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To evaluate the performance of decision making units (DMUs), data envelopment analysis (DEA) was introduced. Basically, the
traditional DEA scheme calculates the best relative efficiency score (i.e., the “optimistic” efficiency) of each DMU with the most
favorable weights. A decision maker may be unable to compare and fully rank the efficiencies of different DMUs that are calculated
using these potentially distinct sets of weights on the same basis. Based on the literature, the assignable worst relative efficiency score
(i.e., the “pessimistic” efficiency) for each DMU can also be determined. In this paper, the best and the worst relative efficiencies are
considered simultaneously. To measure the overall performance of the DMUs, an integration of both the best and the worst relative
efficiencies is considered in the form of an interval. The advantage of this efficiency interval is that it provides all of the possible
efficiency values and an expanded overview to the decision maker.The proposed method determines the lower- and upper-bounds
of the interval efficiency over a common set of weights. To demonstrate the implementation of the introducedmethod, a numerical
example is provided.

1. Introduction

The traditional data envelopment analysis (DEA) [1] was
established based on the efficient frontier concept in which
the best efficiency score assignable to each DMU is deter-
mined. Charnes et al. [1] introduced a DEAmethod in which
the most favorable weights for each DMU are discovered by
considering the best efficiency score for the DMU.These effi-
ciency scores are used as a basis to compare the performance
of all of the DMUs.

The performances of DMUs from the “optimistic” and
“pessimistic” efficiency viewpoints are evaluated by Entani
et al. [2]. They used the “optimistic” and “pessimistic”
efficiencies to create an interval. Based on their studies [2], the
efficiency of a DMU is given in the form of an interval and is
between the “optimistic” and “pessimistic” values. However,

the method proposed by Entani et al. [2] has a critical defect
in which some of the input and output data are not consid-
ered.Wang andLuo [3] introduced aDEAmodel inwhich the
terms “ideal DMU” (IDMU) and “anti-ideal DMU” (ADMU)
are used as two virtual DMUs to compute the “optimistic”
and “pessimistic” efficiencies, respectively. Wang and Yang
[4] introduced a pair of bounded DEA methods to evaluate
the overall performance of each DMU. The “optimistic” and
“pessimistic” efficiencies for each DMU are measured by
utilizing the input and output information to the greatest
extent possible. To assess the overall performance of each
DMU, both “optimistic” and “pessimistic” efficiencies must
be considered simultaneously [5]. In [6], Azizi introduced
new DEA schemes to conduct a DEA analysis based on the
concepts of “optimistic” and “pessimistic” efficiencies. These
schemes, which are used to measure the interval efficiencies
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of DMUs, have upper- and lower-bounds. Azizi used the A-
index termdeveloped by Sengupta andPal [7] to compare and
rank the efficiency intervals of DMUs.

Basically, the traditional (Charnes, Cooper, and Rhodes)
CCR DEA scheme calculates the efficiency of each DMU
by utilizing only the most favorable weights for DMU. The
decision maker may be unable to compare and rank the effi-
ciencies of different DMUs that were calculated using various
sets of weights on the same basis [8]. However, more than
one DMU can be evaluated as an efficient DMU due to the
inherent flexibility in the weights’ selection. Consequently, a
decision maker may be unable to fully discriminate between
all of the DMUs [9]. Some solutions to overcome these
problems are reviewed in [9]. One of them is the common
weights DEA method. In [10], a DEA model is proposed to
determine the common weights based on the maximization
of the sum of the DMUs’ efficiencies. In [11, 12], to calculate a
set of common weights, the average of various sets of weights
is used.The average is achieved by performing an unbounded
DEA model. They also suggested maximizing the average
DMUs’ efficiency and maximizing the number of efficient
units as other methods to obtain the common set of weights.
Sinuany-Stern and Friedman [13] proposed a nonlinear
discriminated analysis to obtain a common set of weights.
In Jahanshahloo et al. [14], two methods are introduced to
obtain the set of common weights to rank the efficient DMUs
using comparisonswith ideal and special lines.Wang et al. [8]
proposed a method based on regression analysis in which the
common weights are determined from the efficiency-fitting
viewpoint.The traditional DEA efficiencies are considered as
the target efficiencies. Andersen and Petersen [15] evaluated
the efficiency of a DMU by assuming that it may exceed the
conventional score of 1.0. They made a comparison of the
DMU under evaluation by means of a linear composition of
other DMUs, whereby the observations of the DMU under
evaluation are excluded. Cook et al. developed prioritization
method [16]. It ranks the efficient DMUs. In their method,
the DMUs with equal scores on the boundary are divided
by imposing a limitation on the weights in a DEA analysis.
Jahanshahloo et al. [17] proposed an 𝑙

1
-norm method that

addresses some of the shortcomings of the Andersen and
Petersen (AP) method.

