lag case, they have used the approach of the first
case as starter and then the delay equation is approximated
by solving it as an ODE.

The latest code for the numerical scheme of small,
vanishing, and asymptotically vanishing delay in DDEs has
come out in Yagoub et al. [3] in the name of HBODDE.
This code is based on a hybrid variable-step variable-order 3-
stageHermite-Birkhoff-ObrechkoffODE solver that has been
adapted in DDEs. The delay values are computed by Hermite
interpolation and the small delay deal with extrapolation.

Hayashi [4] handled small and vanishing delay by propos-
ing three algorithms of iterative scheme which are extrapo-
lation, special interpolant, and iteration procedure with the
adaptation of continuous Runge-Kutta method, while Neves
and Thompson [5] handled small and vanishing delay by
restricting the step size to be smaller and using extrapolation,
respectively. All of the approaches that have been proposed
are due to the one-step integration method where when the
delay time falls in the current step, there is no any available
approximant information that can be used for computing the
delay term, (𝑥 − 𝜏). This is lead to the use of extrapolation in
their way to handle the small or vanishing lag.

In the past eight years, the study of DDE in the numerical
solution ofmultistep blockmethod has gained some attention
among the researchers. These methods were initially investi-
gated in solving ODE and have shown the advantages of less
computational works and manage to obtain good accuracy.
For the previous work please see [6–8]. In the study of DDE
involving block method, Ishak et al. [9] has developed the
two-point block for solving delay differential equations by
using six points of Lagrange interpolation to evaluate the
delay solution, while San et al. [10] has investigated a coupled
block method that can integrate the solution within two dif-
ferent blocks which are namely two-point two-step block and
three-point two-step block method. In both works, they only
solved a typical retarded DDE problem without any difficulty
that may arise in delay differential equations.These situations
allow us to fill the gap taking into account the second diffi-
culty with the adaptation of 2-point modified block method.

In this paper, we have developed a new DDEB5 code
of C program for handling small and vanishing lag using
the current approximate information provided from the
approximation of PE(CE)𝑠 mode to evaluate the small and
vanishing lag using Newton divided difference interpolation.
The detail of this numerical scheme is described in Section 3
in conjunction with the summary of DDEB5 code.

2. Formulation of the Method

The multistep block method based on 𝑘-step predictor-
corrector pair can be defined as

Predictor :
𝑘−1

∑

𝑞=0

𝛼
∗

𝑞
𝑦
𝑛+𝑞

= ℎ

𝑘−1

∑

𝑞=0

𝛽
∗

−𝑞
𝑓
𝑛−𝑞
,

Corrector :
𝑘

∑

𝑞=0

𝛼
𝑞
𝑦
𝑛+𝑞

= ℎ

𝑘

∑

𝑞=0

𝛽
2−𝑞
𝑓
𝑛+2−𝑞

,

(2)

where the step number from 𝑞 = 0 to (𝑘 − 1) and 𝑘 refers to
the order of the predictor and corrector, respectively.

There are many types of methods that can be generated
from (2). Specifically, in this paper, we will only focus on
the 2-point modified block method. According to Figure
1, this 2-point modified block method will approximate
the solution of 𝑦

𝑛+1
and 𝑦

𝑛+2
at two points 𝑥

𝑛+1
and 𝑥

𝑛+2

simultaneously using the information in the previous block
at points 𝑥

𝑛−2
, 𝑥
𝑛−1

, and 𝑥
𝑛
. This process will continue on

the next block until it reaches the end of the interval. In
particular, the computed block has step size 2ℎ, while the
previous block has the step size 2𝑟ℎ where the use of 𝑟
and 𝑞 in this method is for variable step size implementa-
tion.

Basically, this 2-point modified block method is differing
from the block method that has been proposed by Abdul
Majid and Suleiman [6]. In this method, the approximation
of these two solutions 𝑦

𝑛+1
and 𝑦

𝑛+2
will be integrated over

the interval [𝑥
𝑛
, 𝑥
𝑛+1
] and [𝑥

𝑛+1
, 𝑥
𝑛+2
], respectively. While

in Abdul Majid and Suleiman [6], the approximation of the
solution is obtained by integrating over the interval [𝑥

𝑛
, 𝑥
𝑛+1
]

and [𝑥
𝑛
, 𝑥
𝑛+2
], respectively. Our considered approach is

called Gauss-Seidel method which is an iterative procedure
that is based on a modification of the Jacobi method. In
Gauss-Seidel method, the first approximation is computed in
the same manner as in the Jacobi method. However, in com-
puting the second approximation, the Gauss-Seidel method
assumes that the new solution values are a better approximant
to the solution than the initial values. In other words, to
approximate the second point 𝑦

𝑛+2
in our algorithm, the

most recently calculated approximation which is 𝑦
𝑛+1

is used
instead of the initial approximation of 𝑦

𝑛
.

