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We study the pricing problem for convertible bonds via backward stochastic differential equations (BSDEs). By virtue of reflected
BSDEs and Malliavin derivatives, we establish the formulae for the fair price of convertible bonds and the hedging portfolio
strategy explicitly. We also obtain the optimal conversion time when there is no dividends-paying for underlying common stocks.
Furthermore, we consider the case that the loan rate is higher than riskless interest rate in a financial market, and conclude that it
does not affect the price of convertible bonds actually. To illustrate our results, some numerical simulations are given and discussed
at last.

1. Introduction

After it was first issued byAmericanNEWYORKERIECom-
pany in 1843, the convertible bond is becoming one of the
most important financial instruments for companies to raise
capital fund nowadays. Generally speaking, a convertible
bond is a kind of financial derivatives that gives holders the
right to convert it to a specified number of shares of common
stocks by forgoing future coupon and principal payments.
Though a convertible bond is a hybrid security consisting of
a straight bond and a call on the underlying stocks formally,
various characteristics make it impossible to decouple the
stock option from the riskless part. Therefore, how to price
convertible bonds fairly attracts the interests of worldwide
economists and mathematicians.

Theoretical study for the fair prices of convertible bonds
first appeared in the 1960s. The main idea is that the price of
convertible bonds should be equal to the present discounting
of the maximum of its value as an ordinary bond or its value
in common stocks (after conversion) at some time point in
the future. This method or a slight modification thereby was
employed by Poensgen [1, 2], Baumol et al. [3], Weil et al. [4],
and so on. Later, the prices of convertible bonds are evaluated
by the celebrated Black-Scholes formula as contingent claims

on firm values, since the fundamental paper worked by Black
and Scholes [5] for pricing financial derivatives was published
in 1973. There is also rich literature along this line, for exam-
ple, Ingersoll Jr. [6], Brennan and Schwartz [7, 8], in which
authors took firmvalues as variables that determine the prices
of convertible bonds, while in McConnell and Schwartz [9],
Ho and Pfeffer [10] and Tsiveriotis and Fernandes [11], a
convertible bond is viewed and valued as a derivative of the
underlying equity, which is commonly the stocks of issuing
firm.

However, all models mentioned above attempted to
give convertible bonds fair prices by solving some partial
differential equations (PDEs), which are originally devel-
oped by Black and Scholes [5]. As we know, nonlinear
backward stochastic differential equations (BSDEs), which
was introduced by Pardoux and Peng [12] and Duffie and
Epstein [13] independently, is another powerful tool to price
contingent claims. For a BSDE coupled with a forward
SDE, Peng [14] gave a probabilistic interpretation for a
large kind of the second order quasilinear partial differential
equations. This result generalized the well-known Feynman-
Kac formula to a nonlinear case. El Karoui et al. [15] gave
some important properties of BSDEs and their applications
to optimal controls and financial mathematics, such as
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European option pricing problem in the constraint case.They
also investigated Malliavin derivatives of solutions to BSDEs,
which is a derivative defined in a weak sense. Since the
price of convertible bonds should be always greater than the
conversion value, it corresponds to the solution of a new type
of backward equation called reflected BSDEs. An increasing
process is introduced to keep the solution staying above a
given stochastic process, called the obstacle. Bielecki et al.
[16] employed doubly reflected BSDEs to price convertible
bonds via decomposing them into bond components and
option components. Throughout this paper, however, we
attempt to evaluate convertible bonds by taking them as
whole contingent claims and introduce a risk neutralmeasure
under which the prices of convertible bonds are equal to
the supreme discounted expected value of future payoff. In
fact, the existence and uniqueness of such a measure is one
of the most important reasons that we can adapt BSDEs
method for pricing purpose. Moreover, inspired by El Karoui
et al. [17], we also discuss the case that the loan rate is
higher than riskless interest rate, which is never dealt with
before. Moreover, to validate the theory proposed in this
paper, we do somenumerical simulations.The computation is
closely dependent on probabilistic or analytic representation
of solutions to BSDEs, whereas, in another paper [18], the
authors focused on evaluating the corresponding PDEs via
some numerical methods, in order to give out the prices of
convertible bonds. Therefore, our approach is different from
[18] and has distinctive features.

The rest of this paper is organized as follows. We intro-
duce some key characteristics of a convertible bond and
present some properties of BSDEs, as well as reflected BSDEs,
and the Malliavin calculus in Section 2. In Section 3, we
formulate the pricing model for convertible bonds and give
formulae for the price and portfolio strategy. Moreover, we
obtain an important fact of convertible bonds related to the
optimal conversion time. In Section 4, we study the problem
with higher loan rate by virtue of properties of convex
reflected BSDEs. Some numerical simulations with constant
coefficients are illustrated in Section 5. The last section is
devoted to conclude the novelty of this paper and discuss the
future research work in this field.

