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We consider the variational inequality problem for a family of operators of a nonempty closed convex subset of a 2-uniformly convex
Banach space with a uniformly Gateaux differentiable norm, into its dual space. We assume some properties for the operators and
get strong convergence to a common solution to the variational inequality problem by the hybrid method proposed by Haugazeau.
Using these results, we obtain several results for the variational inequality problem and the proximal point algorithm.

1. Introduction

Let Nand R be the set of all positive integers and the set of all
real numbers, respectively. Throughout this paper, E is a real
Banach space with norm |- and E* is the dual of E. For x € E
and x™ € E*,let {x, x") be the value of x™ at x. Suppose that C
is a nonempty closed convex subset of E and A is a monotone
operator of C into E*; that is, (x — y,Ax — Ay) > 0 holds
for all x, y € C. Then, we consider the variational inequality
problem [1], that is, the problem of finding an element z € C
such that

(x—2z,Az) 20 VxeC. (1)

The set of all solutions to the variational inequality problem
for A is denoted by VI(C, A). For « > 0, we say that A is a-
inverse strongly monotone [2-5] if

x -y, Ax— Ay) > alAx - Ay|F Vx,yeC. (2
y y y y

Haugazeau [6] introduced a sequence {x,} generated by
the hybrid method by the following way. Let {T,} be a
family of mappings of a real Hilbert space H into itself with

Moo F(T,) #0, where F(T,,) is the set of all fixed points of T},.
Let {x,} be a sequence generated by

x, =x€H,
yn:Tnxw
an{ZEH:<xn_yn’yn_z>20}’ (3)

Q,={zeH:{(x,-z,x-x,) =0},
Xp+1 = PCnﬂQn (X)

for each n € N, where P  is the metric projection of
H onto C,, N Q,,. He proved a strong convergence theorem
when T, = P, mod my+1 for every n € N, where P, is
the metric projection of H onto a nonempty closed convex
subset C; of H for each i = 1,2,...,m with (), C; #0.
Later, Solodov and Svaiter [7], Bauschke and Combettes [8],
Nakajo and Takahashi [9], and many researchers studied
the hybrid method in a real Hilbert space. In a real Banach
space, Kamimura and Takahashi [10], Ohsawa and Takahashi
[11], Kohsaka and Takahashi [12], Matsushita and Takahashi
[13], Matsushita et al. [14], Nakajo et al. [15], and several
researchers studied the hybrid method.
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In a real Hilbert space H, liduka et al. [16] considered a
sequence {x,} generated by the following hybrid method:

x, =x€C,
Yo = Po(x, = 1,Ax,),
Cu={z€Ci|yu—z] < |x,— [}, (4)
Q,={zeC:{(x,-z,x-x,) 20},
Xne1 = Pcan,,x

for each n € N, where A is an a-inverse strongly monotone
operator of C into H with VI(C, A) #0, P is the metric
projection of H onto a nonempty closed convex subset C
of H, and {A,} < [0,2«]. They proved that {x,} converges
strongly to Pyy(c 4)X; see also [17,18]. In a 2-uniformly convex
and uniformly smooth Banach space E, liduka and Takahashi
[19] proved the following.

Theorem 1 (Iiduka and Takahashi [19]). Let A be an «-inverse
strongly monotone operator of E into E* with A'0#0 and
{A} < la,cal for some a € ]0,c«f, where ¢, is a positive
constant satisfying that | x + y|* > |x|* +2(y, Jx) +¢ | yII* for
every x, y € E. Let {x,,} be a sequence generated by

x, = x € E,
u= T (%, = A,AX,),
C,={z€E:¢(z,p,) <d(zx,)} ®)
Q,=1{z€E:{(x,-z]x-Jx,) 20},

X1 = g ng,X

for eachn € N, where I, , is the generalized projection of E

onto C,NQ, and ¢(x, y) = ||x|> —2(x, Jy) + | y|* for x, y € E.
Then, {x,} converges strongly to II 4-1,x.

Motivated by [19], we propose a new family of operators
and prove strong convergence theorems of the sequence
generated by these mappings. Using these results, we get
several additional results for the problem of variational
inequalities and the proximal point algorithm.

2. Preliminaries

Throughout this paper, we write x,, — x to indicate that
a sequence {x,} converges weakly to x and x, — x will
symbolize strong convergence. We denote by Sy the unit
sphere of a Banach space E; thatis, Sy = {x € E : || x| = 1}.

