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We consider the variational inequality problem for a family of operators of a nonempty closed convex subset of a 2-uniformly convex
Banach space with a uniformly Gâteaux differentiable norm, into its dual space. We assume some properties for the operators and
get strong convergence to a common solution to the variational inequality problem by the hybrid method proposed by Haugazeau.
Using these results, we obtain several results for the variational inequality problem and the proximal point algorithm.

1. Introduction

LetN andR be the set of all positive integers and the set of all
real numbers, respectively. Throughout this paper, 𝐸 is a real
Banach space with norm ‖⋅‖ and𝐸∗ is the dual of𝐸. For 𝑥 ∈ 𝐸
and𝑥∗ ∈ 𝐸∗, let ⟨𝑥, 𝑥∗⟩ be the value of𝑥∗ at𝑥. Suppose that𝐶
is a nonempty closed convex subset of 𝐸 and𝐴 is a monotone
operator of 𝐶 into 𝐸∗; that is, ⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0 holds
for all 𝑥, 𝑦 ∈ 𝐶. Then, we consider the variational inequality
problem [1], that is, the problem of finding an element 𝑧 ∈ 𝐶
such that

⟨𝑥 − 𝑧, 𝐴𝑧⟩ ≥ 0 ∀𝑥 ∈ 𝐶. (1)

The set of all solutions to the variational inequality problem
for 𝐴 is denoted by VI(𝐶, 𝐴). For 𝛼 > 0, we say that 𝐴 is 𝛼-
inverse strongly monotone [2–5] if

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

∀𝑥, 𝑦 ∈ 𝐶. (2)

Haugazeau [6] introduced a sequence {𝑥
𝑛
} generated by

the hybrid method by the following way. Let {𝑇
𝑛
} be a

family of mappings of a real Hilbert space 𝐻 into itself with

⋂
∞

𝑛=0
𝐹(𝑇
𝑛
) ̸= 0, where 𝐹(𝑇

𝑛
) is the set of all fixed points of 𝑇

𝑛
.

Let {𝑥
𝑛
} be a sequence generated by

𝑥
1
= 𝑥 ∈ 𝐻,

𝑦
𝑛
= 𝑇
𝑛
𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐻 : ⟨𝑥

𝑛
− 𝑦
𝑛
, 𝑦
𝑛
− 𝑧⟩ ≥ 0} ,

𝑄
𝑛
= {𝑧 ∈ 𝐻 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

(𝑥)

(3)

for each 𝑛 ∈ N, where 𝑃
𝐶
𝑛
∩𝑄
𝑛

is the metric projection of
𝐻 onto 𝐶

𝑛
∩ 𝑄
𝑛
. He proved a strong convergence theorem

when 𝑇
𝑛
= 𝑃
(𝑛 mod 𝑚)+1 for every 𝑛 ∈ N, where 𝑃

𝑖
is

the metric projection of 𝐻 onto a nonempty closed convex
subset 𝐶

𝑖
of 𝐻 for each 𝑖 = 1, 2, . . . , 𝑚 with ⋂𝑚

𝑖=1
𝐶
𝑖
̸= 0.

Later, Solodov and Svaiter [7], Bauschke and Combettes [8],
Nakajo and Takahashi [9], and many researchers studied
the hybrid method in a real Hilbert space. In a real Banach
space, Kamimura and Takahashi [10], Ohsawa and Takahashi
[11], Kohsaka and Takahashi [12], Matsushita and Takahashi
[13], Matsushita et al. [14], Nakajo et al. [15], and several
researchers studied the hybrid method.
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In a real Hilbert space 𝐻, Iiduka et al. [16] considered a
sequence {𝑥

𝑛
} generated by the following hybrid method:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(4)

for each 𝑛 ∈ N, where 𝐴 is an 𝛼-inverse strongly monotone
operator of 𝐶 into 𝐻 with VI(𝐶, 𝐴) ̸= 0, 𝑃

𝐶
is the metric

projection of 𝐻 onto a nonempty closed convex subset 𝐶
of 𝐻, and {𝜆

𝑛
} ⊂ [0, 2𝛼]. They proved that {𝑥

𝑛
} converges

strongly to𝑃VI(𝐶,𝐴)𝑥; see also [17, 18]. In a 2-uniformly convex
and uniformly smooth Banach space𝐸, Iiduka and Takahashi
[19] proved the following.

Theorem 1 (Iiduka and Takahashi [19]). Let𝐴 be an 𝛼-inverse
strongly monotone operator of 𝐸 into 𝐸∗ with 𝐴−10 ̸= 0 and
{𝜆
𝑛
} ⊂ [𝑎, 𝑐

1
𝛼] for some 𝑎 ∈ ]0, 𝑐

1
𝛼[, where 𝑐

1
is a positive

constant satisfying that ‖𝑥 + 𝑦‖2 ≥ ‖𝑥‖2+2⟨𝑦, 𝐽𝑥⟩+𝑐
1
‖𝑦‖
2 for

every 𝑥, 𝑦 ∈ 𝐸. Let {𝑥
𝑛
} be a sequence generated by

𝑥
1
= 𝑥 ∈ 𝐸,

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥

(5)

for each 𝑛 ∈ N, whereΠ
𝐶
𝑛
∩𝑄
𝑛

is the generalized projection of 𝐸
onto𝐶

𝑛
∩𝑄
𝑛
and 𝜙(𝑥, 𝑦) = ‖𝑥‖2−2⟨𝑥, 𝐽𝑦⟩+‖𝑦‖2 for 𝑥, 𝑦 ∈ 𝐸.

Then, {𝑥
𝑛
} converges strongly to Π

𝐴
−1
0
𝑥.

Motivated by [19], we propose a new family of operators
and prove strong convergence theorems of the sequence
generated by these mappings. Using these results, we get
several additional results for the problem of variational
inequalities and the proximal point algorithm.

2. Preliminaries

Throughout this paper, we write 𝑥
𝑛
⇀ 𝑥 to indicate that

a sequence {𝑥
𝑛
} converges weakly to 𝑥 and 𝑥

𝑛
→ 𝑥 will

symbolize strong convergence. We denote by 𝑆
𝐸
the unit

sphere of a Banach space 𝐸; that is, 𝑆
𝐸
= {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}.

We define the modulus 𝛿
𝐸
of convexity of 𝐸 as follows: 𝛿

𝐸

is a function of [0, 2] into [0, 1] such that

𝛿
𝐸
(𝜖) = inf {1 −

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
: 𝑥, 𝑦 ∈ 𝑆

𝐸
,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ≥ 𝜖} (6)

for every 𝜖 ∈ [0, 2]. 𝐸 is said to be uniformly convex if
𝛿
𝐸
(𝜖) > 0 for each 𝜖 > 0. Let𝑝 > 1.𝐸 is said to be𝑝-uniformly

convex if there exists a constant 𝑐 > 0 such that 𝛿
𝐸
(𝜖) ≥ 𝑐𝜖

𝑝

for every 𝜖 ∈ [0, 2]. It is obvious that a 𝑝-uniformly convex
Banach space is uniformly convex. 𝐸 is said to be strictly
convex if ‖𝑥 + 𝑦‖/2 < 1 for all 𝑥, 𝑦 ∈ 𝑆

𝐸
with 𝑥 ̸= 𝑦. We know

that a uniformly convex Banach space is strictly convex and
reflexive. The duality mapping 𝐽 : 𝐸 → 2

𝐸
∗

of 𝐸 is defined
by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

} (7)

for every 𝑥 ∈ 𝐸. It is also known that if 𝐸 is strictly convex
and reflexive, then the duality mapping 𝐽 of 𝐸 is bijective and
𝐽
−1

: 𝐸
∗

→ 2
𝐸 is the duality mapping of 𝐸∗. 𝐸 is said to be

smooth if the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(8)

exists for every 𝑥, 𝑦 ∈ 𝑆
𝐸
. The norm of 𝐸 is said to be

uniformly Gâteaux differentiable if, for each 𝑦 ∈ 𝑆
𝐸
, the limit

(8) is attained uniformly for 𝑥 ∈ 𝑆
𝐸
. 𝐸 is said to be uniformly

smooth if the limit (8) is attained uniformly for (𝑥, 𝑦) ∈
𝑆
𝐸
× 𝑆
𝐸
. We know that the duality mapping 𝐽 of 𝐸 is single-

valued if and only if 𝐸 is smooth. It is also known that if 𝐸 is
uniformly smooth, then the duality mapping 𝐽 is uniformly
continuous on bounded subsets of 𝐸 and if the norm of 𝐸
is uniformly Gâteaux differentiable, then 𝐽 is norm-to-weak∗
uniformly continuous on bounded subsets of 𝐸; see [20, 21]
for more details. The following is proved by Xu [22]; see also
[23].