The formula of predictor and corrector in 2-point modi-
fied block method can be obtained by the derivation of Lag-
range interpolation polynomial. For corrector formula, the
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interpolation points involved for 𝑦
𝑛−2
, 𝑦
𝑛−1
, 𝑦
𝑛
, 𝑦
𝑛+1

, and
𝑦
𝑛+2

are {(𝑥
𝑛−2
, 𝑓
𝑛−2
), (𝑥
𝑛−1
, 𝑓
𝑛−1
), (𝑥
𝑛
, 𝑓
𝑛
), (𝑥
𝑛+1
, 𝑓
𝑛+1
),

(𝑥
𝑛+2
, 𝑓
𝑛+2
)} and by usingMAPLE, the formula in terms of 𝑟

can be written in the matrix form as the follows:

[

1 0

0 1
] [

𝑦
𝑛+1

𝑦
𝑛+2

] = [

0 0

1 0
] [

𝑦
𝑛+1

𝑦
𝑛+2

] + [

0 1

0 0
] [

𝑦
𝑛−1

𝑦
𝑛

]

+

ℎ

240

[

[

[

[

[

[

(672𝑟
3
+ 144𝑟

2
+ 940𝑟

4
+ 320𝑟

5
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

(−21𝑟
3
− 3𝑟
2
− 50𝑟
4
− 40𝑟
5
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

− (−1632𝑟
3
− 1300𝑟

4
− 320𝑟

5
− 624𝑟

2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

− (−549𝑟
3
− 610𝑟

4
− 200𝑟

5
− 147𝑟

2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

]

]

]

]

]

]

× [

𝑓
𝑛+1

𝑓
𝑛+2

]

+

ℎ

240

[

[

[

[

[

[

(−176𝑟 − 28 − 240𝑟
2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

(1029𝑟
3
+ 564𝑟

2
+ 139𝑟 + 14 + 790𝑟

4
+ 200𝑟

5
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

− (−92 − 304𝑟 − 240𝑟
2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

− (46 + 230𝑟
4
+ 40𝑟
5
+ 501𝑟

3
+ 516𝑟

2
+ 251𝑟)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

]

]

]

]

]

]

× [

𝑓
𝑛−1

𝑓
𝑛

]

+

ℎ

240

[

[

[

[

[

[

0

(37𝑟 + 14 + 15𝑟
2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

0

(46 + 53𝑟 + 15𝑟
2
)

(𝑟 + 1) (𝑟 + 2) (2𝑟 + 1) 𝑟
2

]

]

]

]

]

]

[

𝑓
𝑛−3

𝑓
𝑛−2

] .

(3)

Letting us consider 𝑟 = 1 and substituting this value in (3) will
produce the following first and second point of the corrector
formula:

𝑟 = 1,

[

1 0

0 1
] [

𝑦
𝑛+1

𝑦
𝑛+2

] = [

0 0

1 0
] [

𝑦
𝑛+1

𝑦
𝑛+2

] + [

0 1

0 0
] [

𝑦
𝑛−1

𝑦
𝑛

]

+

ℎ

720

[

346 −19

646 251
] [

𝑓
𝑛+1

𝑓
𝑛+2

]

+

ℎ

720

[

−74 456

106 −264
] [

𝑓
𝑛−1

𝑓
𝑛

]

+

ℎ

720

[

0 11

0 −19
] [

𝑓
𝑛−3

𝑓
𝑛−2

] .

(4)

The coefficients of the formula (3) are then recalculated
whenever the step size changes in each integration of steps.
These approaches avoid the storing of the coefficients at
the start of the code that may give too many subroutines
in the algorithm. The same way in getting the predictor
formula is employed by involving the interpolation points
(𝑥
𝑛−3
, 𝑓
𝑛−3
), {(𝑥
𝑛−2
, 𝑓
𝑛−2
), (𝑥
𝑛−1
, 𝑓
𝑛−1
), and (𝑥

𝑛
, 𝑓
𝑛
)}.

Now, we consider the implementation of PE(CE)𝑠 mode
where 𝑃 denotes the application of the predictor of order (𝑘−
1), 𝐶 denotes the application of the corrector of order 𝑘, 𝐸

denotes the evaluation of the function 𝑓, and 𝑠 denotes the
number of iterations that is needed in a convergence test.The
considered implementation can be described as follows:

𝑃 :

{
{
{
{
{

{
{
{
{
{

{

[𝑖]
𝑦
𝑝
(𝑥
𝑛+1
) = 𝑦 (𝑥

𝑛
) + ℎ

3

∑

𝑞=0

𝛽
−𝑞
𝑧 (𝑥
𝑛−𝑞
) ,

[𝑖]
𝑦
𝑝
(𝑥
𝑛+2
) =
[𝑖]
𝑦
𝑝
(𝑥
𝑛+1
) + ℎ

3

∑

𝑞=0

𝛽
−𝑞
𝑧 (𝑥
𝑛−𝑞
) ,

𝐸 :