We define the modulus &5 of convexity of E as follows:
is a function of [0, 2] into [0, 1] such that

<+l
2

6E(e):inf{1— :x,yeSE,”x—y”ze} (6)

for every € € [0,2]. E is said to be uniformly convex if
Op(e) > 0foreache > 0.Let p > 1. E is said to be p-uniformly
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convex if there exists a constant ¢ > 0 such that 8z(e) > ce”
for every € € [0,2]. It is obvious that a p-uniformly convex
Banach space is uniformly convex. E is said to be strictly
convex if [|x + y||/2 < 1 for all x, y € Sg with x # y. We know
that a uniformly convex Banach space is strictly convex and
reflexive. The duality mapping J : E — 2 of E is defined

by
JW={feE (mf) =1 =|fI"} @

for every x € E. It is also known that if E is strictly convex
and reflexive, then the duality mapping J of E is bijective and
J7': E* — 2% is the duality mapping of E*. E is said to be
smooth if the limit

. L el ] )
t—0 t

exists for every x,y € Sg. The norm of E is said to be
uniformly Géteaux differentiable if, for each y € Sg, the limit
(8) is attained uniformly for x € Sg. E is said to be uniformly
smooth if the limit (8) is attained uniformly for (x, y) €
Sg x Sg. We know that the duality mapping J of E is single-
valued if and only if E is smooth. It is also known that if E is
uniformly smooth, then the duality mapping J is uniformly
continuous on bounded subsets of E and if the norm of E
is uniformly Géateaux differentiable, then J is norm-to-weak”
uniformly continuous on bounded subsets of E; see [20, 21]
for more details. The following is proved by Xu [22]; see also
[23].

Theorem 2 (Xu [22]). Let E be a smooth Banach space. Then,
the following are equivalent.
(i) E is 2-uniformly convex.

(ii) There exists a constant ¢; > 0 such that ||x + y||2 >
l* + 2(y, Jx) + ¢, | y|I* holds for each x, y € E.

Remark 3. In the case where E is a real Hilbert space, ] is the
identity mapping and we can choose ¢; = 1.

Let E be asmooth Banach space. The function ¢ : EXE —
R is defined by

¢ (3x) = [y* -2 (3 Jx) + Ixl? 9)

for every x, y € E. It is obvious that (|| y|| - Ixl)? < oy, x) <
(yl+ lx])? for each x,y € Eand ¢(z, x) +p(x, y) = ¢(z, y) +
2(x—z,Jx—]Jy) forall x, y,z € E.Itis also known that if E is
strictly convex and smooth, then, for x, y € E, ¢(y,x) = 0 if
and only if x = y; see also [13]. We have the following result
from Theorem 2.

Lemma 4. Let E be a 2-uniformly convex and smooth Banach
space. Then, for each x,y € E, ¢(x,y) > ¢llx - y||2 holds,
where ¢, is a constant in Theorem 2.

Proof. Let x, y € E. By Theorem 2, we have

¢ (x.2) = Ixl” = |yI* =2 (x = ».Jy) 2 e x -y, (10)
which is the desired result. O
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Let C be a nonempty closed convex subset of a strictly
convex, reflexive, and smooth Banach space E and let x € E.
Then, there exists a unique element y, € C such that

¢ (o x) = inf (5, x). (1)

We denote y, by I1-x and call I1 the generalized projection
of E onto C; see [10, 24, 25]. We have the following well-
known results [10, 24, 25] for the generalized projection.

Lemma 5. Let C be a nonempty convex subset of a smooth
Banach space E, x € E, and y, € C. Then, ¢(y,,x) =
inf ), ec@(y, x) if and only if (y, — z, Jx = Jy,) > 0 forall z € C.

Let C be a nonempty closed convex subset of a strictly
convex and reflexive Banach space E and let x € E. Then,
there exists a unique element y, € C such that [y, — x| =
inf eclly — x|. Putting y, = Pcx, we call P the metric
projection of E onto C; see [26]. We have the following result
for the metric projection; see [20] for more details.

Lemma 6. Let C be a nonempty closed convex subset of a
strictly convex, reflexive, and smooth Banach space E, x € E,
and y, € C. Then, y, = Pcx ifand only if (y,—z, J(x=y,)) = 0
forallz € C.

AnoperatorT: E — 2F" is said to be monotone if (x —
y,x* = y*) > 0 for every (x,x"),(y, ") € T. Notice that we
often identify a set-valued operator with its graph; x* € Tx if
and only if (x, x*) € T.

A monotone operator T C E X E” is said to be maximal if
the graph of T is not properly contained in the graph of any
other monotone operator. It is easy to see that a monotone
operator T C E x E* is maximal if and only if, for (u,u") €
EXE", (x—u,x" —u") > 0 for every (x,x") € T implies that
(u,u”) € T. We know the following result.

Theorem 7 (Rockafellar [27]; see also [28]). Let E be a strictly
convex, reflexive, and smooth Banach space and let T be a
monotone operator of E into E*. Then, T is maximal if and
only if R(J + rT) = E* for allv > 0, where R(J + vT) is the
range of ] + rT.

From this fact, we also know that if E is a strictly convex,
reflexive, and smooth Banach space and T is a maximal
monotone operator of E into E*, then, for any x € E and
r > 0, there exists a unique element x, € D(T) such that
J(x, — x) + rTx, > 0, where D(T) is the domain of T. We
define J, : E — EbyJ.x = x, foreveryx € Eandr > 0,
and such J, is called the resolvent of T; see [21, 29] for more
details.