Theorem 2 (Xu [22]). Let 𝐸 be a smooth Banach space. Then,
the following are equivalent.

(i) 𝐸 is 2-uniformly convex.
(ii) There exists a constant 𝑐

1
> 0 such that ‖𝑥 + 𝑦‖2 ≥

‖𝑥‖
2

+ 2⟨𝑦, 𝐽𝑥⟩ + 𝑐
1
‖𝑦‖
2 holds for each 𝑥, 𝑦 ∈ 𝐸.

Remark 3. In the case where 𝐸 is a real Hilbert space, 𝐽 is the
identity mapping and we can choose 𝑐

1
= 1.

Let𝐸 be a smoothBanach space.The function𝜙 : 𝐸×𝐸 →
R is defined by

𝜙 (𝑦, 𝑥) =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑦, 𝐽𝑥⟩ + ‖𝑥‖
2 (9)

for every 𝑥, 𝑦 ∈ 𝐸. It is obvious that (‖𝑦‖ − ‖𝑥‖)2 ≤ 𝜙(𝑦, 𝑥) ≤
(‖𝑦‖+‖𝑥‖)

2 for each 𝑥, 𝑦 ∈ 𝐸 and 𝜙(𝑧, 𝑥)+𝜙(𝑥, 𝑦) = 𝜙(𝑧, 𝑦)+
2⟨𝑥−𝑧, 𝐽𝑥− 𝐽𝑦⟩ for all 𝑥, 𝑦, 𝑧 ∈ 𝐸. It is also known that if 𝐸 is
strictly convex and smooth, then, for 𝑥, 𝑦 ∈ 𝐸, 𝜙(𝑦, 𝑥) = 0 if
and only if 𝑥 = 𝑦; see also [13]. We have the following result
fromTheorem 2.

Lemma 4. Let 𝐸 be a 2-uniformly convex and smooth Banach
space. Then, for each 𝑥, 𝑦 ∈ 𝐸, 𝜙(𝑥, 𝑦) ≥ 𝑐

1
‖𝑥 − 𝑦‖

2 holds,
where 𝑐

1
is a constant in Theorem 2.

Proof. Let 𝑥, 𝑦 ∈ 𝐸. By Theorem 2, we have

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

−
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥 − 𝑦, 𝐽𝑦⟩ ≥ 𝑐
1

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, (10)

which is the desired result.
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Let 𝐶 be a nonempty closed convex subset of a strictly
convex, reflexive, and smooth Banach space 𝐸 and let 𝑥 ∈ 𝐸.
Then, there exists a unique element 𝑦

0
∈ 𝐶 such that

𝜙 (𝑦
0
, 𝑥) = inf

𝑦∈𝐶

𝜙 (𝑦, 𝑥) . (11)

We denote 𝑦
0
by Π
𝐶
𝑥 and call Π

𝐶
the generalized projection

of 𝐸 onto 𝐶; see [10, 24, 25]. We have the following well-
known results [10, 24, 25] for the generalized projection.

Lemma 5. Let 𝐶 be a nonempty convex subset of a smooth
Banach space E, 𝑥 ∈ 𝐸, and 𝑦

0
∈ 𝐶. Then, 𝜙(𝑦

0
, 𝑥) =

inf
𝑦∈𝐶
𝜙(𝑦, 𝑥) if and only if ⟨𝑦

0
−𝑧, 𝐽𝑥− 𝐽𝑦

0
⟩ ≥ 0 for all 𝑧 ∈ 𝐶.

Let 𝐶 be a nonempty closed convex subset of a strictly
convex and reflexive Banach space 𝐸 and let 𝑥 ∈ 𝐸. Then,
there exists a unique element 𝑦

0
∈ 𝐶 such that ‖𝑦

0
− 𝑥‖ =

inf
𝑦∈𝐶
‖𝑦 − 𝑥‖. Putting 𝑦

0
= 𝑃
𝐶
𝑥, we call 𝑃

𝐶
the metric

projection of 𝐸 onto 𝐶; see [26]. We have the following result
for the metric projection; see [20] for more details.

Lemma 6. Let 𝐶 be a nonempty closed convex subset of a
strictly convex, reflexive, and smooth Banach space 𝐸, 𝑥 ∈ 𝐸,
and𝑦
0
∈ 𝐶.Then,𝑦

0
= 𝑃
𝐶
𝑥 if and only if ⟨𝑦

0
−𝑧, 𝐽(𝑥−𝑦

0
)⟩ ≥ 0

for all 𝑧 ∈ 𝐶.

An operator 𝑇 : 𝐸 → 2
𝐸
∗

is said to be monotone if ⟨𝑥 −
𝑦, 𝑥
∗

− 𝑦
∗

⟩ ≥ 0 for every (𝑥, 𝑥∗), (𝑦, 𝑦∗) ∈ 𝑇. Notice that we
often identify a set-valued operator with its graph; 𝑥∗ ∈ 𝑇𝑥 if
and only if (𝑥, 𝑥∗) ∈ 𝑇.

A monotone operator 𝑇 ⊂ 𝐸×𝐸∗ is said to be maximal if
the graph of 𝑇 is not properly contained in the graph of any
other monotone operator. It is easy to see that a monotone
operator 𝑇 ⊂ 𝐸 × 𝐸∗ is maximal if and only if, for (𝑢, 𝑢∗) ∈
𝐸×𝐸
∗, ⟨𝑥 − 𝑢, 𝑥∗ −𝑢∗⟩ ≥ 0 for every (𝑥, 𝑥∗) ∈ 𝑇 implies that

(𝑢, 𝑢
∗

) ∈ 𝑇. We know the following result.

Theorem 7 (Rockafellar [27]; see also [28]). Let 𝐸 be a strictly
convex, reflexive, and smooth Banach space and let 𝑇 be a
monotone operator of 𝐸 into 𝐸∗. Then, 𝑇 is maximal if and
only if 𝑅(𝐽 + 𝑟𝑇) = 𝐸∗ for all 𝑟 > 0, where 𝑅(𝐽 + 𝑟𝑇) is the
range of 𝐽 + 𝑟𝑇.

From this fact, we also know that if 𝐸 is a strictly convex,
reflexive, and smooth Banach space and 𝑇 is a maximal
monotone operator of 𝐸 into 𝐸∗, then, for any 𝑥 ∈ 𝐸 and
𝑟 > 0, there exists a unique element 𝑥

𝑟
∈ 𝐷(𝑇) such that

𝐽(𝑥
𝑟
− 𝑥) + 𝑟𝑇𝑥

𝑟
∋ 0, where 𝐷(𝑇) is the domain of 𝑇. We

define 𝐽
𝑟
: 𝐸 → 𝐸 by 𝐽

𝑟
𝑥 = 𝑥

𝑟
for every 𝑥 ∈ 𝐸 and 𝑟 > 0,

and such 𝐽
𝑟
is called the resolvent of 𝑇; see [21, 29] for more

details.

3. Main Results

Let𝐶 be a nonempty closed convex subset of a strictly convex,
reflexive, and smooth Banach space𝐸 and {𝐴

𝑛
}
𝑛∈N a family of

operators of 𝐶 into 𝐸∗ satisfying the following:

(i) 𝐹 = ⋂∞
𝑛=1

VI(𝐶, 𝐴
𝑛
) ̸= 0;

(ii) ⟨𝑥−𝑧, 𝐴
𝑛
𝑥−𝐴
𝑛
𝑧⟩ ≥ 0 for all 𝑛 ∈ N, 𝑥 ∈ 𝐶, and 𝑧 ∈ 𝐹;

(iii) there exists a sequence {𝛼
𝑛
}
𝑛∈N in ]0,∞[ such that

0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< ∞ and

⟨𝑥 − 𝑧, 𝐴
𝑛
𝑥⟩ ≥ 𝛼

𝑛
‖𝐴
𝑛
𝑥 − 𝐴

𝑛
𝑧‖
2 for every 𝑛 ∈ N,

𝑥 ∈ 𝐶, and 𝑧 ∈ 𝐹;
(iv) for all 𝑧 ∈ 𝐹, sup

𝑛∈N‖𝐴𝑛𝑧‖ < ∞;
(v) for every bounded sequence {𝑧

𝑛
} ⊂ 𝐶, 𝑧 ∈ 𝐹, and

{𝑟
𝑛
} ⊂]0,∞[ with inf

𝑛∈N𝑟𝑛 > 0, if lim𝑛→∞‖𝑧𝑛+1 −
𝑧
𝑛
‖ = lim

𝑛→∞
‖𝑧
𝑛
− Π
𝐶
𝐽
−1

(𝐽𝑧
𝑛
− 𝑟
𝑛
𝐴
𝑛
𝑧
𝑛
)‖ =

lim
𝑛→∞

‖𝐴
𝑛
𝑧
𝑛
− 𝐴
𝑛
𝑧‖ = 0, then there exists a

subsequence {𝑧
𝑛
𝑖

} of {𝑧
𝑛
} such that 𝑧

𝑛
𝑖

⇀ 𝑧 ∈ 𝐹.