{

{

{

[𝑖]
𝑧
𝑝
(𝑥
𝑛+1
) = 𝑓 (𝑥

𝑛+1
,
[𝑖]
𝑦
𝑝
(𝑥
𝑛+1
) ,
[𝑖]
𝑦
𝑝
(𝑥
𝑛+1

− 𝜏)) ,

[𝑖]
𝑧
𝑝
(𝑥
𝑛+2
) = 𝑓 (𝑥

𝑛+2
,
[𝑖]
𝑦
𝑝
(𝑥
𝑛+2
) ,
[𝑖]
𝑦
𝑝
(𝑥
𝑛+2

− 𝜏)) ,

𝐶 :

{
{
{
{
{

{
{
{
{
{

{

[𝑗]
𝑦
𝑐
(𝑥
𝑛+1
) = 𝑦 (𝑥

𝑛
) + ℎ

4

∑

𝑞=0

𝛽
2−𝑞
𝑧 (𝑥
𝑛+2−𝑞

) ,

[𝑗]
𝑦
𝑐
(𝑥
𝑛+2
) =
[𝑗]
𝑦
𝑐
(𝑥
𝑛+1
) + ℎ

4

∑

𝑞=0

𝛽
2−𝑞
𝑧 (𝑥
𝑛+2−𝑞

) ,

𝐸 :

{

{

{

[𝑗]
𝑧
𝑐
(𝑥
𝑛+1
) = 𝑓(𝑥

𝑛+1
,
[𝑗]
𝑦
𝑐
(𝑥
𝑛+1
) ,
[𝑗]
𝑦
𝑐
(𝑥
𝑛+1

− 𝜏)),

[𝑗]
𝑧
𝑐
(𝑥
𝑛+2
) = 𝑓(𝑥

𝑛+2
,
[𝑗]
𝑦
𝑐
(𝑥
𝑛+2
) ,
[𝑗]
𝑦
𝑐
(𝑥
𝑛+2

− 𝜏)),

(5)

for 𝑖 = 0 and 𝑗 = 1, 2, . . . , 𝑠.
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Figure 2: Small lag in 2-point modified block method.

3. Handling Small and Vanishing Lag with
Newton Divided Difference Interpolation

In solving delay differential equations, one must be aware of
the presence of the delay value in order to achieve the smooth
solution and desired accuracy in the numerical solution.
During the integration of DDEs, the delay time may even
lie in the previous step, current step, or in the next step.
The main difficulty in this numerical solution may arise
when the delay falls in the current step where no approxima-
tion information can be used to evaluate the delay term;
in particular, when one-step integration method is applied.
But it might be slightly different with 2-point modified
block method, where the approximate solution at the current
step has been obtained from the application of predictor in
PE(CE)𝑠 mode. Therefore, in this section, we will compute
the solution of small and vanishing lag using Newton divided
difference interpolation by taking five points to interpolate in
the code.

3.1. Small Lag. The small lag occurs when the delay time falls
in the current step, [𝑥

𝑛
, 𝑥
𝑛+1
] which is caused when the delay

value is smaller than the step size, 𝜓
𝑛+1

< ℎ
𝑛+1

, where 𝜓
𝑛+1

=

𝑥
𝑛+1

− 𝜏
𝑛+1

as illustrated in Figure 2.

3.2. Vanishing Lag. The vanishing lag may occur when the
delay time vanishes as 𝜏

𝑛+1
→ 0 at the current step 𝜓∗

𝑛+1
as

illustrated in Figure 3.
Detailed information of vanishing lag can be described by

considering the case of problem 1 in Section 7 as follows:

𝑦
󸀠

(𝑥) = 1 − 𝑦(exp(1 − 1

𝑥

)) , 𝑥 ∈ [0.1, 10] . (6)

In this problem, the vanishing lag occurs when the lag at 𝑥 =
1. It can be seen that whenwe substitute the lag in (6), it yields

𝑦
󸀠

(𝑥) = 1 − 𝑦(exp(1 − 1

1

)) .

𝑦
󸀠

(𝑥) = 1 − 𝑦 (1) ,

(7)

where the delay term 𝜓
∗

𝑛+1
= exp(1 − (1/1)) = 1 = 𝑥

𝑛+1
.

Basically, if this happens, there is no approximate solution
that can be used in the interpolation to evaluate the delay term
because the delay falls in the current mesh point.

In the implementation of 2-pointmodified blockmethod,
the location of the delay term, (𝑥−𝜏), is sought first to specify
whether the delay lies as the small lag or vanishing lag. This

xn−2 xn−1 xn xn+1 xn+2

𝜓∗
n+1

Figure 3: Vanishing lag in 2-point modified block method.

DDEB5 code will detect and handle these cases automatically
and hence identifying the points that would be involved in
the interpolation. In order to get an accurate approximation
in delay solution, the number of interpolation points must
be chosen properly as the order of interpolation is one order
higher than or equal to the order of integrationmethod. Since
our method is of order five, we choose five-point number of
approximate solution that has been stored closest to the delay
value to do the interpolation. The approach of this case can
be summarize in Algorithm 1.