In this paper, both the best and the worst relative
efficiencies are applied simultaneously. Tomeasure the overall
performance of theDMUs, an integration of both “optimistic”
and “pessimistic” efficiencies is considered in the form of an
interval. The proposed method determines the lower- and
upper-bounds of the interval efficiency with a common set
of weights. Then, the DMUs are ranked using this interval.
Hence, all of the DMUs have a common set of weights and
are compared simultaneously.

The rest of this paper is organized as follows: in
Section 2, the DEA methods for calculating the “optimistic”
and “pessimistic” efficiencies are introduced, related works
are presented in Section 3, and the proposed method is
introduced in Section 4. The results and discussion are
given in Section 5. Finally, the paper is concluded in
Section 6.

2. Evaluation of the ‘‘Optimistic’’
and ‘‘Pessimistic’’ Efficiencies
Using DEA Models

2.1.The CCRModel for Evaluating the “Optimistic” Efficiencies
of DMUs. Suppose that there are 𝑛 DMUs under evaluation
such that each of them has𝑚 inputs and 𝑠 outputs. The input
and output values of DMU

𝑗
are defined as 𝑥

𝑖𝑗
(𝑖 = 1, . . . , 𝑚)

and 𝑦
𝑟𝑗
(𝑟 = 1, . . . , 𝑠), respectively, for 𝑗 = 1, . . . , 𝑛, and all of

these values are known and positive. Based on the definition
of efficiency, DMU

𝑗
’s efficiency is defined as follows:

𝜃
𝑗
=
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

, 𝑗 = 1, . . . , 𝑛, (1)

where 𝑢
𝑟
(𝑟 = 1, . . . , 𝑠) and V

𝑖
(𝑖 = 1, . . . , 𝑚) are the weights

for the 𝑟th output and the 𝑖th input, respectively. Charnes et
al. [1] introduced a known CCR model to differentiate the
efficiency of DMU

𝑗
from the other DMUs. In CCR model,

the best relative efficiency of the DMUs is measured. This
efficiency is calculated as the following linear programming
scheme:

max 𝜃
𝑜
=

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
= 1,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(2)

Inmodel (2), the subscript “𝑜” represents theDMUunder
evaluation; V

𝑖
(𝑖 = 1, . . . , 𝑚) and 𝑢

𝑟
(𝑟 = 1, . . . , 𝑠) are the

variables for decision making. As 𝜀 is a non-Archimedean
infinitesimal, all weights are positive and it is impossible to
have zero weights because of imposing 𝜀 in DEA models.
Amin and Toloo [18] presented an algorithm for computing
the appropriate non-Archimedean 𝜀 in DEA models. DMU

𝑜

is said to be “DEA efficient” or “optimistic efficient” when
there is a set of positive weights 𝑢

∗

𝑟
(𝑟 = 1, . . . , 𝑠) and

V∗
𝑖
(𝑖 = 1, . . . , 𝑚) that make 𝜃∗ = 1; otherwise, DMU is

said to be “DEA nonefficient” or “optimistic nonefficient.” In
conjunction, the “DEA efficient” DMUs define an efficient
frontier. Throughout the paper, the superscript “∗” is used to
display the optimum amount of the variables.

2.2.TheDEAModel for Evaluating the “Pessimistic” Efficiencies
of DMUs. In the CCR model [1], the “optimistic” efficiency
of DMUs is measured by maximizing it in the range of
nonnegative real numbers less than or equal to one. The
efficiency of a DMU is said to be the “pessimistic” efficiency
or the worst relative efficiency when the measured efficiency
of the DMU is greater than or equal to one. Using the below
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Table 1: Data for 10 DMUs with one input and two outputs.

DMU Input Output 1 Output 2
A 1 1 8
B 1 2 3
C 1 2 6
D 1 3 3
E 1 3 7
F 1 4 2
G 1 4 5
H 1 5 2
I 1 6 2
J 1 7 1

“pessimistic” DEA scheme [19], the “pessimistic” efficiency of
DMU

𝑜
can be measured as follows:

min 𝜑
𝑜
=

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
= 1,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(3)

DMU
𝑜
is called the DEA inefficient or “pessimistic

inefficient” DMU when there is a set of positive weights
𝑢
∗

𝑟
(𝑟 = 1, . . . , 𝑠) and V∗

𝑖
(𝑖 = 1, . . . , 𝑚) that makes

𝜑
∗

= 1; otherwise, it is called “DEA non-inefficient” or
“pessimistic non-inefficient.” It is obvious that “pessimistic
non-inefficient” is not synonymouswith “optimistic efficient.”
An inefficient frontier is defined by all of the “pessimistic
inefficient” DMUs.