2. Preliminaries

In this section, let us first describe convertible bonds, and
then recall the BSDEs, including its Malliavin calculus.
Moreover, we will introduce the reflected BSDEs and their
properties as preliminaries of solving our problem.

2.1. A Convertible Bond Indenture Agreement. Generally
speaking, a convertible bond indenture agreement declares
theexpiry date 𝑇 before which a holder can convert the bond
to a specified number of common stocks. The number of
shares of common stocks that can be obtained upon the
surrender of one share of convertible bond is specified by
conversion ratio 𝐶. Otherwise, say, a holder never exercises
the convertible bond; he can get the aggregate balloon
payment which is equal toface price 𝐹 according to the

agreement at date 𝑇. Besides, it usually contains put term
that allows an investor to choose holding the convertible
bond or putting it to the issuer for a specified put value on
each prefixed put date and call term that, on the prefixed
call date, if the issuer wants to call the convertible bonds, an
investor must elect to receive either the cash call price or the
conversion value of convertible bonds.

2.2. Backward Stochastic Differential Equations. Let (Ω,F, 𝑃)
be a completed probability space endowed with filtration
{F
𝑡
; 0 ≤ 𝑡 ≤ 𝑇}, which is generated by a 𝑑-dimensional

standard Brownian motion {𝑊
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} defined on the

space and satisfies the usual conditions. Denote | ⋅ | as the
Euclidean normonR𝑛. For convenience, we use the following
notations throughout this paper:

L
2
(F
𝑇
,R
𝑚
)

={𝜉 is a R
𝑚-valued F

𝑇
-measurable randomvariable

s.t. E (𝜉


2

) < +∞} ,

L
2
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𝑚
)

= { {𝜑
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is a R
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𝑇
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2
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S
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F (0, 𝑇;R
𝑚
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= { {𝜓
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is a R

𝑚-valued adapted process

s.t. E( sup
0≤𝑡≤𝑇

𝜓𝑡


2

) < +∞} .

(1)

Consider a 1-dimensional BSDE:

−𝑑𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
, 𝑍
𝑡
) 𝑑𝑠 − 𝑍

𝑡
𝑑𝑊
𝑡
,

𝑌
𝑇
= 𝜉,

(2)

where the data
𝜉 : Ω → R,

𝑓 : Ω × [0, 𝑇] ×R ×R
𝑑
→ R

(3)

satisfy the following standard conditions.

Assumption 1. We assume that

(1) 𝜉 ∈L2(F
𝑇
,R);

(2) 𝑓(⋅, 𝑦, 𝑧) ∈ L2F(0, 𝑇;R) for any (𝑦, 𝑧) ∈ R × R𝑑, and
there exists a constant𝐾 > 0 such that


𝑓 (𝑡, 𝑦, 𝑧) − 𝑓 (𝑡, 𝑦


, 𝑧

)

≤ 𝐾 (


𝑦 − 𝑦

+

𝑧 − 𝑧

) , a.s.,

∀ (𝑦, 𝑧) , (𝑦

, 𝑧

) ∈ R ×R

𝑑
.

(4)



Abstract and Applied Analysis 3

Thus, (1) admits a unique solution pair {(𝑌
𝑡
, 𝑍
𝑡
), 0 ≤ 𝑡 ≤

𝑇} ∈ S2F(0, 𝑇;R) × L2F(0, 𝑇;R
𝑑
) from Pardoux and Peng

[12]. Here let us recall the comparison theorem for BSDEs
in El Karoui et al. [15], which will be used repeatedly in the
sequel.

Theorem 2. Let (𝜉1, 𝑓1) and (𝜉2, 𝑓2) be two standard data of
BSDEs, and let (𝑌1, 𝑍1) and (𝑌2, 𝑍2) be the associated square-
integrable solutions. We suppose that

(i) 𝜉1 ≥ 𝜉2, 𝑑𝑃 𝑎.𝑠.;
(ii) 𝑓1(𝑡, 𝑌2

𝑡
, 𝑍
2

𝑡
) ≥ 𝑓
2
(𝑡, 𝑌
2

𝑡
, 𝑍
2

𝑡
), 𝑑𝑃 ⊗ 𝑑𝑡 a.s., 𝑎.e.

Then we have that a.s. for any time 𝑡 ∈ [0, 𝑇], 𝑌1
𝑡
≥ 𝑌
2

𝑡
.