3. Main Results

Let C be a nonempty closed convex subset of a strictly convex,
reflexive, and smooth Banach space E and {4, },,.y a family of
operators of C into E” satisfying the following:

(i) F =2, VI(C, A,) #0;

(ii) (x—z,A,x—A,z) >0foralln e N,x € C,and z € F;

(iii) there exists a sequence {«,},cy in ]0,00[ such that
0 < liminf, |, je&, < limsup,_ &, < oo and
(x —z,A,x) =2 o, ||A,x— Anzll2 for every n € N,
x €C,andz € F;

(iv) for all z € F, sup, IlA 2]l < co;

(v) for every bounded sequence {z,} ¢ C,z € F, and
{r,} <l0,00[ with inf, 7, > 0, if lim, _, |z, —
Zn" = hmnﬂoo”Zn - chil(]zn - rnAnZn)" =
lim, , Az, — A,z = 0, then there exists a
subsequence {z, } of {z,} such thatz, — z € F.

Let us observe some properties of the mappings and the
subsets deduced from the assumptions above.

First, we know that, for any n € N, the image of Fby A, is
a singleton. Indeed, for z,,z, € F, we have (z; — z,, A, z;) >
o, llA,z, — A,z|* by the condition (iii). On the other hand,
since z, € VI(C, A,), it follows that (z, —z,, A,z;) > 0. Thus,
weget Az, = A,z, forallz;,z, € F.

Next, if we assume ()00, A,'0#0, then we have
N®, A0 N2, VI(C, A,). Indeed, the inclusion
N2, A0 ¢ R, VIC,A,) is trivial. To show
the opposite inclusion, let z € (]2, VI(C,A,) and
u € ()2, A0 By the condition (i), we have
0 = (w-zAu > alAu-Azl> = alA,zl
which implies A,z = 0; thatis, z € A;IO for alln € N. Hence,
we get (100, A710 > (72, VI(C, A,).

We also know that F is closed and convex. Indeed, for
z,,2, € Fand B €]0,1[, let z = Pz, + (1 - B)z,. By
the condition (iii), (z — z,4,2) > o,llA,z - An21||2 and
(z =25, A,2) 2 «,|A,z - Anzzll2 hold for all n € N. Thus
we get

0=(z-(Bz1+(1-p)z),A,2)
=Blz-2,A,2) + (1= P)(z -2, A,2)
Z oy, (ﬁ“AnZ - Anz"l”2 + (1 - ﬁ) ||Anz - An22"2)
>0,

which implies that A,z = A, z; = A, z, for each n € N. Since
(x —z,A,z) = (x—2z,A,z;) > 0and (x — 2,,A,2z) =
(x —z,,A,z,) 2 0for everyn € Nand x € C, we have

(x-2z,Az) =B{x—-z,A,2) + (1 -B){x—2,,A,z) >0
(13)

foralln € Nand x € C; thatis, z € VI(C, A,,) for eachn € N.
Hence, F is convex.

To see F being closed, let {z,} be a sequence in F
such that z,, — z. Since we have (z - z,,A,z) >
a,llA,z - Anzmll2 for every m,n € N from the condition (iii),
we get lim,, , A,z — A,z = 0forall n € N. Since
(x — z,,A,2,) = 0 foreach m,n € Nand x € C, we
obtain (x — z,A,z) > 0 for every n € Nand x € C; that
is, z € VI(C, A,)) for all n € N. Therefore, F is closed.

Now, we get the following result by the hybrid method
using the generalized projections.



Theorem 8. Let C be a nonempty closed convex subset of a
2-uniformly convex Banach space E whose norm is uniformly
Gateaux differentiable, and let {A ,} be a sequence of operators
of C into E* satisfying the conditions (i)-(v). Let {A,} be a
sequence in 10, 0o[ such that inf, A, > 0 and inf, . (2¢,«,, —
A,) > 0, where ¢, is the constant in Theorem 2. Let x € C and
{x,} a sequence in C generated by

X = %,
Yo =TT (%, = M,A,%,)

Co=1{z€C:¢(z,) <p(zx,) + 24, (x, — 2, A,x,)}
Q,=1{zeC:{(x,-zJx-]Jx,) =0},

Xn+1 = chnan
(14)

for each n € N. Then, {x,} converges strongly to I1px.