Let us observe some properties of the mappings and the
subsets deduced from the assumptions above.

First, we know that, for any 𝑛 ∈ N, the image of 𝐹 by𝐴
𝑛
is

a singleton. Indeed, for 𝑧
1
, 𝑧
2
∈ 𝐹, we have ⟨𝑧

1
− 𝑧
2
, 𝐴
𝑛
𝑧
1
⟩ ≥

𝛼
𝑛
‖𝐴
𝑛
𝑧
1
− 𝐴
𝑛
𝑧
2
‖
2 by the condition (iii). On the other hand,

since 𝑧
1
∈ VI(𝐶, 𝐴

𝑛
), it follows that ⟨𝑧

2
−𝑧
1
, 𝐴
𝑛
𝑧
1
⟩ ≥ 0.Thus,

we get 𝐴
𝑛
𝑧
1
= 𝐴
𝑛
𝑧
2
for all 𝑧

1
, 𝑧
2
∈ 𝐹.

Next, if we assume ⋂
∞

𝑛=1
𝐴
−1

𝑛
0 ̸= 0, then we have

⋂
∞

𝑛=1
𝐴
−1

𝑛
0 = ⋂

∞

𝑛=1
VI(𝐶, 𝐴

𝑛
). Indeed, the inclusion

⋂
∞

𝑛=1
𝐴
−1

𝑛
0 ⊂ ⋂

∞

𝑛=1
VI(𝐶, 𝐴

𝑛
) is trivial. To show

the opposite inclusion, let 𝑧 ∈ ⋂
∞

𝑛=1
VI(𝐶, 𝐴

𝑛
) and

𝑢 ∈ ⋂
∞

𝑛=1
𝐴
−1

𝑛
0. By the condition (iii), we have

0 = ⟨𝑢 − 𝑧, 𝐴
𝑛
𝑢⟩ ≥ 𝛼

𝑛
‖𝐴
𝑛
𝑢 − 𝐴

𝑛
𝑧‖
2

= 𝛼
𝑛
‖𝐴
𝑛
𝑧‖
2,

which implies𝐴
𝑛
𝑧 = 0; that is, 𝑧 ∈ 𝐴−1

𝑛
0 for all 𝑛 ∈ N. Hence,

we get⋂∞
𝑛=1
𝐴
−1

𝑛
0 ⊃ ⋂

∞

𝑛=1
VI(𝐶, 𝐴

𝑛
).

We also know that 𝐹 is closed and convex. Indeed, for
𝑧
1
, 𝑧
2
∈ 𝐹 and 𝛽 ∈ ]0, 1[, let 𝑧 = 𝛽𝑧

1
+ (1 − 𝛽)𝑧

2
. By

the condition (iii), ⟨𝑧 − 𝑧
1
, 𝐴
𝑛
𝑧⟩ ≥ 𝛼

𝑛
‖𝐴
𝑛
𝑧 − 𝐴

𝑛
𝑧
1
‖
2 and

⟨𝑧 − 𝑧
2
, 𝐴
𝑛
𝑧⟩ ≥ 𝛼

𝑛
‖𝐴
𝑛
𝑧 − 𝐴

𝑛
𝑧
2
‖
2 hold for all 𝑛 ∈ N. Thus

we get

0 = ⟨𝑧 − (𝛽𝑧
1
+ (1 − 𝛽) 𝑧

2
) , 𝐴
𝑛
𝑧⟩

= 𝛽 ⟨𝑧 − 𝑧
1
, 𝐴
𝑛
𝑧⟩ + (1 − 𝛽) ⟨𝑧 − 𝑧

2
, 𝐴
𝑛
𝑧⟩

≥ 𝛼
𝑛
(𝛽
󵄩󵄩󵄩󵄩𝐴𝑛𝑧 − 𝐴𝑛𝑧1

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽)
󵄩󵄩󵄩󵄩𝐴𝑛𝑧 − 𝐴𝑛𝑧2

󵄩󵄩󵄩󵄩

2

)

≥ 0,

(12)

which implies that𝐴
𝑛
𝑧 = 𝐴

𝑛
𝑧
1
= 𝐴
𝑛
𝑧
2
for each 𝑛 ∈ N. Since

⟨𝑥 − 𝑧
1
, 𝐴
𝑛
𝑧⟩ = ⟨𝑥 − 𝑧

1
, 𝐴
𝑛
𝑧
1
⟩ ≥ 0 and ⟨𝑥 − 𝑧

2
, 𝐴
𝑛
𝑧⟩ =

⟨𝑥 − 𝑧
2
, 𝐴
𝑛
𝑧
2
⟩ ≥ 0 for every 𝑛 ∈ N and 𝑥 ∈ 𝐶, we have

⟨𝑥 − 𝑧, 𝐴
𝑛
𝑧⟩ = 𝛽 ⟨𝑥 − 𝑧

1
, 𝐴
𝑛
𝑧⟩ + (1 − 𝛽) ⟨𝑥 − 𝑧

2
, 𝐴
𝑛
𝑧⟩ ≥ 0

(13)

for all 𝑛 ∈ N and 𝑥 ∈ 𝐶; that is, 𝑧 ∈ VI(𝐶, 𝐴
𝑛
) for each 𝑛 ∈ N.

Hence, 𝐹 is convex.
To see 𝐹 being closed, let {𝑧

𝑚
} be a sequence in 𝐹

such that 𝑧
𝑚

→ 𝑧. Since we have ⟨𝑧 − 𝑧
𝑚
, 𝐴
𝑛
𝑧⟩ ≥

𝛼
𝑛
‖𝐴
𝑛
𝑧 − 𝐴

𝑛
𝑧
𝑚
‖
2 for every𝑚, 𝑛 ∈ N from the condition (iii),

we get lim
𝑚→∞

‖𝐴
𝑛
𝑧 − 𝐴

𝑛
𝑧
𝑚
‖ = 0 for all 𝑛 ∈ N. Since

⟨𝑥 − 𝑧
𝑚
, 𝐴
𝑛
𝑧
𝑚
⟩ ≥ 0 for each 𝑚, 𝑛 ∈ N and 𝑥 ∈ 𝐶, we

obtain ⟨𝑥 − 𝑧, 𝐴
𝑛
𝑧⟩ ≥ 0 for every 𝑛 ∈ N and 𝑥 ∈ 𝐶; that

is, 𝑧 ∈ VI(𝐶, 𝐴
𝑛
) for all 𝑛 ∈ N. Therefore, 𝐹 is closed.

Now, we get the following result by the hybrid method
using the generalized projections.
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Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
2-uniformly convex Banach space 𝐸 whose norm is uniformly
Gâteaux differentiable, and let {𝐴

𝑛
} be a sequence of operators

of 𝐶 into 𝐸∗ satisfying the conditions (i)–(v). Let {𝜆
𝑛
} be a

sequence in ]0,∞[ such that inf
𝑛∈N𝜆𝑛 > 0 and inf𝑛∈N(2𝑐1𝛼𝑛 −

𝜆
𝑛
) > 0, where 𝑐

1
is the constant in Theorem 2. Let 𝑥 ∈ 𝐶 and

{𝑥
𝑛
} a sequence in 𝐶 generated by

𝑥
1
= 𝑥,

𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥

(14)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to Π

𝐹
𝑥.