In contrast to the introduced CCR model (2), which
is called “optimistic” DEA models, the “pessimistic” DEA
scheme introduced in (3) seeks the most unfavorable weights
for DMUs. By using two-dimensional output and one-
dimensional input data from Entani et al. [2], as in Table 1,
the differences between “DEA efficient,” “DEA nonefficient,”
“DEA inefficient,” and “DEA non-inefficient” DMUs are
demonstrated. For the sake of convenience, all of the inputs
are normalized. In addition, the “optimistic” and “pes-
simistic” efficiency scores of 10 DMUs are obtained based
on DEA models (2) and (3), which are shown in Table 2.
Figure 1 illustrates the efficient and inefficient frontiers of
this dataset. DMUA, DMUE, and DMUJ, which are located
on the efficient frontier, are called “DEA efficient” or “opti-
mistic efficient” DMUs. The other DMUs are termed “DEA
nonefficient” in relation to the efficient frontier. Moreover,
DMUA, DMUB, DMUF, and DMUJ, which are located on
the inefficient frontier, are specified as “DEA inefficient” or
“pessimistic inefficient.” Other DMUs are termed as “DEA
non-inefficient” in relation to the inefficient frontier. Some
DMUs, which belong to the set of “DEA efficient” and

“DEA inefficient” DMUs (DMUA and DMUJ), are located
on both the efficient and inefficient frontiers. However, the
exact positions of these DMUs (DMUA and DMUJ) are
not specified regardless of whether they are situated on the
efficient or the inefficient frontiers. Entani et al. [2] proposed
the concept of interval efficiency to meet this drawback. The
concept will be explained in the next section.

3. Related Works

3.1. A Review of Entani et al.’s DEA Model. Entani et al.’s [2]
DEA models are reviewed in which an efficiency interval for
each DMU, along with upper- and lower-bounds mathemat-
ical programming schemes, is introduced as follows:

max/min 𝜃
𝑜
=

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑜
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑜

max
𝑗
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
}

s.t. 𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(4)

The upper-bound model is changed to scheme (5), and
this model has an optimal value that can be solved using
model (2):

max 𝜃
𝑈

𝑜
=
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑜

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑜

s.t. max
𝑗

{
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

} = 1, 𝑗 = 1, . . . , 𝑛,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚,

⇒ max 𝜃
𝑈

𝑜
=
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑜

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑜

s.t.
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(5)

Moreover, the lower-bound is converted to (6) as follows:

min 𝜃
𝐿

𝑜
=
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑜

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑜

s.t. max
𝑗

{
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

} = 1,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(6)

Model (6) cannot be substituted with an equivalent LP
scheme. Let∑𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
= 1 for any “DEA efficient”

DMU; then (6) is separated into 𝑝 suboptimization problems
(𝑗 = 𝐽

1
, . . . , 𝐽

𝑝
) in which 𝑝 is the number of “DEA efficient”
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Table 2: The interval efficiencies of Entani et al.’s model [2] and Azizi’s model [6] and the relative efficiencies for 10 DMUs.

DMU Optimistic efficiency
(model 2)

Pessimistic
efficiency (model 3)

Interval efficiency
(Entani et al.’s model [2])

Interval efficiency
(Azizi’s model [6])

Rank
(Azizi’s method [6])

A 1.0000 1.0000 [0.1428, 1.0000] [0.1814, 1.0000] 3
B 0.5217 1.0000 [0.2857, 0.5217] [0.1814, 0.5217] 10
C 0.8235 1.2308 [0.2857, 0.8235] [0.2233, 0.8235] 6
D 0.6522 1.1250 [0.3750, 0.6522] [0.2041, 0.6522] 9
E 1.0000 1.6923 [0.4285, 1.0000] [0.3070, 1.0000] 1
F 0.6957 1.0000 [0.2500, 0.6957] [0.1814, 0.6957] 8
G 0.9565 1.7500 [0.5714, 0.9565] [0.3175, 0.9565] 2
H 0.8261 1.1000 [0.2500, 0.8261] [0.1995, 0.8261] 7
I 0.9565 1.2000 [0.2500, 0.9565] [0.2177, 0.9565] 5
J 1.0000 1.0000 [0.1250, 1.0000] [0.1814, 1.0000] 3

units and 𝐽
1
, . . . , 𝐽

𝑝
are the “DEA efficient” DMUs. Model (6)

can be simplified by converting it into the 𝑝 LP as follows:

min 𝜃
𝐿

𝑜𝑗
=

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
= 0,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
= 1,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(7)

Suppose that 𝜃𝐿∗
𝑜𝑗

is the value of the optimum objective
function for the proposed LP model in (7); it is clear that, for
𝑗 = 𝑜, the value of 𝜃𝐿∗