For the case if the small and vanishing lags occur at
starting point of this 2-point modified block method, the
approach of linear extrapolation will be used by determining
the solution at previous point, 𝑥

𝑛
− ℎ
𝑛
. Then, the solution of

delay term can be obtained by extrapolating the points in the
interval [𝑥

𝑛
− ℎ, 𝑥

𝑛
].

4. Stability of the Method

The general linear test equation for DDE is

𝑦
󸀠

(𝑥) = 𝜆𝑦 (𝑥) + 𝜇𝑦 (𝑥 − 𝜏) , 𝑥 ≥ 𝑥
0
,

𝑦 (𝑥) = 𝜙 (𝑥) , −𝜏 ≤ 𝑥 ≤ 𝑥
0
,

(8)

where 𝜆 and 𝜇 are complex and 𝜙(𝑥) is a continuous function.

Definition 1. For the step size ℎ consider the following.

(i) If 𝜆 and 𝜇 are real in (8), the region 𝑅
𝑃
in the

(𝐻
1
, 𝐻
2
)-plane is called the 𝑃-stability region if for

any (𝐻
1
, 𝐻
2
) ∈ 𝑅

𝑃
the numerical solution of (8)

satisfies 𝑦(𝑥
𝑛
) → 0 as 𝑥

𝑛
→ ∞. The test equation

for 𝑃-stability is

𝑦
󸀠

(𝑥) = 𝜆𝑦 (𝑥) + 𝜇𝑦 (𝑥 − 𝜏) , 𝑥 ≥ 𝑥
0
,

𝑦 (𝑥) = 𝜙 (𝑥) , −𝜏 ≤ 𝑥 ≤ 𝑥
0
.

(9)

(ii) If 𝜆 = 0 and 𝜇 is complex in (8), the region 𝑅
𝑄
in

the (𝐻
2
)-plane is called the 𝑄-stability region if for

any (𝐻
2
) ∈ 𝑅
𝑄
the numerical solution of (8) satisfies

𝑦(𝑥
𝑛
) → 0 as 𝑥

𝑛
→ ∞. The test equation for 𝑄-

stability is

𝑦
󸀠

(𝑥) = 𝜇𝑦 (𝑥 − 𝜏) , 𝑥 ≥ 𝑥
0
,

𝑦 (𝑥) = 𝜙 (𝑥) , −𝜏 ≤ 𝑥 ≤ 𝑥
0
.

(10)
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POINT = number of points to be computed simultaneously in a block,
EQN = number of equations in a system,
DDE(𝑛 + 𝑑,𝑋, 𝑌,𝐷𝑋,𝐷𝑌) = subroutine function to approximate the delay term,
FN(𝑛 + 𝑑,𝑋,𝑋𝐷, 𝑌𝐷,𝑋𝐷𝑃, 𝑌𝐷𝑃, 𝑌,𝐾) = subroutine function of function evaluation.

(1) for 𝑑 = 1 to POINT do
(2) for 𝑘 = 1 to EQN do
(3) P: if 𝑑 = 1, then [𝑖]𝑦

𝑝
(𝑥
𝑛+𝑑
) = 𝑦 (𝑥

𝑛
) + ℎ∑

3

𝑞=0
𝛽
−𝑞
𝑧 (𝑥
𝑛−𝑞
)

if 𝑑 = 2, then [𝑖]𝑦
𝑝
(𝑥
𝑛+𝑑
) = 𝑦 (𝑥

𝑛+1
) + ℎ∑

3

𝑞=0
𝛽
−𝑞
𝑧 (𝑥
𝑛−𝑞
)

(4) end for
(5) end for
(6) for 𝑑 = 1 to POINT do
(7) E: subroutine DDE(𝑛 + 𝑑,𝑋, 𝑌,𝐷𝑋,𝐷𝑌)

if (−𝜏 ≤ 𝜓
𝑛+𝑑

≤ 𝑎)
then 𝑦 (𝜓

𝑛+𝑑
) = 𝜙 (𝜓

𝑛+𝑑
)

else
𝑦 (𝜓
𝑛+𝑑
) = 𝑁𝑒𝑤𝑡𝑜𝑛 𝐷𝑖V𝑖𝑑𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

evaluate FN(𝑛 + 𝑑,𝑋,𝑋𝐷, 𝑌𝐷,𝑋𝐷𝑃, 𝑌𝐷𝑃, 𝑌,𝐾)
(8) end for
(9) for 𝑑 = 1 to POINT do
(10) for 𝑘 = 1 to EQN do
(11) C: if 𝑑 = 1, then [𝑗]𝑦