Proof. It is obvious that Q,, is closed and convex for every n €
N. Since ¢(z, ¥,) < ¢(z, x,,) + 24,(x,, — z, A,x,,) if and only
if 2(z, Jx, = Jy,) + Iyall® = I, I” = 24,(x,, — 2, A,x,,) < 0,
we have that C, is closed and convex for all n € N. Next, we
show that, forn € N, x,, € C implies that F ¢ C,.. Let z € F.
We have

(¢ (Z’yn) + 2An <yn - Z>Anz>)

- (¢) (Z, xn) + 2/\n <xn - Z’Anz>)
= (‘/5 (Z’ yn) - (p(Z,Xn)) + 2An <yn
= _(/5 (yn’ xn) +2 <yn - % ]yn - ]xn>

+ 2An <yn - xn’AnZ>

- xn’AnZ> (15)

for every n € N. Since y, = IIoJ"'(Jx, — A,A,x,) and by
Lemma 5, we get (y, — 2z, Jx,, — A,A,x, — Jy,) = 0. Further,
by Lemma 4, we obtain

(‘p (Z’ yn) + 2/\n <yn - Z’Anz>)
- (¢ (Z, xn) + 2An <xn - Z’Anz>)

IN

! ”yﬂ - xn"2 - 2)‘11 <yn - Z’Anxn>
+24, (¥, — %, A 2) (16)
= —ally

- 2An (<yn -
+ 20, (Y — X Ayz) .

xn’Anxn> + <xn - % Anxn>)
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Using x,, € C and the condition (iii), we have (x,-z, A, x,,) >
a,llA,x, — A,z|* and thus
(4) (Z’ yn) + 2/171 <yn Zz Anz>)
- (¢ (Z’ xn) + ZAn <xn - Z’Anz>)
2
S—q "yn - xn"
2
- 2/\n (<yn — Xp> Anxn> + (xn”Anxn - AnZ" )
+ 2/\n <yn X Anz>
2 2
=-q "yn - xn" - ZAn(xn”An'xn - AnZ"
- 2An <yn - Xn,Aan - Anz>

5 5 17)
=i ||y = xa||” = 22,0, Ax, — ALz

IN

+24, “yn - xn“ “Anxn - AnZ”
< —a |y - %l - 20,0, A%, - Az
Bry e LA x - 2)
421, ( D=5l + 35140, - A
= (Bro =) lyn -’
1
+A, (—
B
for any 3 > 0. Since a sequence {A,} satisfies 0 < A,, < 2¢«x,,
for all n € N, limsup,_, A, < 00, and inf, (c,/A, —

1/(2e,,)) > 0, we can choose a positive sequence {f3,} such
that

. 20cn> 1A,x, - A,z

1
B, —¢ <0, /\n</3——20cn><0 VneN,
n

1
lim sup (B,A, —¢) <0, lim sup A, <ﬁ_ - 205,,) <0.

n— 0o (18)

So, we obtain

(¢) (Z, yn) + 2/\n <yn - Z’Anz>)

(19)
—(¢(z,x,) +21,(x, -2, A,z)) <0.

Since z € VI(C, A,)), we have (y, -z, A, z) > 0. Using x,, € C
and the condition (ii), we have (x,,—z, A, z) < (x,—z, A, x,,).
Thus, we get

¢ (2 1) < $(2x,) + 24, (x, -2, 4,x,) 5 (20)

that is, F ¢ C,. From this fact, we get that F ¢ C, N Q, for
every n € N and {x,} is well defined. Indeed, x; = x € C
is given and since Q; = C, we have F ¢ C; N Q,. Assume
that x;. is well defined and F ¢ C, N Q, for some k € N.
There exists a unique element x;,; = Il x and we get
(X1 — 2 JX = Jxp4q) 2 Oforall z € C, N Q; by Lemma 5.
Since F ¢ C,,NQy, we have (x;, —z, Jx—Jx;,,) = 0 for every
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z € F;thatis, F ¢ Q. Since x;,; € C, N Q; ¢ C, we have
F c Cy,,. Hence, we obtain F ¢ Cy,;NQy.,. By mathematical
induction, we get F ¢ C,NQ,, for everyn € N and {x,,} is well
defined. Since x,,,; = Ilc ng X and F ¢ C, N Q,, we have
O(x,01> %) < d(Ipx, x) for everyn € N, wh1ch implies that
{x,} is bounded. Further, since x,,,, € Q,,, we have

¢ (xn+1> xn) + (/5 (xn’ x)
= ¢ (xn+1’x) +2 <xn -

< (/) (xn+1’ x)

for all n € N. Thus, there exists lim,, _, . ¢(x,,, x) and

xn+1>]xn _]x> (21)

nlglgoqs (xn+1’ xn) =0. (22)

By Lemma 4, we get

,}E%O "xn+1 xn“ =0. (23)
Using x,,,, € C,,, we have
(/5 (xn+l>yn) < ¢ (xn+1’xn) + ZAn <xn - xn+1’Anxn> 24)
< (l) (xn+1’ + ZA "x n+1“ “Anxn"

for all n € N. From the condition (iii), we have

e = 2l A wxal = (4%, = [ A2])’
(25)
2, (4,3, - 2|4,x, ] |A,2])
which implies that
s = 2l = &, |4, - 201, A 2] (26)
for everyn € Nand z € F. Since 0 < lim inf, | «, <

lim sup,,_, &, < 0o, using the condition (iv) and the bound-
edness of {x,,}, we get that {A,x,,} is bounded. Since (22)-(24)
hold and {A,} is bounded, we have lim, _, . ¢(x,;, ¥,) = 0,
which implies that

lim "xn+1 yn" =0 (27)

n— 00

by Lemma 4. From (23) and (27), we also have lim,,_, . llx,, —
¥,|l = 0. Using the facts that
(¢ (Z’ yn) + 2/\n <yn -z AnZ>)
- ((p (Z, xn) + 2An <xn ) Anz>)
2 2 (28)
=2 <Z’]xn - ]yn> + (“yn" - "xn" )