𝑜𝑗
equals 1.The lower-bound efficiency of

DMU
𝑜
can be calculated as follows:

𝜃
𝐿∗

𝑜
= 1 ∧min

𝑗 ̸= 𝑜

{𝜃
𝐿∗

𝑜𝑗
} in which 𝑎 ∧ 𝑏 = min {𝑎, 𝑏} . (8)

Finally, the interval efficiency of DMU
𝑜
is given as

[𝜃
𝐿∗

𝑜
, 𝜃
𝑈∗

𝑜
], with 𝜃

𝑈∗

𝑜
which is the value of the optimum

objective function for the upper-bound introduced in (5).
Azizi [6] analyzed Entani et al.’s method. According to

Azizi’s assessment [6], model (7) has only two constraints.
Thus, without considering the numbers of inputs and outputs
in the problem under evaluation, only two variables can be
nonzero: one of them is an input for one weight and the
other variable is an output for the other weight. Therefore,
Entani et al.’s model [2] calculates the “pessimistic” efficiency
for different DMUs by considering only one input and one
output. Moreover, the model proposed by (7) cannot identify
the exact inefficient DMUs or the inefficient frontier.

Azizi [6] showed the drawback of Entani et al.’s method
that some weights, which are obtained from the lower-
bound efficiency model in (7), give an efficiency score greater
than one for some DMUs. Consequently, the assumption
max
𝑗
{∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
/∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
} = 1, which is a constraint for

lower-bound model (6), is clearly incompatible with these
results.

Output 2
Input

Output 1
Input

A

D
B

C

E

F

G

H I

J

Efficient frontier

Inefficient frontier

Figure 1: Efficient and inefficient frontiers for 10 DMUs.

3.2. A Review of Azizi’s DEA Model. Azizi [6] adjusted the
“pessimistic” efficiency as follows.

By considering 0 < 𝛼 ≤ 1 as the adjustment coefficient,
the adjusted “pessimistic” efficiencies are illustrated by 𝜑∗

𝑗
=

𝛼𝜑
∗

𝑗
(𝑗 = 1, . . . , 𝑛) and satisfy the condition 𝜑

∗

𝑗
= 𝛼𝜑

∗

𝑗
≤

𝜃
∗

𝑗
(𝑗 = 1, . . . , 𝑛). That is, 𝛼 ≤ min

𝑗=1,...,𝑛
{𝜃
∗

𝑗
/𝜑
∗

𝑗
}. Thus,

the efficiency interval of DMU
𝑗
is given by [𝛼𝜑∗

𝑗
, 𝜃
∗

𝑗
] (𝑗 =

1, . . . , 𝑛). The IDMU was defined by Azizi as a virtual DMU
for which the input and output are as follows:

𝑥
min
𝑖

= min
𝑗

{𝑥
𝑖𝑗
} , 𝑖 = 1, . . . , 𝑚,

𝑦
max
𝑟

= max
𝑗

{𝑦
𝑟𝑗
} , 𝑟 = 1, . . . , 𝑠.

(9)
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Based on the definition of efficiency, the efficiency of
IDMU is defined as follows:

𝜑IDMU =
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
max
𝑟

∑
𝑚

𝑖=1
V
𝑖
𝑥min
𝑖

. (10)

Suppose 𝜑∗IDMU is the “pessimistic” efficiency of IDMU.
Then, by considering model (3), the linear programming
model becomes

min 𝜑IDMU =

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
max
𝑟

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑚

∑

𝑖=1

V
𝑖
𝑥
min
𝑖

= 1,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(11)

The parameter 𝛼 is defined with the condition 𝛼𝜑
∗

𝑗
≤

𝜃
∗

𝑗
(𝑗 = 1, . . . , 𝑛) for all [𝛼𝜑∗

𝑗
, 𝜃
∗

𝑗
] with 𝑗 = 1, . . . , 𝑛,

min
𝑗=1,...,𝑛

{
𝜃
∗

𝑗

𝜑∗
𝑗

} ≥
min
𝑗=1,...,𝑛

{𝜃
∗

𝑗
}

max
𝑗=1,...,𝑛

{𝜑∗
𝑗
}
≥

𝜃
∗

min
𝜑∗IDMU

. (12)

The parameter 𝛼 is trivial when 𝛼 = 𝜃
∗

min/𝜑
∗

IDMU.
Therefore, theDMUs’ efficiencies aremeasured in the interval
[𝛼, 1]. This idea is reflected by the next two fractional
programming schemes:

max/min
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑜

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑜

s.t. 𝛼 ≤
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛,

𝑢
𝑟
, V
𝑖
≥ 𝜀, 𝑟 = 1, . . . , 𝑠; 𝑖 = 1, . . . , 𝑚.