𝑐
(𝑥
𝑛+𝑑
) = 𝑦(𝑥

𝑛
) + ℎ∑

4

𝑞=0
𝛽
2−𝑞
𝑧(𝑥
𝑛+2−𝑞

),

if 𝑑 = 2, then [𝑗]𝑦
𝑐
(𝑥
𝑛+𝑑
) = 𝑦(𝑥

𝑛+1
) + ℎ∑

4

𝑞=0
𝛽
2−𝑞
𝑧(𝑥
𝑛+2−𝑞

),

(12) end for
(13) end for
(14) for 𝑑 = 1 to POINT do
(15) E: subroutine DDE(𝑛 + 𝑑,𝑋, 𝑌,𝐷𝑋,𝐷𝑌)

if(−𝜏 ≤ 𝜓
𝑛+𝑑

≤ 𝑎)

then 𝑦 (𝜓
𝑛+𝑑
) = 𝜙 (𝜓

𝑛+𝑑
)

else
𝑦 (𝜓
𝑛+𝑑
) = 𝑁𝑒𝑤𝑡𝑜𝑛 𝐷𝑖V𝑖𝑑𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

evaluate FN(𝑛 + 𝑑,𝑋,𝑋𝐷, 𝑌𝐷,𝑋𝐷𝑃, 𝑌𝐷𝑃, 𝑌,𝐾)
(16) end for

Algorithm 1

The corrector formulae of 2-point modified block method in
(4) can be written as follows:

𝐴
2
𝑌
𝑁+2

= 𝐴
1
𝑌
𝑁+1

+ ℎ

2

∑

𝑖=0

𝐵
𝑖
𝐹
𝑁+𝑖

. (11)

Applying (11) to the test equations in (9) and rearranging the
equation to be equal to zero will give

𝐴
2
𝑌
𝑁+2

= 𝐴
1
𝑌
𝑁+1

+ ℎ

2

∑

𝑖=0

𝐵
𝑖
(𝜆𝑌
𝑁+𝑖

+ 𝜇𝑌
𝑁+𝑖−𝑚

) .

(𝐴
2
− 𝐻
1
𝐵
2
) 𝑌
𝑁+2

− (𝐴
1
+ 𝐻
1
𝐵
1
) 𝑌
𝑁+1

− 𝐻
1
𝐵
0
𝑌
𝑁
− 𝐻
2

2

∑

𝑖=0

𝐵
𝑖
𝑌
𝑁+𝑖−𝑚

= 0,

(12)

where

𝐴
2
= [

1 0

−1 1
] , 𝐴

1
= [

0 1

0 0
] ,

𝑌
𝑁+2

= [

𝑦
𝑛+1

𝑦
𝑛+2

] , 𝑌
𝑁+1

= [

𝑦
𝑛−1

𝑦
𝑛

] ,

𝑌
𝑁
= [

𝑦
𝑛−3

𝑦
𝑛−2

] , 𝐹
𝑁+2

= [

𝑓
𝑛+1

𝑓
𝑛+2

] ,

𝐹
𝑁+1

= [

𝑓
𝑛−1

𝑓
𝑛

] , 𝐹
𝑁
= [

𝑓
𝑛−3

𝑓
𝑛−2

] ,

(13)
and the matrices of 𝐵

0
, 𝐵
1
, and 𝐵

2
are depending on the step

size ratio 𝑟 which has been formulated in corrector formula
in (4).

For 𝑟 = 1,

𝐵
2
=

1

720

[

346 −19

646 251
] , 𝐵

1
=

1

720

[

−74 456

106 −264
] ,

𝐵
0
=

1

720

[

0 11

0 −19
] .

(14)

Thus, the 𝑃-stability polynomial, 𝜋(𝜍) of 2-point modified
block method, is given by

𝜋 (𝜍) = det
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐴
2
− 𝐻
1
𝐵
2
) 𝑡
2+𝑚

− (𝐴
1
+ 𝐻
1
𝐵
1
) 𝑡
1+𝑚

−𝐻
1
𝐵
0
𝑡
𝑚
− 𝐻
2

2

∑

𝑖=0

𝐵
𝑖
𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(15)
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Figure 4: 𝑃-stability of 2-point modified block method.

When the same approaches are applied to the test equation
(10), it will give the 𝑄-stability polynomial, 𝜓(𝜍), as follows:

𝜓 (𝜍) = det
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐴
1
𝑡
2+𝑚

− 𝐴
0
𝑡
1+𝑚

− 𝐻
2

2

∑

𝑖=0

𝐵
𝑖
𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (16)

By solving 𝜋(𝜍) = 0 and 𝜓(𝜍) = 0, therefore the 𝑃- and 𝑄-
stability regions are as shown in Figures 4 and 5.

5. Order and Error Constant

From (2), we associate that the difference operator𝐿 is defined
by

𝐿 [𝑦 (𝑥) ; ℎ] =

𝑘

∑

𝑞=0

[𝛼
𝑞
𝑦
𝑛+𝑞

− ℎ𝛽
2−𝑞
𝑓
𝑛+2−𝑞

]

=

𝑘

∑

𝑞=0

[𝛼
𝑞
𝑦 (𝑥 + 𝑞ℎ) − ℎ𝛽

2−𝑞
𝑦
󸀠
(𝑥 + (2 − 𝑞) ℎ)] ,

(17)

where 𝑦(𝑥) ∈ 𝐶1[𝑎, 𝑏] is an arbitrary function. Expanding the
functions 𝑦(𝑥+𝑞ℎ) and 𝑦󸀠(𝑥+(2−𝑞)ℎ) as Taylor series about
𝑥 gives

𝑦 (𝑥 + 𝑞ℎ) = 𝑦 (𝑥) + 𝑞ℎ𝑦
󸀠

(𝑥) +

(𝑞ℎ)
2

2!