Proof. It is obvious that𝑄
𝑛
is closed and convex for every 𝑛 ∈

N. Since 𝜙(𝑧, 𝑦
𝑛
) ≤ 𝜙(𝑧, 𝑥

𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩ if and only

if 2⟨𝑧, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ + ‖𝑦

𝑛
‖
2

− ‖𝑥
𝑛
‖
2

− 2𝜆
𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩ ≤ 0,

we have that 𝐶
𝑛
is closed and convex for all 𝑛 ∈ N. Next, we

show that, for 𝑛 ∈ N, 𝑥
𝑛
∈ 𝐶 implies that 𝐹 ⊂ 𝐶

𝑛
. Let 𝑧 ∈ 𝐹.

We have

(𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

= (𝜙 (𝑧, 𝑦
𝑛
) − 𝜙 (𝑧, 𝑥

𝑛
)) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩

= −𝜙 (𝑦
𝑛
, 𝑥
𝑛
) + 2 ⟨𝑦

𝑛
− 𝑧, 𝐽𝑦

𝑛
− 𝐽𝑥
𝑛
⟩

+ 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩

(15)

for every 𝑛 ∈ N. Since 𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
) and by

Lemma 5, we get ⟨𝑦
𝑛
− 𝑧, 𝐽𝑥

𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0. Further,

by Lemma 4, we obtain

(𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

≤ −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩

+ 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩

= −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
(⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑥
𝑛
⟩ + ⟨𝑥

𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩)

+ 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩ .

(16)

Using 𝑥
𝑛
∈ 𝐶 and the condition (iii), we have ⟨𝑥

𝑛
−𝑧, 𝐴

𝑛
𝑥
𝑛
⟩ ≥

𝛼
𝑛
‖𝐴
𝑛
𝑥
𝑛
− 𝐴
𝑛
𝑧‖
2 and thus

(𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

≤ −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
(⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑥
𝑛
⟩ + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

2

)

+ 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩

= −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑥
𝑛
− 𝐴
𝑛
𝑧⟩

≤ −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

≤ −𝑐
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
(
𝛽

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

+
1

2𝛽

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩

2

)

= (𝛽𝜆
𝑛
− 𝑐
1
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑛
(
1

𝛽
− 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧

󵄩󵄩󵄩󵄩

2

(17)

for any 𝛽 > 0. Since a sequence {𝜆
𝑛
} satisfies 0 < 𝜆

𝑛
< 2𝑐
1
𝛼
𝑛

for all 𝑛 ∈ N, lim sup
𝑛→∞

𝜆
𝑛
< ∞, and inf

𝑛∈N(𝑐1/𝜆𝑛 −

1/(2𝛼
𝑛
)) > 0, we can choose a positive sequence {𝛽

𝑛
} such

that

𝛽
𝑛
𝜆
𝑛
− 𝑐
1
< 0, 𝜆

𝑛
(
1

𝛽
𝑛

− 2𝛼
𝑛
) < 0 ∀𝑛 ∈ N,

lim sup
𝑛→∞

(𝛽
𝑛
𝜆
𝑛
− 𝑐
1
) < 0, lim sup

𝑛→∞

𝜆
𝑛
(
1

𝛽
𝑛

− 2𝛼
𝑛
) < 0.

(18)

So, we obtain

(𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩) ≤ 0.

(19)

Since 𝑧 ∈ VI(𝐶, 𝐴
𝑛
), we have ⟨𝑦

𝑛
−𝑧, 𝐴

𝑛
𝑧⟩ ≥ 0. Using 𝑥

𝑛
∈ 𝐶

and the condition (ii), we have ⟨𝑥
𝑛
−𝑧, 𝐴

𝑛
𝑧⟩ ≤ ⟨𝑥

𝑛
−𝑧, 𝐴

𝑛
𝑥
𝑛
⟩.

Thus, we get

𝜙 (𝑧, 𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩ ; (20)

that is, 𝐹 ⊂ 𝐶
𝑛
. From this fact, we get that 𝐹 ⊂ 𝐶

𝑛
∩ 𝑄
𝑛
for

every 𝑛 ∈ N and {𝑥
𝑛
} is well defined. Indeed, 𝑥

1
= 𝑥 ∈ 𝐶

is given and since 𝑄
1
= 𝐶, we have 𝐹 ⊂ 𝐶

1
∩ 𝑄
1
. Assume

that 𝑥
𝑘
is well defined and 𝐹 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘
for some 𝑘 ∈ N.

There exists a unique element 𝑥
𝑘+1

= Π
𝐶
𝑘
∩𝑄
𝑘

𝑥 and we get
⟨𝑥
𝑘+1
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑘+1
⟩ ≥ 0 for all 𝑧 ∈ 𝐶

𝑘
∩ 𝑄
𝑘
by Lemma 5.

Since𝐹 ⊂ 𝐶
𝑘
∩𝑄
𝑘
, we have ⟨𝑥

𝑘+1
−𝑧, 𝐽𝑥−𝐽𝑥

𝑘+1
⟩ ≥ 0 for every
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𝑧 ∈ 𝐹; that is, 𝐹 ⊂ 𝑄
𝑘+1

. Since 𝑥
𝑘+1
∈ 𝐶
𝑘
∩ 𝑄
𝑘
⊂ 𝐶, we have

𝐹 ⊂ 𝐶
𝑘+1

. Hence, we obtain𝐹 ⊂ 𝐶
𝑘+1
∩𝑄
𝑘+1

. Bymathematical
induction, we get 𝐹 ⊂ 𝐶

𝑛
∩𝑄
𝑛
for every 𝑛 ∈ N and {𝑥

𝑛
} is well

defined. Since 𝑥
𝑛+1

= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥 and 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
, we have

𝜙(𝑥
𝑛+1
, 𝑥) ≤ 𝜙(Π

𝐹
𝑥, 𝑥) for every 𝑛 ∈ N, which implies that

{𝑥
𝑛
} is bounded. Further, since 𝑥

𝑛+1
∈ 𝑄
𝑛
, we have

𝜙 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝜙 (𝑥

𝑛
, 𝑥)

= 𝜙 (𝑥
𝑛+1
, 𝑥) + 2 ⟨𝑥

𝑛
− 𝑥
𝑛+1
, 𝐽𝑥
𝑛
− 𝐽𝑥⟩

≤ 𝜙 (𝑥
𝑛+1
, 𝑥)

(21)

for all 𝑛 ∈ N. Thus, there exists lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑥) and

lim
𝑛→∞

𝜙 (𝑥
𝑛+1
, 𝑥
𝑛
) = 0. (22)

By Lemma 4, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (23)

Using 𝑥
𝑛+1
∈ 𝐶
𝑛
, we have

𝜙 (𝑥
𝑛+1
, 𝑦
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝐴
𝑛
𝑥
𝑛
⟩

≤ 𝜙 (𝑥
𝑛+1
, 𝑥
𝑛
) + 2𝜆

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

(24)

for all 𝑛 ∈ N. From the condition (iii), we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 ≥ 𝛼𝑛(

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝐴𝑛𝑧

󵄩󵄩󵄩󵄩)
2

≥ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

2

− 2
󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴𝑛𝑧
󵄩󵄩󵄩󵄩) ,

(25)

which implies that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 ≥ 𝛼𝑛
󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 − 2𝛼𝑛
󵄩󵄩󵄩󵄩𝐴𝑛𝑧

󵄩󵄩󵄩󵄩 (26)

for every 𝑛 ∈ N and 𝑧 ∈ 𝐹. Since 0 < lim inf
𝑛→∞

𝛼
𝑛
≤

lim sup
𝑛→∞

𝛼
𝑛
< ∞, using the condition (iv) and the bound-

edness of {𝑥
𝑛
}, we get that {𝐴

𝑛
𝑥
𝑛
} is bounded. Since (22)–(24)

hold and {𝜆
𝑛
} is bounded, we have lim

𝑛→∞
𝜙(𝑥
𝑛+1
, 𝑦
𝑛
) = 0,

which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0 (27)

by Lemma 4. From (23) and (27), we also have lim
𝑛→∞

‖𝑥
𝑛
−

𝑦
𝑛
‖ = 0. Using the facts that

(𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

= 2 ⟨𝑧, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ + (

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

)

+ 2𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑧⟩

(28)

for all 𝑛 ∈ N, lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0, the condition (iv) holds,

{𝑥
𝑛
}, {𝑦
𝑛
}, and {𝜆

𝑛
} are bounded, and the duality mapping 𝐽

is norm-to-weak∗ uniformly continuous on bounded subset
of 𝐸, we obtain

lim
𝑛→∞

((𝜙 (𝑧, 𝑦
𝑛
) + 2𝜆

𝑛
⟨𝑦
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩)

− (𝜙 (𝑧, 𝑥
𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑧⟩) ) = 0.