(13)

The introduced models as in (13) are called the bounded
DEA schemes, which can be converted into LPmodels [6, 20].
Consider 𝜃𝑈∗

𝑜
and 𝜃𝐿∗
𝑜

as the maximum andminimum values
for the above-illustrated objective function, respectively;
then, values construct an interval known as the efficiency
interval. ForDMU

𝑜
, the upper-bound of this interval is calcu-

lated by considering the “optimistic” efficiency, whereas the
lower-bound is calculated by considering the “pessimistic”
efficiency. Therefore, this set of bounds is considered as
the range of efficiency for DMU

𝑜
, and it is represented by

[𝜃
𝐿∗

𝑜
, 𝜃
𝑈∗

𝑜
].

The numerical example presented in Section 2 is used
to compare between Azizi’s and Entani et al.’s methods. The
input and output values of IDMU are determined by Azizi’s
method as follows:

𝑥
min
1

= min
𝑗

{𝑥
1𝑗
} = 1, 𝑦

max
1

= max
𝑗

{𝑦
1𝑗
} = 7,

𝑦
max
2

= max
𝑗

{𝑦
2𝑗
} = 8.

(14)

The “pessimistic” efficiency of IDMU is equal to 𝜑∗IDMU =

2.8752. Finally, to calculate the efficiency interval of the
DMUs, the bounded DEA schemes (13) are used to calculate
𝛼:

𝜃
∗

min = 0.5217, 𝜑
∗

IDMU = 2.8752 ⇒ 𝛼 =
0.5217

2.8752
= 0.1814.

(15)

The results of models (13) with respect to the efficiency
interval of each DMU are shown in Table 2. Based on these
results, the bounded DEA models (13) determine DMUA,
DMUE, and DMUJ as the “optimistic” efficient DMUs. The
DMUA, DMUB, DMUF, and DMUJ are defined as the
“pessimistic” inefficient DMUs. Finally, Azizi [6] used the
A-index to compare and rank the interval efficiencies of
these 10 DMUs. The results of this ranking are shown in the
last column of Table 2. For example, DMUG is not a “DEA
efficient” unit; it has better performance (rank 2) than both
DMUA and DMUJ, whereas DMUA, which is located on the
efficient frontier, was ranked as the third unit.

3.3. Measuring the Efficiency Score with a Common Set of
Weights. Jahanshahloo et al. [14] proposed a rankingmethod
in which a positive ideal line is defined. A common set of
weights is also determined for all DMUs, and a new efficiency
score is proposed for ranking the efficient DMUs.

The positive ideal DMU is defined as “a virtual DMUwith
the minimized inputs of all of the DMUs as its input and the
maximized outputs of all of the DMUs as its output.” [14].

The positive ideal DMU is given as follows:

DMU = (𝑋, 𝑌) ,

𝑥
𝑖
= min {𝑥

𝑖𝑗
| 𝑗 = 1, . . . , 𝑛} , (𝑖 = 1, . . . , 𝑚) ,

𝑦
𝑟
= max {𝑦

𝑟𝑗
| 𝑗 = 1, . . . , 𝑛} , (𝑟 = 1, . . . , 𝑠) .

(16)

A positive ideal line is defined as “a straight line that
passes through the origin and positive ideal DMU with slope
1.0.” [14].

In Figure 2, the vertical and horizontal axes are set to be
the virtual output (the weighted sumof 𝑠 outputs) and the vir-
tual input (the weighted sum of 𝑚 inputs), respectively, “𝑜𝑥”
is a positive ideal line, and DMU = (∑

𝑚

𝑖=1
𝑥
𝑖
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟
𝑢


𝑟
) is a

positive ideal DMU.
Consider DMU

𝑁
and DMU

𝑀
with the sets of weights

𝑢


𝑟
(𝑟 = 1, . . . , 𝑠) and V

𝑖
(𝑖 = 1, . . . , 𝑚), respectively. In

Figure 2, the respective coordinates of points 𝑀 and 𝑁


under the positive ideal line are (∑𝑚
𝑖=1

𝑥
𝑖𝑀
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟𝑀
𝑢


𝑟
) and

(∑
𝑚

𝑖=1
𝑥
𝑖𝑁
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟𝑁
𝑢


𝑟
).