𝑦
󸀠󸀠

(𝑥)

+

(𝑞ℎ)
3

3!

𝑦
󸀠󸀠󸀠

(𝑥) + ⋅ ⋅ ⋅ ,

𝑦
󸀠
(𝑥 + (2 − 𝑞) ℎ) = 𝑦

󸀠

(𝑥) + (2 − 𝑞) ℎ𝑦
󸀠󸀠

(𝑥)

+

((2 − 𝑞) ℎ)
2

2!

𝑦
󸀠󸀠󸀠

(𝑥)

+

((2 − 𝑞) ℎ)
3

3!

𝑦
(4)

(𝑥) + ⋅ ⋅ ⋅ .

(18)
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Figure 5: 𝑄-stability of 2-point modified block method.

Substitute into (17)

𝐿 [𝑦 (𝑥) ; ℎ]

=

𝑘

∑

𝑞=0

[𝛼
𝑞
{𝑦 (𝑥) + 𝑞ℎ𝑦

󸀠

(𝑥) +

(𝑞ℎ)
2

2!

𝑦
󸀠󸀠

(𝑥)

+

(𝑞ℎ)
3

3!

𝑦
󸀠󸀠󸀠

(𝑥) + ⋅ ⋅ ⋅ }

− ℎ𝛽
2−𝑞

{𝑦
󸀠

(𝑥) + (2 − 𝑞) ℎ𝑦
󸀠󸀠

(𝑥)

+

((2 − 𝑞) ℎ)
2

2!

𝑦
󸀠󸀠󸀠

(𝑥)

+

((2 − 𝑞) ℎ)
3

3!

𝑦
(4)

(𝑥) + ⋅ ⋅ ⋅ }] .

(19)

Collecting terms

𝐿 [𝑦 (𝑥) ; ℎ]

=

𝑘

∑

𝑞=0

[

[

𝛼
𝑞
𝑦 (𝑥) + ℎ (𝑞𝛼

𝑞
− 𝛽
2−𝑞
) 𝑦
󸀠

(𝑥)

+ ℎ
2
(

𝑞
2
𝛼
𝑞

2!

− (2 − 𝑞) 𝛽
2−𝑞
)𝑦
󸀠󸀠

(𝑥)

+ ℎ
3
(

𝑞
3
𝛼
𝑞

3!

−

(2 − 𝑞)
2

𝛽
2−𝑞

2!

)𝑦
󸀠󸀠󸀠

(𝑥) + ⋅ ⋅ ⋅
]

]

,

(20)
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where

𝐶
0
=

𝑘

∑

𝑞=0

𝛼
𝑞
,

𝐶
1
=

𝑘

∑

𝑞=0

(𝑞𝛼
𝑞
− 𝛽
2−𝑞
) ,

𝐶
2
=

𝑘

∑

𝑞=0

(

𝑞
2
𝛼
𝑞

2!

− (2 − 𝑞) 𝛽
2−𝑞
) ,

.

.

.

𝐶
𝑟
=

𝑘

∑

𝑞=0

(

𝑞
𝑟
𝛼
𝑞

𝑟!

−

(2 − 𝑞)
𝑟−1

𝛽
2−𝑞

(𝑟 − 1)!

) .

(21)

Definition 2. The multistep block method in (2) and the
difference operator (17) are said to be of order 𝑃, if𝐶

0
= 𝐶
1
=

⋅ ⋅ ⋅ = 𝐶
𝑃
= 0 and 𝐶

𝑃+1
̸= 0.

By applying the formulae in (4), we obtained

𝐶
0
= 𝐶
1
= 𝐶
2
= 𝐶
3
= 𝐶
4
= 𝐶
5
= 0,

𝐶
6
= [

𝑦
𝑛+1

𝑦
𝑛+2

] =

[

[

[

[

11

1440

−3

160

]

]

]

]

̸= 0.

(22)

FromDefinition 2, we can conclude that the 2-pointmodified
block method is of order five with the error constant

𝐶
6
= [

11

1440

−3

160

]

𝑇

̸= 0. (23)

6. Variable Step Size Strategy

The developed algorithm starts by finding the values of
starting point at 𝑥

𝑛−2
, 𝑥
𝑛−1

, and 𝑥
𝑛
by using the Eulermethod.

The initial block in 2-point modified block method can be
obtained by the approximation of the solutions 𝑦

𝑛+1
and 𝑦

𝑛+2

with the starting step size ratio 𝑟 = 1 and 𝑞 = 1. For obtaining
the next block, the above PE(CE)𝑠 approacheswill be repeated
until it reaches the end of the interval.