+ 2/\n <yn — Xp» Anz>

foralln € N, lim,, _, . x,, — ¥,Il = 0, the condition (iv) holds,
{x,}, {y,}, and {A,,} are bounded, and the duality mapping J
is norm-to-weak” uniformly continuous on bounded subset
of E, we obtain

nILHgO (((/5 (Z’ yn) + 2An <yn -

- ((l) (Z, xn) + 2/\n <xn

z2,A,z))
(29)
-2,4A,2))) =

Since (17) holds for every n € N, it follows from (29) and
lim llx,, = ¥,l = 0 that

n— 00

Jlim A, x, - A,z] =0. (30)
From the condition (v), there exists a subsequence {xn,_} of
{x,} such that x, — z € F. Since the norm of E is weakly
lower semicontinuous, we get

¢ (z,x) = llzl” - 2 {2, Jx) + ||xI

< lim 1nf(“x ” -2 <xni,]x> + ||x||2)

i— 00

= lim inf¢ (xn ,x) = lim ¢ (x,,x) < ¢ (IIpx, x),
i— 00 n—o00

(3D
which implies z = ITpx and
lim ¢ (x,,, x) = ¢ (TTpx, x) . (32)

Using x,,,.; = Il¢ nq % F € C,NQ,, and Lemma 5, we have

0> <xn+1 - 1_[FX> ]xn+1 - ]x>
| (33)
= 5 (9 (Tpx, x01) + ¢ (%010 %) = ¢ (T, x))

which implies that

¢ (Tpx, x) 2 ¢ (Tpx, X,p1) + ¢ (X415 %) (34)

for all n € N. From (32), we get lim, _, ¢(ITpx, x,,;) = 0
and by Lemma 4, we obtain x,, — ITpx, which is the desired
result. O

Next, we have the following result by the hybrid method
using the metric projections.

Theorem 9. Assume that E, C, {A,}, {A,,}, and c, are the same
as in Theorem 8. Let x € C and {x,} a sequence in C generated

by

X = X,
=] (%, = A4A %)
Co={z€C:¢(zy,) < ¢(2x,) + 24, (x, — 2. A, x,)}
Q,={zeC:{(x,-2z](x-x,)) >0},
Xn+1 = PC,,nan
(35)

for each n € N. Then, {x,} converges strongly to Prx.

Proof. Q,, is closed convex for every n € N. As in the proof of
Theorem 8, we have that C,, is closed and convex. We also get
that, for n € N, x,, € C implies that F ¢ C,,. By this fact, we
obtain F ¢ C,, N Q,, for every n € N and {x,} is well defined.
Indeed, x; = x € Cisgivenand F ¢ C, N Q, since Q, = C
Assume that x; is well defined and F ¢ C, N Q for some



k € N. There exists a unique element x;,; = P, nq,x and we
get (X, -2, J(x—x;,,)) = 0forallz € C,NQ, by Lemma 6.
Since F ¢ C, N Qy, we have (x;,, — 2, J(x — x;.,1)) = 0 for
every z € F;thatis, F C Qq,,. Since x;.,; € C, N Q; ¢ C,
we also have F ¢ C;;. Thus, we obtain F ¢ C;,; N Q. By
mathematical induction, we get F ¢ C, N Q,, for everyn € N
and {x,} is well defined.
Since x,,,; = Pg nq,xand F ¢ C, N Q,, we have

”anrl - x” < ||x - PFx” (36)

for every n € N and, hence, {x,} is bounded. Using x,,,, € Q,
and Theorem 2, we have

s = [ = [l = x|
>2 <xn+1 — Xn J (xn - x)> TG ||xn+1 - xn“2 (37)

2q ||xn+l - anZ

for each n € N, which implies that there exists lim, _, . [|lx,, —
x|| and
,,ILH&, "xnﬂ - xn“ =0. (38)

Since y, = 1] ' (Jx,, — A,A ,x,,), by Lemma 5, we have
<yn = X JX, = ]yn - /\nAnxn> =0, (39)

which implies that

v

2 (6 () = 9 (3 22)

- "xn - yn"2

<yn_xn’]xn_]yn> (40)
2 /\n <yn - xn’Anxn>
B _An "yn - xn" "Anxn“

from Lemma 4. As in the proof of Theorem 8, {A,x,} is
bounded. Thus, we get that {||y, — x,[I} is also bounded by
the boundedness of {A,} and so is {y,}. Since x,,,, € C,,, we
have ¢(x,,,1> ¥,) < (X115 X,,) +24,,(x, —X,,.1, A,x,,); that is,