The parameters Δ𝐼
𝑀
 and Δ

𝑂

𝑀
 illustrate the virtual gaps

between points 𝑀 and 𝑀
𝑝 on the horizontal and vertical

axis, respectively. In addition, the parameters Δ𝐼
𝑁
 and Δ

𝑂

𝑁


illustrate the gaps for points𝑁 and𝑁𝑝.The total virtual gap
to the positive ideal line is equal toΔ𝐼

𝑀
+Δ
𝑂

𝑀
+Δ
𝐼

𝑁
+Δ
𝑂

𝑁
 . An

optimal set of weights 𝑢∗
𝑟
(𝑟 = 1, . . . , 𝑠) and V∗

𝑖
(𝑖 = 1, . . . , 𝑚)

is determined based on [14]. These sets would be determined
so that the points 𝑀∗ and 𝑁

∗ under the positive ideal line



6 Journal of Applied Mathematics

Output

Input

DMU = (∑ m

i=1
xi�


i ,∑

s

r=1
yru


r)

Mp

Np M = (∑ m

i=1
xiM�i ,∑

s

r=1
yrMur)

∑
r=1

yrNur)N = (∑ m

i=1
xiN�


i ,

ΔO
N

ΔO
M

ΔI
M

ΔI
N

o

x

Figure 2: An analysis of the gap for the DMUs below the virtual
positive ideal line.

could be as close as possible to their projection points 𝑀∗𝑝
and𝑁∗𝑝 on the positive ideal line. That is, using the optimal
weights, the total virtual distance Δ𝐼

𝑀
∗ +Δ
𝑂

𝑀
∗ +Δ
𝐼

𝑁
∗ +Δ
𝑂

𝑁
∗ to

the positive ideal line is the shortest distance to both DMUs.
The constraint is also a fraction in which the weighted sum
of the outputs plus the vertical gap Δ

𝑂

𝑗
is the numerator

and the weighted sum of the inputs minus the horizontal
virtual gap Δ𝐼

𝑗
is the denominator. Based on this constraint, a

simultaneous upwards and leftwards direction is the closest
orientation to the positive ideal line. However, the ratio of
the numerator to the denominator equals 1.0, which implies
that the projection point on the positive ideal line is achieved.
Therefore, the proposed scheme is given as follows:

Δ
∗
= min

𝑛

∑

𝑗=1

(Δ
𝐼

𝑗
+ Δ
𝑂

𝑗
)

s.t.
∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖

= 1,

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
+ Δ
𝑂

𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
− Δ𝐼
𝑗

= 1,

Δ
𝐼

𝑗
, Δ
𝑂

𝑗
≥ 0,

𝑢
𝑟
≥ 𝜀 > 0, 𝑟 = 1, . . . , 𝑠,

V
𝑖
≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑚,

(17)

where 𝜀 is a positive Archimedean infinitesimal constant. Let
Δ
𝑂

𝑗
+ Δ
𝐼

𝑗
be Δ
𝑗
; then, (17) is simplified to the following linear

programming:

Δ
∗
= min

𝑛

∑

𝑗=1

Δ
𝑗

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖
= 0,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
+ Δ
𝑗
= 0,

Δ
𝑗
≥ 0,

𝑢
𝑟
≥ 𝜀 > 0, 𝑟 = 1, . . . , 𝑠,

V
𝑖
≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑚.

(18)

When DMU
𝑗
is located on the positive ideal line, the

definition of the common weight analysis efficiency (CWA-
efficiency) score for DMU

𝑗
is used. This definition was

proposed by Liu and Peng [21] as

𝜉
∗

𝑗
=
∑
𝑠

𝑟=1
𝑦
𝑟𝑗
𝑢
∗

𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
V∗
𝑖

. (19)

Thus, DMU
𝑗
is determined to be CWA efficient when

Δ
∗

𝑗
= 0 or 𝜉∗

𝑗
= 1; else, DMU

𝑗
is determined to be CWA

inefficient.The performance of DMU
𝑗
is better than DMU

𝑖
if

𝜉
∗

𝑗
> 𝜉
∗

𝑖
.

In traditional DEA, the CCRmodel lets the DMUs calcu-
late their maximum efficiency scores by the most favorable
weights. This model has some deficits. For instance, when
the efficiencies of different DMUs are measured by various
sets of weights, the decision maker cannot compare and rank
the DMUs on the same basis. For example, in Azizi’s model
[6], the most favorable 𝑢 and V are obtained to maximize the
efficiency score for each DMU. The importance rate for each
output and input is different because of the choice of unique
𝑢 and V for each DMU. In other words, this model measures
the ratio of the weighted sum of the outputs to the weighted
sum of the inputs. Therefore, a DMU being located in the
production possibility set (PPS), which is an inefficient DMU,
has a better rank with respect to an efficient DMU. As can be
seen in Figure 1, DMUG which is an inefficient DMU has a
better rank with respect to efficient DMUA.

4. The Proposed Method

In the proposed method, the efficiency score of DMU
𝑗
(𝑗 =

1, . . . , 𝑛) is presented as an interval [𝜉∗𝐿
𝑗
, 𝜉
∗𝑈

𝑗
] in which the

𝜉
∗𝐿

𝑗
and 𝜉∗𝑈
𝑗

are the lower- and upper-bound of the efficiency
interval for DMU

𝑗
, respectively.