In order to achieve the desired accuracy and the most
optimal total steps in the whole interval, we use the Runge-
Kutta Fehlberg variable step size strategy which has been
introduced by [11]. If the integration step is successful, then
the new step size in the next step should be determined by
using the following formula:

ℎnew = 𝐶 × (
TOL
𝐸
𝑘−1

)

1/4

, (24)

where𝐶 = 0.5 is a safety factor.The code then will recalculate
the coefficient of the formula whenever the step size changes
by using the step size ratio 𝑟 and 𝑞 as follows:

𝑟 =

ℎold
ℎ

, 𝑞 = 𝑟old (
ℎold
ℎ

) , (25)

where ℎold and 𝑟old are the step size and the step size ratio in
the previous block, respectively, and ℎ is the current step size
that is used in the computed block. In the case of failure step,
the step size will be half of the ℎold.

The convergence test is done by the iteration of corrector
in the second point as given below:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
(𝑠+1)

𝑛+2
− 𝑦
(𝑠)

𝑛+2

󵄨
󵄨
󵄨
󵄨
󵄨
< 0.1 × TOL. (26)

By comparing the corrector formula of the method of order 𝑘
and the same corrector formulae of order 𝑘 − 1 at the second
point 𝑥

𝑛+2
, the local truncation error, 𝐸

𝑘−1
, can be estimated

as

𝐸
𝑘−1

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
(𝑘)

𝑛+2
− 𝑦
(𝑘−1)

𝑛+2

󵄨
󵄨
󵄨
󵄨
󵄨
. (27)

Finally, the numerical results are compared with the exact
solutions and the maximum error of the mixed test can be
defined as follows:

MAXE = max
1≤𝑖≤SSTEP

{max
1≤𝑖≤𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑦
𝑖
)
𝑥
− (𝑦 (𝑥

𝑖
))
𝑥

𝐴 + 𝐵(𝑦 (𝑥
𝑖
))
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

} ,

𝑥
𝑖
∈ [𝑎, 𝑏] ,

(28)

where (𝑦
𝑖
)
𝑥
is the 𝑥th component of the approximate 𝑦, 𝑦(𝑥

𝑖
)

is the exact solution, 𝑁 is the number of equations in the
system, SSTEP is the number of successful steps, and 𝐴 =

1, 𝐵 = 1.

7. Numerical Results

In this section, we have tested three problems of vanishing
lag delay differential equations in order to show the efficiency
and reliability on the performance of 2-point modified block
method where all these implementations have been tested by
using the C program.The following notations are used in the
notations section.

Problem 1 ((vanishing lag at 𝑥 = 1), see [3]). Consider

𝑦
󸀠

(𝑥) = 1 − 𝑦(exp(1 − 1

𝑥

)) , 𝑥 ∈ [0.1, 10] ,

𝑦 (𝑥) = ln (𝑥) , 𝑥 ∈ (0, 0.1] .

(29)

Exact solution is

𝑦 (𝑥) = ln (𝑥) . (30)

Problem 2 ((state dependent delay with vanishing lag at
𝑥 = 1), see [4]). Consider

𝑦
󸀠

1
(𝑥) = 𝑦

2
(𝑥) , 𝑥 ∈ [0.1, 5] ,

𝑦
󸀠

2
(𝑥) = − 𝑦

2
(𝑒
1−𝑦
2
(𝑥)
) 𝑦
2

2
(𝑥) 𝑒
1−𝑦
2
(𝑥)
, 𝑥 ∈ [0.1, 5] ,

𝑦
1
(𝑥) = ln (𝑥) , 𝑥 ∈ [0, 0.1] ,

𝑦
2
(𝑥) =

1

𝑥

, 𝑥 ∈ [0, 0.1] .

(31)



8 Journal of Applied Mathematics

−2

−4

−6

−8

−10

−12

−14
0 500 1000 1500 2000 2500 3000 3500

Total function calls

DDEB5
SYSDEL

M
A

XE
(lo

g 1
0
)

Figure 6: Comparison of total function calls versusmaximum error
for Problem 1.

Exact solution:

𝑦
1
(𝑥) = ln (𝑥) , 𝑥 ∈ [0.1, 5] ,

𝑦
2
(𝑥) =

1

𝑥

, 𝑥 ∈ [0.1, 5] .

(32)

Problem 3 (delay equation with vanishing lag, see [2]).
Consider

𝑦
󸀠

(𝑥) =

𝑥
4
− 3

(𝑥
5
+ 𝑥) ln (𝑥 − 𝑥−3 + (𝑥 − 𝑥−3)−3)

𝑦 (𝑥 − 𝑥
−3
) ,

𝑥 ∈ [2, 30] ,

𝑦 (𝑥) = ln (𝑥 + 𝑥−3) , 𝑥 ∈ [1.5, 2] .