(29)

Since (17) holds for every 𝑛 ∈ N, it follows from (29) and
lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩 = 0. (30)

From the condition (v), there exists a subsequence {𝑥
𝑛
𝑖

} of
{𝑥
𝑛
} such that 𝑥

𝑛
𝑖

⇀ 𝑧 ∈ 𝐹. Since the norm of 𝐸 is weakly
lower semicontinuous, we get

𝜙 (𝑧, 𝑥) = ‖𝑧‖
2

− 2 ⟨𝑧, 𝐽𝑥⟩ + ‖𝑥‖
2

≤ lim inf
𝑖→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

󵄩󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
𝑛
𝑖

, 𝐽𝑥⟩ + ‖𝑥‖
2

)

= lim inf
𝑖→∞

𝜙 (𝑥
𝑛
𝑖

, 𝑥) = lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥) ≤ 𝜙 (Π

𝐹
𝑥, 𝑥) ,

(31)

which implies 𝑧 = Π
𝐹
𝑥 and

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥) = 𝜙 (Π

𝐹
𝑥, 𝑥) . (32)

Using 𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥, 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
, and Lemma 5, we have

0 ≥ ⟨𝑥
𝑛+1
− Π
𝐹
𝑥, 𝐽𝑥
𝑛+1
− 𝐽𝑥⟩

=
1

2
(𝜙 (Π

𝐹
𝑥, 𝑥
𝑛+1
) + 𝜙 (𝑥

𝑛+1
, 𝑥) − 𝜙 (Π

𝐹
𝑥, 𝑥))

(33)

which implies that

𝜙 (Π
𝐹
𝑥, 𝑥) ≥ 𝜙 (Π

𝐹
𝑥, 𝑥
𝑛+1
) + 𝜙 (𝑥

𝑛+1
, 𝑥) (34)

for all 𝑛 ∈ N. From (32), we get lim
𝑛→∞

𝜙(Π
𝐹
𝑥, 𝑥
𝑛+1
) = 0

and by Lemma 4, we obtain 𝑥
𝑛
→ Π
𝐹
𝑥, which is the desired

result.

Next, we have the following result by the hybrid method
using the metric projections.

Theorem 9. Assume that 𝐸,𝐶, {𝐴
𝑛
}, {𝜆
𝑛
}, and 𝑐

1
are the same

as inTheorem 8. Let 𝑥 ∈ 𝐶 and {𝑥
𝑛
} a sequence in 𝐶 generated

by

𝑥
1
= 𝑥,

𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽 (𝑥 − 𝑥

𝑛
)⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(35)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥.

Proof. 𝑄
𝑛
is closed convex for every 𝑛 ∈ N. As in the proof of

Theorem 8, we have that 𝐶
𝑛
is closed and convex. We also get

that, for 𝑛 ∈ N, 𝑥
𝑛
∈ 𝐶 implies that 𝐹 ⊂ 𝐶

𝑛
. By this fact, we

obtain 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
for every 𝑛 ∈ N and {𝑥

𝑛
} is well defined.

Indeed, 𝑥
1
= 𝑥 ∈ 𝐶 is given and 𝐹 ⊂ 𝐶

1
∩ 𝑄
1
since 𝑄

1
= 𝐶.

Assume that 𝑥
𝑘
is well defined and 𝐹 ⊂ 𝐶

𝑘
∩ 𝑄
𝑘
for some
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𝑘 ∈ N. There exists a unique element 𝑥
𝑘+1
= 𝑃
𝐶
𝑘
∩𝑄
𝑘

𝑥 and we
get ⟨𝑥

𝑘+1
−𝑧, 𝐽(𝑥−𝑥

𝑘+1
)⟩ ≥ 0 for all 𝑧 ∈ 𝐶

𝑘
∩𝑄
𝑘
by Lemma 6.

Since 𝐹 ⊂ 𝐶
𝑘
∩ 𝑄
𝑘
, we have ⟨𝑥

𝑘+1
− 𝑧, 𝐽(𝑥 − 𝑥

𝑘+1
)⟩ ≥ 0 for

every 𝑧 ∈ 𝐹; that is, 𝐹 ⊂ 𝑄
𝑘+1

. Since 𝑥
𝑘+1

∈ 𝐶
𝑘
∩ 𝑄
𝑘
⊂ 𝐶,

we also have 𝐹 ⊂ 𝐶
𝑘+1

. Thus, we obtain 𝐹 ⊂ 𝐶
𝑘+1
∩ 𝑄
𝑘+1

. By
mathematical induction, we get 𝐹 ⊂ 𝐶

𝑛
∩ 𝑄
𝑛
for every 𝑛 ∈ N

and {𝑥
𝑛
} is well defined.

Since 𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥 and 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐹𝑥

󵄩󵄩󵄩󵄩 (36)

for every 𝑛 ∈ N and, hence, {𝑥
𝑛
} is bounded. Using 𝑥

𝑛+1
∈ 𝑄
𝑛

andTheorem 2, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2

≥ 2 ⟨𝑥
𝑛+1
− 𝑥
𝑛
, 𝐽 (𝑥
𝑛
− 𝑥)⟩ + 𝑐

1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

≥ 𝑐
1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

(37)

for each 𝑛 ∈ N, which implies that there exists lim
𝑛→∞

‖𝑥
𝑛
−

𝑥‖ and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (38)

Since 𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
), by Lemma 5, we have

⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
− 𝜆
𝑛
𝐴
𝑛
𝑥
𝑛
⟩ ≥ 0, (39)

which implies that

−𝑐
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2

≥
1

2
(−𝜙 (𝑦

𝑛
, 𝑥
𝑛
) − 𝜙 (𝑥

𝑛
, 𝑦
𝑛
))

= ⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩

≥ 𝜆
𝑛
⟨𝑦
𝑛
− 𝑥
𝑛
, 𝐴
𝑛
𝑥
𝑛
⟩

≥ −𝜆
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

(40)

from Lemma 4. As in the proof of Theorem 8, {𝐴
𝑛
𝑥
𝑛
} is

bounded. Thus, we get that {‖𝑦
𝑛
− 𝑥
𝑛
‖} is also bounded by

the boundedness of {𝜆
𝑛
} and so is {𝑦

𝑛
}. Since 𝑥

𝑛+1
∈ 𝐶
𝑛
, we

have 𝜙(𝑥
𝑛+1
, 𝑦
𝑛
) ≤ 𝜙(𝑥

𝑛+1
, 𝑥
𝑛
)+2𝜆

𝑛
⟨𝑥
𝑛
−𝑥
𝑛+1
, 𝐴
𝑛
𝑥
𝑛
⟩; that is,

𝜙 (𝑥
𝑛
, 𝑦
𝑛
)

≤ 2 ⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ + 2𝜆

𝑛
⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝐴
𝑛
𝑥
𝑛
⟩

(41)

for all 𝑛 ∈ N. By the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝜆
𝑛
}, and

{𝐴
𝑛
𝑥
𝑛
} with (38) and Lemma 4, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (42)

As in the proof of Theorem 8, using (17) and (29), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑛𝑥𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩 = 0. (43)

From the condition (v), there exists a subsequence {𝑥
𝑛
𝑖

} of
{𝑥
𝑛
} such that 𝑥

𝑛
𝑖

⇀ 𝑧 ∈ 𝐹. Since the norm of 𝐸 is weakly
lower semicontinuous and (36) holds, we get

‖𝑧 − 𝑥‖ ≤ lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑃𝐹𝑥 − 𝑥

󵄩󵄩󵄩󵄩

(44)

which implies that 𝑧 = 𝑃
𝐹
𝑥 and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝐹𝑥 − 𝑥

󵄩󵄩󵄩󵄩 . (45)

Using the facts that 𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥 and 𝐹 ⊂ 𝐶
𝑛
∩ 𝑄
𝑛
and by

Theorem 2, we obtain

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐹𝑥
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑥
𝑛+1
− 𝑃
𝐹
𝑥, 𝐽 (𝑥 − 𝑥

𝑛+1
)⟩

+ 𝑐
1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑃𝐹𝑥
󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

2

+ 𝑐
1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑃𝐹𝑥
󵄩󵄩󵄩󵄩

2

(46)

for all 𝑛 ∈ N. By (45), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑃𝐹𝑥
󵄩󵄩󵄩󵄩 = 0, (47)

which is the desired result.