4.1. Calculating the Lower-Bound of the Efficiency Interval.
To obtain the lower-bound, 𝜉∗𝐿

𝑗
, of the efficiency interval for

DMU
𝑗
, which is in (0, 1], (19) is used in which 𝑢

∗

𝑟
and V∗

𝑖

are determined based on model (18). When the positive ideal
DMU is among the real DMUs, the value of the lower-bound
is equal to 1.
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Figure 3: An analysis of the gap for the DMUs above the virtual
anti-ideal line.

4.2. Calculating the Upper-Bound of the Efficiency Interval. To
achieve the upper-bound of the efficiency interval for DMU

𝑗
,

𝜉
∗𝑈

𝑗
, which is in [1, +∞), the following definitions are defined.

Definition 1. An anti-ideal DMU is a virtual DMU that has
the maximum inputs of all of DMUs as its input and the
minimum outputs of all of DMUs as its output.

This DMU is given as follows:

D̃MU = (𝑋, �̃�) ,

𝑥
𝑖
= max {𝑥

𝑖𝑗
| 𝑗 = 1, . . . , 𝑛} , (𝑖 = 1, . . . , 𝑚) ,

𝑦
𝑟
= min {𝑦

𝑟𝑗
| 𝑗 = 1, . . . , 𝑛} , (𝑟 = 1, . . . , 𝑠) .

(20)

Definition 2. An anti-ideal line is a direct line that passes
through the origin and the anti-ideal DMU with slope 1.0.

In Figure 3, the vertical axis is set to be the virtual output,
which is the weighted sum of 𝑠 outputs, and the horizontal
axis is set to be the virtual input, which is the weighted sum
of𝑚 inputs. In Figure 3, “𝑜𝑦” illustrates an anti-ideal line and
D̃MU = (∑

𝑚

𝑖=1
𝑥
𝑖
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟
𝑢


𝑟
) denotes an anti-ideal DMU.

Therefore, the coordinate of the point 𝐿 above the anti-
ideal line is (∑𝑚

𝑖=1
𝑥
𝑖𝐿
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟𝐿
𝑢


𝑟
) and the coordinate of the

point 𝐺 above the anti-ideal line is (∑𝑚
𝑖=1

𝑥
𝑖𝐺
V
𝑖
, ∑
𝑠

𝑟=1
𝑦
𝑟𝐺
𝑢


𝑟
).

Whereas the virtual gap between the points 𝐿 and 𝐿𝑝 on
the horizontal axis is denoted by Δ𝐼

𝐿
 , the virtual gap between

the points 𝐿 and 𝐿𝑝 on the vertical axis is denoted by Δ𝑂
𝐿
 .

Similarly, for the points 𝐺 and 𝐺
𝑝, the gaps are denoted

by Δ𝐼
𝐺
 and Δ𝑂

𝐺
 , respectively. The total virtual distance from

the anti-ideal line is Δ𝐼
𝐺
 + Δ
𝑂

𝐺
 + Δ
𝐼

𝐿
 + Δ
𝑂

𝐿
 . An optimum

set of weights 𝑢∗
𝑟
(𝑟 = 1, . . . , 𝑠) and V∗

𝑖
(𝑖 = 1, . . . , 𝑚) are

determined so that both of the points 𝐺∗ and 𝐿∗ above the
anti-ideal line are as far as possible from their projection
points 𝐺∗𝑝 and 𝐿∗𝑝 on the anti-ideal line.

Table 3: The interval efficiencies of the proposed method for 10
DMUs and their ranks.

DMU Interval efficiency
(proposed model)

Rank
(proposed model)

A [0.6000, 7.9986] 2
B [0.3333, 2.9998] 10
C [0.5333, 5.9992] 4
D [0.4000, 3.0000] 8
E [0.6667, 6.9992] 1
F [0.4000, 2.0004] 9
G [0.6000, 4.9998] 3
H [0.4667, 2.0006] 7
I [0.5333, 2.0008] 5
J [0.5333, 1.0012] 6

In other words, by adopting optimal weights, the sum of
the virtual gaps is Δ𝐼

𝐿
∗ +Δ
𝑂

𝐿
∗ +Δ
𝐼

𝐺
∗ +Δ
𝑂

𝐺
∗ which is the longest

relative to both DMUs. To achieve this goal, the following
model is presented:

Δ
∗
= max

𝑛

∑

𝑗=1

Δ
𝑗

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖
= 0,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
− Δ
𝑗
= 0,

𝑚

∑

𝑖=1

V
𝑖
+

𝑠

∑

𝑟=1

𝑢
𝑟
= 1, (∗)

Δ
𝑗
≥ 0,

𝑢
𝑟
≥ 𝜀 > 0, 𝑟 = 1, . . . , 𝑠,

V
𝑖
≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑚.