¢ (X V)
(41)
<2 <xn - xn+1’]xn - ]yn> + 2An <xn = Xn+1> Anxn>
for all n € N. By the boundedness of {x,}, {y,}, {A,}, and
{A,x,} with (38) and Lemma 4, we have

dim [, =y = 0. (42)

As in the proof of Theorem 8, using (17) and (29), we have
Jim [A,x, - A,z| = 0. (43)

From the condition (v), there exists a subsequence {xni} of
{x,} such that x, — z € F. Since the norm of E is weakly
lower semicontinuous and (36) holds, we get

|z - x|l < liminf |x, - x|
i— 00 (44)

= lim [, — x| < [P ]

Journal of Applied Mathematics

which implies that z = Ppx and
lim_[Jx, - x]| = [[Ppx - x| - (45)

n— oo

Using the facts that x,,,; = P; ng X and F ¢ C, N Q, and by
Theorem 2, we obtain

e = Pex|”

2 llx - 'xn+1”2 + 2 (X = Ppx T (X = %,01))

(46)
+ s = Pex]”
> [ = X | + €1} = Pex]’
for all n € N. By (45), we have
lim [x,,,, — Ppx| = 0, (47)
which is the desired result. O

Remark 10. Even though we replace the definition of C,, in
Theorems 8 and 9 with

{zeC:¢(zy,) <¢(zx,)}
(A,z=0Vze€eF),
C,=14{ze€C:¢(z,5,) <d(zx,) (48)
+24, (x, -z, A,x,)}
(A,z #0 for some z € F),

the theorems are still valid.

4. The Variational Inequality Problem for
Monotone Operators

Let I be a countable set and i : N — I a mapping. Nakajo
et al. [30] propose the condition (NST) as follows: i satisfies
the condition (NST) if there exists a subsequence {n;} of
N such that, for any j € I, there is M; € N with j ¢
{i(ng),i(my + 1),...,i(m + M; - 1)} for all sufficiently large
k € N. Using the condition (NST), we get the following result
for the variational inequality problem by Theorem 8.

Theorem 11. Let C be a nonempty closed convex subset of a
2-uniformly convex and uniformly smooth Banach space E, I
a countable set, and {B,},c; a family of operators of C into E*
such that

(i) F = i, VI(C, B,) 0;
(ii) B; is an inverse strongly monotone operator for eachi €
I; that is, there exists {f3; : i € I} c]0, col such that for
everyi € I and x, y € C, the inequality (x — y, Bjx —
B,y) = BillB;x — B,y holds;
(iii) for all z € F, sup,||B;z|| < oo.
Suppose that the index mapping i : N — I satisfies the con-

dition (NST) and 0 < lim inf, _, By, < limsup, , B <
00. Let{A,} be a sequence in 10, oo such thatinf, A, > 0 and
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inf, e\ (26, By —A,) > O, where ¢, is the constant in Theorem 2.
Let x € C and {x,} a sequence in C generated by
X, =X,
o =] (J%, = 4By %) »
Ci={zeC:¢(zy)<¢(2x,)

+2)‘n <xn -3 Bi(n)xn>} >

(49)

Q,={z€eC:(x,-zJx-Jx,) =0},
X1 = g ng, X

for each n € N. Then, {x,} converges strongly to I1px.

Proof. We apply Theorem 8 with A, = By, for alln € N.
Then, the conditions (i)-(iv) are satisfied, and we will verify
the condition (v). Let {z,,} be a bounded sequence in C with

”lgréo ||Zn+1 - Zn” = nlgréo ”Zn - 1—IC] ' (]Zn - rnAnzn)” (50)
=0,

{r,} <l]0,00[ with lim inf,_, 7, > 0, and z € F such that
lim, |, JllA,z, — A,z|l = 0. By the condition (NST), there
exists a weakly convergent subsequence {z, } of {z,} such
that, for any i € I, there is M; € N with i € {i(n),i(n; +
1),...,i(m, + M; — 1)} for all sufficiently large k € N. Let
z, — wuand fixi € I. There exists ji € {0,1,...,M; - 1}
such that i(n, + j,) = i for every sufficiently large k € N.
We consider a subsequence of {rn; + ji} forallk € {k e N :

M+ fr < My + Jesq} and denote it by {n + ji} again. We have

n+M;—1
Znetje ~ Py “ < Z ||Zl+1 - Zl" (51)

I=ny,

for all k e N, which implies that z — u. Let y, =

et i
o] '(Jz, - 1,A,z,). By Lemma 5, we have

y"k+jk N y" ||]Z"k+jk N ]y"k+jk
z <ynk+jk - ]Z”k+jk N ]y"k+jk> (52)