(33)

Exact solution is

𝑦 (𝑥) = ln (𝑥 + 𝑥−3) . (34)

From the numerical results that are tabulated in Table 1 to
Table 3, it can be observed that DDEB5 code gave better
accuracy of maximum error with less number of function
calls in the prescribed tolerances.This is also depicted clearly
in the graphs shown in Figures 6, 7, and 8. For example at
tolerance 10−6 in Table 3, theDDEB5 code only needs 157 total
function evaluations and obtains a good accuracy of 7.17𝐸−7,
while SYSDEL code needs 483 total function calls and obtains
maximum error 1.20𝐸 − 4.

At tolerance 10−6 in Table 2, it can be seen that both codes
have a comparable maximum error, but DDEB5 required less
total function evaluations in the integration. At tolerance 10−8
to 10−12, SYSDEL achieved better accuracy, but it needs more
function evaluations at each tolerance compared to DDEB5.

Table 1: Numerical results for Problem 1.

TOL MTD TS FS MAXE AVERR FNC

10−4 DDEB5 27 0 6.33𝐸 − 05 3.13𝐸 − 05 117
SYSDEL — — 4.05𝐸 − 03 — 498

10−6 DDEB5 59 0 5.61𝐸 − 07 2.83𝐸 − 07 245
SYSDEL — — 6.69𝐸 − 05 — 568

10−8 DDEB5 136 0 4.86𝐸 − 09 2.51𝐸 − 09 553
SYSDEL — — 1.07𝐸 − 07 — 631

10−10 DDEB5 329 0 4.18𝐸 − 11 2.27𝐸 − 11 1325
SYSDEL — — 1.83𝐸 − 09 — 1030

10−12 DDEB5 810 0 3.67𝐸 − 13 2.12𝐸 − 13 3249
SYSDEL — — 5.81𝐸 − 12 — 1947

Table 2: Numerical results for Problem 2.

TOL MTD TS FS MAXE AVERR FNC

10−4 DDEB5 34 0 2.04𝐸 − 04 9.10𝐸 − 05 145
SYSDEL — — — — —

10−6 DDEB5 68 0 1.89𝐸 − 06 7.61𝐸 − 07 281
SYSDEL — — 1.85𝐸 − 06 — 553

10−8 DDEB5 160 0 2.00𝐸 − 08 8.33𝐸 − 09 649
SYSDEL — — 5.05𝐸 − 09 — 959

10−10 DDEB5 387 0 2.07𝐸 − 10 8.78𝐸 − 11 1557
SYSDEL — — 2.85𝐸 − 11 — 1946

10−12 DDEB5 957 0 2.10𝐸 − 12 9.03𝐸 − 13 3837
SYSDEL — — 1.11𝐸 − 13 — 4214

Table 3: Numerical results for Problem 3.

TOL MTD TS FS MAXE AVERR FNC

10−4 DDEB5 22 0 3.21𝐸 − 05 7.82𝐸 − 06 97
SYSDEL — — — — —

10−6 DDEB5 37 0 7.17𝐸 − 07 2.59𝐸 − 07 157
SYSDEL — — 1.20𝐸 − 04 — 483

10−8 DDEB5 80 0 1.16𝐸 − 08 3.69𝐸 − 09 329
SYSDEL — — 9.39𝐸 − 07 — 588

10−10 DDEB5 188 0 1.23𝐸 − 10 3.85𝐸 − 11 761
SYSDEL — — 8.23𝐸 − 09 — 1099

10−12 DDEB5 459 0 1.05𝐸 − 12 3.04𝐸 − 13 1845
SYSDEL — — 7.96𝐸 − 11 — 2233

Overall, it can be conclude that DDEB5 code has its
own advantages in handling small and vanishing lag. This
could be justified by the fact that the approach of Newton
divided difference interpolation has given better accuracy in
approximating delay value compared to extrapolation. The
lesser number of function calls also has shown that DDEB5
code does not need more iteration in order to check the
convergence of the solutions.

8. Conclusion

The approach of Newton divided difference interpolation in
2-point modified block method is proposed for solving the
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Figure 7: Comparison of total function calls versus maximum error
for Problem 2.
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Figure 8: Comparison of total function calls versusmaximum error
for Problem 3.

case of small and vanishing lag of delay differential equation.
The numerical results proved that our developed DDEB5
code is reliable to handle the related difficulty that may exist
in DDE. The DDEB5 code also has its own advantages when
it can detect and automatically treat the small and vanishing
lag in every step of integration without requiring any user
guidance. It also has shown the capability in solving a system
of state dependent vanishing lag as well.

Notations

TOL: The prescribed tolerance
MTD: Method employed

TS: The total number of steps
FS: The total number of failure steps
MAXE: Maximum value of mixed error test of the

computed solution
FNC: Total function calls
DDEB5: A developed code in this paper, which

handled the small and vanishing lag by
using 5-point Newton divided difference
interpolation; the integration method is
2-point modified block method of order
five with the variable step size
implementation

SYSDEL: A code developed by Karoui and
Vaillancourt [2], which handled the
vanishing lag by using the extrapolation of
3-point Hermite polynomial; the
integration method is Runge-Kutta
formula pair of order (5, 6) with the
variable step size implementation as
described in [11]

—: No data provided in the reference.
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