Remark 10. Even though we replace the definition of 𝐶
𝑛
in

Theorems 8 and 9 with

𝐶
𝑛
=

{{{{{{{

{{{{{{{

{

{𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)}

(𝐴
𝑛
𝑧 = 0 ∀𝑧 ∈ 𝐹) ,

{𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

+2𝜆
𝑛
⟨𝑥
𝑛
− 𝑧, 𝐴

𝑛
𝑥
𝑛
⟩}

(𝐴
𝑛
𝑧 ̸= 0 for some 𝑧 ∈ 𝐹) ,

(48)

the theorems are still valid.

4. The Variational Inequality Problem for
Monotone Operators

Let 𝐼 be a countable set and 𝑖 : N → 𝐼 a mapping. Nakajo
et al. [30] propose the condition (NST) as follows: 𝑖 satisfies
the condition (NST) if there exists a subsequence {𝑛

𝑘
} of

N such that, for any 𝑗 ∈ 𝐼, there is 𝑀
𝑗
∈ N with 𝑗 ∈

{𝑖(𝑛
𝑘
), 𝑖(𝑛
𝑘
+ 1), . . . , 𝑖(𝑛

𝑘
+ 𝑀
𝑗
− 1)} for all sufficiently large

𝑘 ∈ N. Using the condition (NST), we get the following result
for the variational inequality problem byTheorem 8.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
2-uniformly convex and uniformly smooth Banach space 𝐸, 𝐼
a countable set, and {𝐵

𝑖
}
𝑖∈𝐼

a family of operators of 𝐶 into 𝐸∗
such that

(i) 𝐹 = ⋂
𝑖∈𝐼
𝑉𝐼(𝐶, 𝐵

𝑖
) ̸= 0;

(ii) 𝐵
𝑖
is an inverse strongly monotone operator for each 𝑖 ∈

𝐼; that is, there exists {𝛽
𝑖
: 𝑖 ∈ 𝐼} ⊂]0,∞[ such that for

every 𝑖 ∈ 𝐼 and 𝑥, 𝑦 ∈ 𝐶, the inequality ⟨𝑥 − 𝑦, 𝐵
𝑖
𝑥 −

𝐵
𝑖
𝑦⟩ ≥ 𝛽

𝑖
‖𝐵
𝑖
𝑥 − 𝐵
𝑖
𝑦‖
2 holds;

(iii) for all 𝑧 ∈ 𝐹, sup
𝑖∈𝐼
‖𝐵
𝑖
𝑧‖ < ∞.

Suppose that the index mapping 𝑖 : N → 𝐼 satisfies the con-
dition (NST) and 0 < lim inf

𝑛→∞
𝛽
𝑖(𝑛)
≤ lim sup

𝑛→∞
𝛽
𝑖(𝑛)
<

∞. Let {𝜆
𝑛
} be a sequence in ]0,∞[ such that inf

𝑛∈N𝜆𝑛 > 0 and
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inf
𝑛∈N(2𝑐1𝛽𝑖(𝑛)−𝜆𝑛) > 0, where 𝑐1 is the constant inTheorem 2.

Let 𝑥 ∈ 𝐶 and {𝑥
𝑛
} a sequence in 𝐶 generated by

𝑥
1
= 𝑥,

𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐵
𝑖(𝑛)
𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

+2𝜆
𝑛
⟨𝑥
𝑛
− 𝑧, 𝐵

𝑖(𝑛)
𝑥
𝑛
⟩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥

(49)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to Π

𝐹
𝑥.

Proof. We apply Theorem 8 with 𝐴
𝑛
= 𝐵
𝑖(𝑛)

for all 𝑛 ∈ N.
Then, the conditions (i)–(iv) are satisfied, and we will verify
the condition (v). Let {𝑧

𝑛
} be a bounded sequence in 𝐶 with

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
− Π
𝐶
𝐽
−1

(𝐽𝑧
𝑛
− 𝑟
𝑛
𝐴
𝑛
𝑧
𝑛
)
󵄩󵄩󵄩󵄩󵄩

= 0,

(50)

{𝑟
𝑛
} ⊂]0,∞[ with lim inf

𝑛→∞
𝑟
𝑛
> 0, and 𝑧 ∈ 𝐹 such that

lim
𝑛→∞

‖𝐴
𝑛
𝑧
𝑛
− 𝐴
𝑛
𝑧‖ = 0. By the condition (NST), there

exists a weakly convergent subsequence {𝑧
𝑛
𝑘

} of {𝑧
𝑛
} such

that, for any 𝑖 ∈ 𝐼, there is 𝑀
𝑖
∈ N with 𝑖 ∈ {𝑖(𝑛

𝑘
), 𝑖(𝑛
𝑘
+

1), . . . , 𝑖(𝑛
𝑘
+ 𝑀
𝑖
− 1)} for all sufficiently large 𝑘 ∈ N. Let

𝑧
𝑛
𝑘

⇀ 𝑢 and fix 𝑖 ∈ 𝐼. There exists 𝑗
𝑘
∈ {0, 1, . . . ,𝑀

𝑖
− 1}

such that 𝑖(𝑛
𝑘
+ 𝑗
𝑘
) = 𝑖 for every sufficiently large 𝑘 ∈ N.

We consider a subsequence of {𝑛
𝑘
+ 𝑗
𝑘
} for all 𝑘 ∈ {𝑘 ∈ N :

𝑛
𝑘
+𝑗
𝑘
< 𝑛
𝑘+1
+𝑗
𝑘+1
} and denote it by {𝑛

𝑘
+𝑗
𝑘
} again.We have

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝑧
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩
≤

𝑛
𝑘
+𝑀
𝑖
−1

∑

𝑙=𝑛
𝑘

󵄩󵄩󵄩󵄩𝑧𝑙+1 − 𝑧𝑙
󵄩󵄩󵄩󵄩 (51)

for all 𝑘 ∈ N, which implies that 𝑧
𝑛
𝑘
+𝑗
𝑘

⇀ 𝑢. Let 𝑦
𝑛
=

Π
𝐶
𝐽
−1

(𝐽𝑧
𝑛
− 𝑟
𝑛
𝐴
𝑛
𝑧
𝑛
). By Lemma 5, we have

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛
𝑘
+𝑗
𝑘

− 𝑦
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐽𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐽𝑦
𝑛
𝑘
+𝑗
𝑘

󵄩󵄩󵄩󵄩󵄩

≥ ⟨𝑦
𝑛
𝑘
+𝑗
𝑘

− 𝑦, 𝐽𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐽𝑦
𝑛
𝑘
+𝑗
𝑘

⟩

≥ 𝑟
𝑛
𝑘
+𝑗
𝑘

⟨𝑦
𝑛
𝑘
+𝑗
𝑘

− 𝑦, 𝐴
𝑛
𝑘
+𝑗
𝑘

𝑧
𝑛
𝑘
+𝑗
𝑘

⟩

(52)

for every sufficiently large 𝑘 ∈ N and 𝑦 ∈ 𝐶. Since 𝐴
𝑛
𝑘
+𝑗
𝑘

=

𝐵
𝑖(𝑛
𝑘
+𝑗
𝑘
)
= 𝐵
𝑖
for each sufficiently large 𝑘 ∈ N, 𝑦

𝑛
𝑘
+𝑗
𝑘

⇀ 𝑢,
‖𝑧
𝑛
𝑘
+𝑗
𝑘

−𝑦
𝑛
𝑘
+𝑗
𝑘

‖ → 0, lim inf
𝑛→∞

𝑟
𝑛
> 0, lim

𝑘→∞
‖𝐵
𝑖
𝑧
𝑛
𝑘
+𝑗
𝑘

−

𝐵
𝑖
𝑧‖ = 0, and the duality mapping 𝐽 is uniformly continuous

on bounded subset of 𝐸, we have

⟨𝑦 − 𝑢, 𝐵
𝑖
𝑧⟩ ≥ 0 (53)

for all 𝑦 ∈ 𝐶. Since 𝐵
𝑖
is inverse strongly monotone, we have

⟨𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝑢, 𝐵
𝑖
𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐵
𝑖
𝑢⟩ ≥ 𝛽

𝑖

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐵
𝑖
𝑢
󵄩󵄩󵄩󵄩󵄩

2 (54)

for every 𝑘 ∈ N, which implies that

0 = ⟨𝑢 − 𝑢, 𝐵
𝑖
𝑧 − 𝐵
𝑖
𝑢⟩ ≥ 𝛽

𝑖

󵄩󵄩󵄩󵄩𝐵𝑖𝑧 − 𝐵𝑖𝑢
󵄩󵄩󵄩󵄩

2

; (55)

that is, 𝐵
𝑖
𝑧 = 𝐵
𝑖
𝑢. From (53),

⟨𝑦 − 𝑢, 𝐵
𝑖
𝑢⟩ ≥ 0 (56)

for all 𝑦 ∈ 𝐶. Therefore, 𝑢 ∈ VI(𝐶, 𝐵
𝑖
) for every 𝑖 ∈ 𝐼; that is,

𝑢 ∈ 𝐹. Hence, the condition (v) is satisfied. Consequently, we
obtain 𝑥

𝑛
→ Π
𝐹
𝑥 byTheorem 8.