2 Ty jy <y"k+jk - A"k+jkznk+jk>

for every sufficiently large k € Nand y € C. Since A

mtji T
Bin+j,) = B for each .suﬁ.rlaently large k € N, Vpsjy — W
120 +j, = Vs j | = 0,lim inf, _, o1, > 0,limy _, o [IBiz,, ., —

B;z|| = 0, and the duality mapping J is uniformly continuous
on bounded subset of E, we have

(y—u,Biz) >0 (53)
for all y € C. Since B, is inverse strongly monotone, we have
2
(2, =1 BiZnrjo = Bit) 2 BBz s, — B (54)
for every k € N, which implies that

0= (u—u,Biz — Bu) > B||Biz - Bl (55)

that is, B;z = B;u. From (53),
(y—u,Bu) 20 (56)

for all y € C. Therefore, u € VI(C, B;) for every i € I; that is,
u € F. Hence, the condition (v) is satisfied. Consequently, we
obtain x,, — IIpx by Theorem 8. O

As in the proof of Theorem 11, we get the following result
for the variational inequality problem by Theorem 9.

Theorem 12. Assume that E, C, I, {B;}, F, ¢, i, {3;}, and {A, )}
are the same as Theorem 11. Let x € C and {x,} a sequence in
C generated by

X, =X,
-1
Yu = HC] (]xn - AnBi(n)xn) >

C,={zeC:¢(2,) < ¢(zx,)

+2)‘n <xn g Bi(n)xn>} >

(57)

Q,={zeC:(x,-2z](x-x,) =0},
Xui1 = Pong,X
for each n € N. Then, {x,} converges strongly to Ppx.

Remark 13. In Theorems 11 and 12, under the assumption that
Mier B; 10+ 0, we have VI(C, B;) = B;'0 for alli € I. Indeed,
Bi_IO c VI(C, B;) is trivial. Leti € I, u € VI(C,B;), and z €
Bi_IO. From the condition (ii), we have (z — u, B;z — Bju) >
BilB;z - B,»ull2 which implies that —(z — u, Bju) > /3,-||B,-u||2.
On the other hand, (z—u, Bju) > 0 fromu € VI(C, B;). So, we
obtain u € B;'0; that is, VI(C, B;) ¢ B; 0. Therefore, B;'0 =
VI(C, B;) for all i € I. Now suppose that F = (),.; B;'0+0
instead of the condition (i) and C,, = {z € C : ¢(z,y,) <
¢(z, x,,)}. By the argument mentioned above and Remark 10,
Theorems 11 and 12 hold under the conditions (i) and (ii) and
we get the result of [19].

Remark 14. We know that, for a continuously Fréchet dif-
ferentiable and convex functional f on a Banach space E, if
Vf is Lipschitz continuous with constant 1/«, then Vf is a-
inverse strongly monotone operator; see [2, 19]. So, we can
apply Theorems 11 and 12 and Remark 13 to such a functional;
see [19].

5. The Proximal Point Algorithm

Let E be a strictly convex, reflexive, and smooth Banach space,
T ¢ E x E* a maximal monotone operator with T7'0#0,
r > 0,and Ax = J(x — J,x) for all x € E, where J, is the
resolvent of T'. Then, A is well defined as a mapping of E into
E” forall ¥ > 0. We also have

VI(E, A) =T "0,
(58)
(x —u, Ax) > ||Ax||2 Vx € E,u e T0.



In fact, VI(E, A) = T '0sinceu € T'0is equivalent to J.u =
uwand Au = 0. Let x € Eand u € T7'0. Since (1/7)](x —
J,x) € T],x and 0 € Tu, we have (J,x — u, J(x — ], x)) =
0 which implies that (x — u, Ax) > [|Ax|* By Theorem 8
and Remark 10, we get the following result using the index
mapping which satisfies the condition (NST).

Theorem 15. Let I be a countable set, E a 2-uniformly convex
Banach space whose norm is uniformly Gateaux differentiable,
and {T};c; a family of maximal monotone operators of E into
E* suchthat F = (g Ti_IO #0. Let {r,,} be a sequence in ]0, co|
withlim inf, | r, > 0and{A,},cy a sequence in 0, ool such
that inf, A, > 0 and inf,(2¢; — A,) > 0, where ¢, is the
constant in Theorem 2. Let x € E and {x,,},c a sequence in E
generated by

X, = X,
o= T (2, = AJ (3, = TF0x,)),
C,={z€E:¢(zp,) < d(zx,)} (59)
Q,=1{z€E:{(x,-z]x-Jx,) 20},

X1 = g ng,X

for each n € N, where the index mappingi : N — I satisfies

the condition (NST) and ]rTrf(") is the resolvent of Ty, Then, {x,}
converges strongly to ITpx.