(21)

In some cases, the optimal solution of (21) could be
unbounded. To avoid this situation, the constraint ∑𝑚

𝑖=1
V
𝑖
+

∑
𝑠

𝑟=1
𝑢
𝑟
= 1 is added to the other constraints in model (21).

Similarly, to obtain the upper-bound of the interval efficiency
of DMU

𝑗
, 𝜉∗𝑈
𝑗

, (19) is used, where 𝑢∗
𝑟
and V∗
𝑖
are determined

based on (21). When the anti-ideal DMU is among the real
DMUs, the value of the upper-bound is equal to 1. Providing
an initial basic feasible solution (IBFS) for the above proposed
DEA models can practically decrease fifty percent of the
whole computations. Interested readers can refer to the paper
by Toloo et al. [22] for more details of finding an IBFS for
these proposed models.

The proposed model was run to obtain the interval
efficiency of the 10 DMUs used by Entani et al. [2] and Azizi
[6]. The results are shown in Table 3. In the next section, the
proposed method is compared with other previous methods
based on this interval efficiency. The DMUs will be ranked
using this interval efficiency. In Table 3, the DMUs that have
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the higher lower-bound have a better rank. If the lower-
bound of two DMUs is equal, then the DMU with the higher
upper-bound will have a better rank.

5. Results and Discussion

The proposed interval efficiency is used to rank DMUs. The
DMU with the highest lower-bound has the best rank. If two
DMUs have the same lower-bound, then the DMU with the
higher upper-boundwill have the better rank. It is logical that
the worst DMU is a DMU that is located on the worst point
of the inefficient frontier.TheDMUs that are located between
the “pessimistic” and “optimistic” frontiers havemiddle rank.
All of theDMUs that are located near the “optimistic” frontier
have a better rank, while all of the DMUs that are located near
the “pessimistic” frontier have a worse rank.

As it can be seen in Figure 1, DMUE is located on two
strong efficient hyperplanes. Based on the proposed model,
DMUE has the highest lower-bound and it is ranked as the
best DMU.

In our proposed method, DMUA and DMUG have the
same lower-bound. The DMUA has the higher upper-bound
with respect to DMUG. Therefore, DMUA has a better rank
position. In Azizi’s ranking, DMUG is in rank position 2,
but this DMU is dominated by other DMUs and is not even
located on the efficient frontier, while DMUA that is located
on one strong efficient hyperplane is in rank position 3. In
Azizi’s ranking, DMUG was ranked better with respect to
DMUA, whereas, in the proposed model, DMUA has a better
rank with respect to DMUG, that is, more realistic.

As it can be seen in Figure 1, DMUF is located on the
inefficient frontier andDMUD is located between the efficient
and inefficient frontiers. In Azizi [6], DMUF has a better
rank with respect to DMUD, while in the proposed method
DMUF has a worse rank with respect to DMUD, that is, more
acceptable.

In both Azizi’s model and the proposed model, DMUE
has the best rank. DMUE is located on the two strong efficient
hyperplanes which implies the best efficiency for DMUE. The
DMUB is in rank position 10, which is the worst rank among
all of the DMUs. The DMUB is located on the two weak
inefficient hyperplanes which implies the worst inefficiency
for DMUB.

In the proposed method, DMUD and DMUH are in
rank positions 8 and 7, respectively. These DMUs are close
to the pessimistic frontier, but they are located in better
positions with respect to DMUB and DMUF, which are
located on the inefficient frontier. Therefore, the DMUs
that are located between the “pessimistic” and “optimistic”
frontiers are ranked correctly.

6. Conclusion and Future Work

In this paper, both the “optimistic” and “pessimistic” relative
efficiencies are used simultaneously.The overall performance
of the DMUs is measured whereby an integration of both
the best and the worst relative efficiencies is in the form
of an interval. The lower- and upper-bound of the interval
efficiency are achieved by employing a common set of weights

that is determined by the positive ideal and anti-ideal lines.
Then, the DMUs were ranked using this interval. In this
method, all of the DMUs are compared simultaneously with
this common set of weights. The capabilities of the proposed
DEA method are illustrated by a numerical example. The
proposed method measures the efficiency and ranks all of
the efficient and inefficient DMUs, simultaneously.Therefore,
the proposed interval efficiency method is simpler than the
other methods and it is convenient to use in comparison
with Entani et al. and Azizi’s interval models. The proposed
method is also reliable, such that it presents amore acceptable
ranking procedure that leads to logical and acceptable results
in comparison with previous works. Computing the appro-
priate value of 𝜀 for the proposed models can be considered
as a future direction of this study.
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