As in the proof of Theorem 11, we get the following result
for the variational inequality problem byTheorem 9.

Theorem 12. Assume that 𝐸, 𝐶, 𝐼, {𝐵
𝑖
}, 𝐹, 𝑐
1
, 𝑖, {𝛽
𝑖
}, and {𝜆

𝑛
}

are the same as Theorem 11. Let 𝑥 ∈ 𝐶 and {𝑥
𝑛
} a sequence in

𝐶 generated by

𝑥
1
= 𝑥,

𝑦
𝑛
= Π
𝐶
𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐵
𝑖(𝑛)
𝑥
𝑛
) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)

+2𝜆
𝑛
⟨𝑥
𝑛
− 𝑧, 𝐵

𝑖(𝑛)
𝑥
𝑛
⟩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝐽 (𝑥 − 𝑥

𝑛
)⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(57)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥.

Remark 13. InTheorems 11 and 12, under the assumption that
⋂
𝑖∈𝐼
𝐵
−1

𝑖
0 ̸= 0, we have VI(𝐶, 𝐵

𝑖
) = 𝐵
−1

𝑖
0 for all 𝑖 ∈ 𝐼. Indeed,

𝐵
−1

𝑖
0 ⊂ VI(𝐶, 𝐵

𝑖
) is trivial. Let 𝑖 ∈ 𝐼, 𝑢 ∈ VI(𝐶, 𝐵

𝑖
), and 𝑧 ∈

𝐵
−1

𝑖
0. From the condition (ii), we have ⟨𝑧 − 𝑢, 𝐵

𝑖
𝑧 − 𝐵
𝑖
𝑢⟩ ≥

𝛽
𝑖
‖𝐵
𝑖
𝑧 − 𝐵
𝑖
𝑢‖
2 which implies that −⟨𝑧 − 𝑢, 𝐵

𝑖
𝑢⟩ ≥ 𝛽

𝑖
‖𝐵
𝑖
𝑢‖
2.

On the other hand, ⟨𝑧−𝑢, 𝐵
𝑖
𝑢⟩ ≥ 0 from 𝑢 ∈ VI(𝐶, 𝐵

𝑖
). So, we

obtain 𝑢 ∈ 𝐵−1
𝑖
0; that is, VI(𝐶, 𝐵

𝑖
) ⊂ 𝐵
−1

𝑖
0. Therefore, 𝐵−1

𝑖
0 =

VI(𝐶, 𝐵
𝑖
) for all 𝑖 ∈ 𝐼. Now suppose that 𝐹 = ⋂

𝑖∈𝐼
𝐵
−1

𝑖
0 ̸= 0

instead of the condition (i) and 𝐶
𝑛
= {𝑧 ∈ 𝐶 : 𝜙(𝑧, 𝑦

𝑛
) ≤

𝜙(𝑧, 𝑥
𝑛
)}. By the argument mentioned above and Remark 10,

Theorems 11 and 12 hold under the conditions (i) and (ii) and
we get the result of [19].

Remark 14. We know that, for a continuously Fréchet dif-
ferentiable and convex functional 𝑓 on a Banach space 𝐸, if
∇𝑓 is Lipschitz continuous with constant 1/𝛼, then ∇𝑓 is 𝛼-
inverse strongly monotone operator; see [2, 19]. So, we can
applyTheorems 11 and 12 and Remark 13 to such a functional;
see [19].

5. The Proximal Point Algorithm

Let𝐸 be a strictly convex, reflexive, and smoothBanach space,
𝑇 ⊂ 𝐸 × 𝐸

∗ a maximal monotone operator with 𝑇−10 ̸= 0,
𝑟 > 0, and 𝐴𝑥 = 𝐽(𝑥 − 𝐽

𝑟
𝑥) for all 𝑥 ∈ 𝐸, where 𝐽

𝑟
is the

resolvent of 𝑇. Then, 𝐴 is well defined as a mapping of 𝐸 into
𝐸
∗ for all 𝑟 > 0. We also have

VI (𝐸, 𝐴) = 𝑇−10,

⟨𝑥 − 𝑢, 𝐴𝑥⟩ ≥ ‖𝐴𝑥‖
2

∀𝑥 ∈ 𝐸, 𝑢 ∈ 𝑇
−1

0.

(58)
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In fact, VI(𝐸, 𝐴) = 𝑇−10 since 𝑢 ∈ 𝑇−10 is equivalent to 𝐽
𝑟
𝑢 =

𝑢 and 𝐴𝑢 = 0. Let 𝑥 ∈ 𝐸 and 𝑢 ∈ 𝑇−10. Since (1/𝑟)𝐽(𝑥 −
𝐽
𝑟
𝑥) ∈ 𝑇𝐽

𝑟
𝑥 and 0 ∈ 𝑇𝑢, we have ⟨𝐽

𝑟
𝑥 − 𝑢, 𝐽(𝑥 − 𝐽

𝑟
𝑥)⟩ ≥

0 which implies that ⟨𝑥 − 𝑢, 𝐴𝑥⟩ ≥ ‖𝐴𝑥‖2. By Theorem 8
and Remark 10, we get the following result using the index
mapping which satisfies the condition (NST).

Theorem 15. Let 𝐼 be a countable set, 𝐸 a 2-uniformly convex
Banach space whose norm is uniformly Gâteaux differentiable,
and {𝑇

𝑖
}
𝑖∈𝐼

a family of maximal monotone operators of 𝐸 into
𝐸
∗ such that𝐹 = ⋂

𝑖∈𝐼
𝑇
−1

𝑖
0 ̸= 0. Let {𝑟

𝑛
} be a sequence in ]0,∞[

with lim inf
𝑛→∞

𝑟
𝑛
> 0 and {𝜆

𝑛
}
𝑛∈N a sequence in ]0,∞[ such

that inf
𝑛∈N𝜆𝑛 > 0 and inf

𝑛∈N(2𝑐1 − 𝜆𝑛) > 0, where 𝑐1 is the
constant in Theorem 2. Let 𝑥 ∈ 𝐸 and {𝑥

𝑛
}
𝑛∈N a sequence in 𝐸

generated by

𝑥
1
= 𝑥,

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐽 (𝑥
𝑛
− 𝐽
𝑇
𝑖(𝑛)

𝑟
𝑛

𝑥
𝑛
)) ,

𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥

(59)

for each 𝑛 ∈ N, where the index mapping 𝑖 : N → 𝐼 satisfies
the condition (NST) and 𝐽𝑇𝑖(𝑛)

𝑟
𝑛

is the resolvent of𝑇
𝑖(𝑛)

.Then, {𝑥
𝑛
}

converges strongly to Π
𝐹
𝑥.

Proof. Suppose that 𝐴
𝑛
𝑥 = 𝐽(𝑥 − 𝐽

𝑇
𝑖(𝑛)

𝑟
𝑛

𝑥) for every 𝑛 ∈ N and
𝑥 ∈ 𝐸 in Theorem 8. Then, we have that 𝐴

𝑛
is a mapping of

𝐸 into 𝐸∗ with ⋂
𝑛∈N VI(𝐸, 𝐴𝑛) = 𝐹 ̸= 0, the condition (iii) is

satisfied with 𝛼
𝑛
= 1 for all 𝑛 ∈ N, and the conditions (ii) and

(iv) hold by 𝐴
𝑛
𝑧 = 0 for all 𝑛 ∈ N and all 𝑧 ∈ 𝐹. Let {𝑧

𝑛
}

be a bounded sequence in 𝐸, 𝑧 ∈ 𝐹, and {𝑟
𝑛
} ⊂]0,∞[ with

lim inf
𝑛→∞

𝑟
𝑛
> 0. Assume that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
− 𝐽
−1

(𝐽𝑧
𝑛
− 𝑟
𝑛
𝐴
𝑛
𝑧
𝑛
)
󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑛𝑧𝑛 − 𝐴𝑛𝑧
󵄩󵄩󵄩󵄩 = 0.