Proof. Suppose that A,x = J(x — ]rTn"(”)x) for every n € N and
x € E in Theorem 8. Then, we have that A, is a mapping of
E into E* with [,y VI(E, A,)) = F #0, the condition (iii) is
satisfied with «,, = 1 for all n € N, and the conditions (ii) and
(iv) hold by A,z = O forallm € Nand all z € F. Let {z,}
be a bounded sequence in E, z € F, and {r,} c]0,co[ with
lim inf r, > 0. Assume that

n— 00

nango ||zﬂ+1 - Zn“ = nll»ngo ||Zn - ]_1 (]Zn )

(60)

Jim [[A,z, - A,z] = 0.

By the condition (NST), there exists a subsequence {an} of
{z,} such that, for any i € I, there is M; € N withi €
{ing),i(my + 1),...,i(n + M; — 1)} for all sufficiently large
k € N. Let z, —u and i € I. As in the proof of Theorem 11,
there exists j, € {0,1,...,M; — 1} such that i(n; + j;) = i
for every sufficiently large k € N and we get z — u. Let
(v,v") € T;. Since

. 1
<]r”k*jk Z”k+jk Vs r

et i

Myt ji

Ti *
- i >
](Z”k+lk ]rnk+jkz"k+1k) Y > =0

T
Zijy T

i
z .
]rnkﬂ'k Mt Jk

lim =0,

k— o0

(61)
we obtain

(u=v,—v") >0 (62)
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for each (v,v*) € T;. As T; is a maximal monotone operator,
u € T;'0 for every i € I. So, we get u € F. Therefore, the
condition (v) holds. So, we get conclusion by Theorem 8 and
Remark 10. O

As in the proof of Theorem 15, we get the following result
from Theorem 9 and Remark 10.

Theorem 16. Assume that E, I, {T;}, F, {r,}, {A,}}, ¢, i, and

];Fn“"’ are the same as Theorem 15. Let x € E and let {x,} be a
sequence in E generated by

X, = X,
V=T (020 = A (3, = TF0x,)),
Co- fzcEig(ay)<d(ax)l, ()
Q= 1z € E: (x, -2 (x-x,)) >0},
Xn+1 = Pcannx
for each n € N. Then, {x,} converges strongly to Ppx.
Let f: E — ]—00, 00] be a proper, lower semicontinuous,

and convex function. Then, it is known that the subdifferen-
tial Of of f defined by

of (x) = {x" € E": f(y)
> f(x)+{(y-x,x")Vy e E}

(64)

for all x € E is a maximal monotone operator [31, 32].
Moreover, when E is strictly convex, reflexive, and smooth,
we know that, for the resolvent of 0f,

of . . iy~ olP
I/ x = arﬁgﬁln (f () + o Iy - =] ) (65)

for every r > 0 and x € E and 9f '0 = argmin . f(y); see
[21] for more details. Now, we have the following results from
Theorems 15 and 16.

Theorem 17. Let I be a countable set, E a 2-uniformly convex
Banach space whose norm is uniformly Gateaux differentiable,
and {f;};e; a family of proper, lower semicontinuous, and
convex functions of E into ] — 00,00] such that F =
Nic; argmin yepJi(y)#0. Let {r,} be a sequence in ]0,00]
withlim inf, _ 1, > 0and {A,}, ey a sequence in 0, ool such
that inf, A, > 0 and inf,\(2¢; — A,) > 0, where ¢, is the
constant in Theorem 2. Let x € E and let {x,},c be a sequence
in E generated by

X, =X,
) 1 2
u, = argmin (fi(n) () + 2—")’ = x| >’
y€E Tn

Yn = ]_1 (Ixn - /\n] (xn - un))’
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Co={z€E:¢(zp,) <¢(zx,)},
Q,={z€E:{(x,—zJx-]x,) >0},

Xn+1 = Hc,,nan
(66)

for each n € N, where the index mappingi : N — I satisfies
the condition (NST). Then, {x,} converges strongly to ITpx.

Theorem 18. Assume that E, I, {f;}, F, {r,.}, {A,.}, ¢, and i are
the same as Theorem 17. Let x € E and let {x,} be a sequence
in E generated by

X =X,

N
Il

. 1
= argmin (i) )+ 51y =)
y€E Tn

o= T % = AJ (3, = 1)) (67)
Co=1{z€E:¢(z,y,) < ¢(zx,)},
Q= {z€E: (x,~2](x-x,)) 20},

Xn+1 = Pcannx

for each n € N. Then, {x,} converges strongly to Ppx.

At the end of this section, we make a remark about a
result of the problem of image recovery due to [33, 34]. Let
ic be the indicator function of a nonempty closed convex
subset C of E. We know that i : E — ] — 00, 00[ is proper
lower semicontinuous and convex and, for a nonempty closed
convex subset C of a strictly convex, reflexive, and smooth
Banach space E, (diz)'0 = C and ]ficx = Po(x) for every
r > 0and x € E;see [I5]. So, when f; = ic, for nonempty
closed convex subset C; of E for every j € I with [),.;C; #0
in Theorems 17 and 18, we get the strong convergence to a
common point of {C;} ;.
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