(60)

By the condition (NST), there exists a subsequence {𝑧
𝑛
𝑘

} of
{𝑧
𝑛
} such that, for any 𝑖 ∈ 𝐼, there is 𝑀

𝑖
∈ N with 𝑖 ∈

{𝑖(𝑛
𝑘
), 𝑖(𝑛
𝑘
+ 1), . . . , 𝑖(𝑛

𝑘
+ 𝑀
𝑖
− 1)} for all sufficiently large

𝑘 ∈ N. Let 𝑧
𝑛
𝑘

⇀ 𝑢 and 𝑖 ∈ 𝐼. As in the proof of Theorem 11,
there exists 𝑗

𝑘
∈ {0, 1, . . . ,𝑀

𝑖
− 1} such that 𝑖(𝑛

𝑘
+ 𝑗
𝑘
) = 𝑖

for every sufficiently large 𝑘 ∈ N and we get 𝑧
𝑛
𝑘
+𝑗
𝑘

⇀ 𝑢. Let
(V, V∗) ∈ 𝑇

𝑖
. Since

⟨𝐽
𝑇
𝑖

𝑟
𝑛
𝑘
+𝑗
𝑘

𝑧
𝑛
𝑘
+𝑗
𝑘

− V,
1

𝑟
𝑛
𝑘
+𝑗
𝑘

𝐽 (𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐽
𝑇
𝑖

𝑟
𝑛
𝑘
+𝑗
𝑘

𝑧
𝑛
𝑘
+𝑗
𝑘

) − V∗⟩ ≥ 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑘
+𝑗
𝑘

− 𝐽
𝑇
𝑖

𝑟
𝑛
𝑘
+𝑗
𝑘

𝑧
𝑛
𝑘
+𝑗
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
= 0,

(61)

we obtain

⟨𝑢 − V, −V∗⟩ ≥ 0 (62)

for each (V, V∗) ∈ 𝑇
𝑖
. As 𝑇

𝑖
is a maximal monotone operator,

𝑢 ∈ 𝑇
−1

𝑖
0 for every 𝑖 ∈ 𝐼. So, we get 𝑢 ∈ 𝐹. Therefore, the

condition (v) holds. So, we get conclusion by Theorem 8 and
Remark 10.

As in the proof ofTheorem 15, we get the following result
fromTheorem 9 and Remark 10.

Theorem 16. Assume that 𝐸, 𝐼, {𝑇
𝑖
}, 𝐹, {𝑟

𝑛
}, {𝜆
𝑛
}, 𝑐
1
, 𝑖, and

𝐽
𝑇
𝑖(𝑛)

𝑟
𝑛

are the same as Theorem 15. Let 𝑥 ∈ 𝐸 and let {𝑥
𝑛
} be a

sequence in 𝐸 generated by

𝑥
1
= 𝑥,

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐽 (𝑥
𝑛
− 𝐽
𝑇
𝑖(𝑛)

𝑟
𝑛

𝑥
𝑛
)) ,

𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑥

𝑛
− 𝑧, 𝐽 (𝑥 − 𝑥

𝑛
)⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(63)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥.

Let𝑓 : 𝐸 → ]−∞,∞] be a proper, lower semicontinuous,
and convex function. Then, it is known that the subdifferen-
tial 𝜕𝑓 of 𝑓 defined by

𝜕𝑓 (𝑥) = {𝑥
∗

∈ 𝐸
∗

: 𝑓 (𝑦)

≥ 𝑓 (𝑥) + ⟨𝑦 − 𝑥, 𝑥
∗

⟩ ∀𝑦 ∈ 𝐸}

(64)

for all 𝑥 ∈ 𝐸 is a maximal monotone operator [31, 32].
Moreover, when 𝐸 is strictly convex, reflexive, and smooth,
we know that, for the resolvent of 𝜕𝑓,

𝐽
𝜕𝑓

𝑟
𝑥 = argmin

𝑦∈𝐸

(𝑓 (𝑦) +
1

2𝑟

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩

2

) (65)

for every 𝑟 > 0 and 𝑥 ∈ 𝐸 and 𝜕𝑓−10 = argmin
𝑦∈𝐸
𝑓(𝑦); see

[21] for more details. Now, we have the following results from
Theorems 15 and 16.

Theorem 17. Let 𝐼 be a countable set, 𝐸 a 2-uniformly convex
Banach space whose norm is uniformly Gâteaux differentiable,
and {𝑓

𝑖
}
𝑖∈𝐼

a family of proper, lower semicontinuous, and
convex functions of 𝐸 into ] − ∞,∞] such that 𝐹 =

⋂
𝑖∈𝐼

argmin
𝑦∈𝐸
𝑓
𝑖
(𝑦) ̸= 0. Let {𝑟

𝑛
} be a sequence in ]0,∞[

with lim inf
𝑛→∞

𝑟
𝑛
> 0 and {𝜆

𝑛
}
𝑛∈N a sequence in ]0,∞[ such

that inf
𝑛∈N𝜆𝑛 > 0 and inf

𝑛∈N(2𝑐1 − 𝜆𝑛) > 0, where 𝑐1 is the
constant inTheorem 2. Let 𝑥 ∈ 𝐸 and let {𝑥

𝑛
}
𝑛∈N be a sequence

in 𝐸 generated by

𝑥
1
= 𝑥,

𝑢
𝑛
= argmin
𝑦∈𝐸

(𝑓
𝑖(𝑛)
(𝑦) +

1

2𝑟
𝑛

󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

) ,

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐽 (𝑥
𝑛
− 𝑢
𝑛
)) ,
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𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑥

𝑛
− 𝑧, 𝐽𝑥 − 𝐽𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1
= Π
𝐶
𝑛
∩𝑄
𝑛

𝑥

(66)

for each 𝑛 ∈ N, where the index mapping 𝑖 : N → 𝐼 satisfies
the condition (NST). Then, {𝑥

𝑛
} converges strongly to Π

𝐹
𝑥.

Theorem 18. Assume that 𝐸, 𝐼, {𝑓
𝑖
}, 𝐹, {𝑟

𝑛
}, {𝜆
𝑛
}, 𝑐
1
, and 𝑖 are

the same as Theorem 17. Let 𝑥 ∈ 𝐸 and let {𝑥
𝑛
} be a sequence

in 𝐸 generated by

𝑥
1
= 𝑥,

𝑢
𝑛
= argmin
𝑦∈𝐸

(𝑓
𝑖(𝑛)
(𝑦) +

1

2𝑟
𝑛

󵄩󵄩󵄩󵄩𝑦 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

)

𝑦
𝑛
= 𝐽
−1

(𝐽𝑥
𝑛
− 𝜆
𝑛
𝐽 (𝑥
𝑛
− 𝑢
𝑛
)) ,

𝐶
𝑛
= {𝑧 ∈ 𝐸 : 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑄
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝑥

𝑛
− 𝑧, 𝐽 (𝑥 − 𝑥

𝑛
)⟩ ≥ 0} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(67)

for each 𝑛 ∈ N. Then, {𝑥
𝑛
} converges strongly to 𝑃

𝐹
𝑥.

At the end of this section, we make a remark about a
result of the problem of image recovery due to [33, 34]. Let
𝑖
𝐶
be the indicator function of a nonempty closed convex

subset 𝐶 of 𝐸. We know that 𝑖
𝐶
: 𝐸 → ] − ∞,∞[ is proper

lower semicontinuous and convex and, for a nonempty closed
convex subset 𝐶 of a strictly convex, reflexive, and smooth
Banach space 𝐸, (𝜕𝑖

𝐶
)
−1

0 = 𝐶 and 𝐽𝜕𝑖𝐶
𝑟
𝑥 = 𝑃

𝐶
(𝑥) for every

𝑟 > 0 and 𝑥 ∈ 𝐸; see [15]. So, when 𝑓
𝑗
= 𝑖
𝐶
𝑗

for nonempty
closed convex subset 𝐶

𝑗
of 𝐸 for every 𝑗 ∈ 𝐼 with⋂

𝑗∈𝐼
𝐶
𝑗
̸= 0

in Theorems 17 and 18, we get the strong convergence to a
common point of {𝐶

𝑗
}
𝑗∈𝐼

.
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