Moreover, [15] also present the Malliavin derivatives of
solutions to BSDEs. Denote by S the space consisting of
random variables in the form

𝜉 = 𝜑 (𝑊(ℎ
1
) , . . . ,𝑊 (ℎ

𝑘
)) , (5)

where 𝜑 ∈ 𝐶
∞

𝑏
(R𝑘,R), ℎ1, . . . , ℎ𝑘 ∈ L2F(0, 𝑇;R

𝑑
) and

𝑊(ℎ
𝑖
) = ∫
𝑇

0
ℎ
𝑖

𝑠
𝑑𝑊
𝑠
. Define the Malliavin derivative on S as

𝐷
𝜃
𝜉 =

𝑘

∑

𝑗=1

𝜕
𝑥𝑗
𝜑 (𝑊(ℎ

1
) , . . . ,𝑊 (ℎ

𝑘
)) ℎ
𝑗

𝜃
, 0 ≤ 𝜃 ≤ 𝑇.

(6)

Nualart [19] proved that the operator 𝐷 on S has a closed
extension to the space D

1,2
, the closure of S with respect to

the norm ‖ ⋅ ‖D1,2
, which is defined by

𝜉
D1,2

= {E [
𝜉


2

+ ∫

𝑇

0

𝐷𝜃𝜉


2

𝑑𝜃]}

1/2

. (7)

We denote by𝐷𝑖
𝜃
𝜉, 1 ≤ 𝑖 ≤ 𝑑 the 𝑖-th component of𝐷

𝜃
𝜉.

Let L𝑎
1,2
(0, 𝑇;R𝑚) be the set of R𝑚-valued progressively

measurable processes {𝑢(𝑡, 𝜔), 0 ≤ 𝑡 ≤ 𝑇, 𝜔 ∈ Ω} such that
(1) for all 𝑡 ∈ [0, 𝑇], 𝑢(𝑡, ⋅) ∈ (D

1,2
)
𝑚;

(2) (𝑡, 𝜔) → 𝐷𝑢(𝑡, 𝜔) ∈ (L2F(0, 𝑇;R))
𝑑×𝑚 admits a

progressively measurable version;

(3) ‖𝑢‖2L𝑎1,2 = E[∫
𝑇

0
|𝑢(𝑡)|
2
𝑑𝑡 + ∬

𝑇

0
|𝐷
𝜃
𝑢(𝑡)|
2
𝑑𝜃 𝑑𝑡] < +∞.

Under these notions, for BSDE (2) with standard data, we
make the following assumption in addition.

Assumption 3. Consider

(1) 𝜉 ∈ D
1,2

and E(∫
𝑇

0
|𝐷
𝜃
𝜉|
2
𝑑𝜃) < +∞.

(2) 𝑓 is continuously differentiable in (𝑦, 𝑧) and its partial
derivatives are bounded.

(3) For each (𝑦, 𝑧), 𝑓(⋅, 𝑦, 𝑧) is in L𝑎
1,2
(0, 𝑇;R) with the

Malliavin derivative denoted by 𝐷
𝜃
𝑓(𝑡, 𝑦, 𝑧); there

exists a constant 𝐿 > 0 such that

𝐷
𝜃
𝑓 (𝑡, 𝑦

1
, 𝑧
1
)−𝐷
𝜃
𝑓 (𝑡, 𝑦

2
, 𝑧
2
)

≤𝐿 (


𝑦
1
− 𝑦
2
+

𝑧
1
− 𝑧
2
) ,

∀ (𝑦
1
, 𝑧
1
) , (𝑦
2
, 𝑧
2
)∈ R ×R

𝑑
, 𝑡∈ [0, 𝑇] .

(8)

(4) The solution (𝑌
𝑡
, 𝑍
𝑡
) satisfies

E∬
𝑇

0

𝐷𝜃𝑓 (𝑡, 𝑌𝑡, 𝑍𝑡)


2

𝑑𝜃 𝑑𝑡 < +∞. (9)

Then we have a relationship between the first component
{𝑌
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} and the second one {𝑍

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} of

solution pair to BSDE (2), which is described by the following
theorem.

Theorem 4. Let Assumption 3 hold. For each 1 ≤ 𝑖 ≤ 𝑑, a
version of {(𝐷𝑖

𝜃
𝑌
𝑡
, 𝐷
𝑖

𝜃
𝑍
𝑡
), 0 ≤ 𝜃, 𝑡 ≤ 𝑇} is given by

𝐷
𝑖

𝜃
𝑌
𝑡
= 0, 𝐷

𝑖

𝜃
𝑍
𝑡
= 0, 0 ≤ 𝑡 < 𝜃 ≤ 𝑇;

𝐷
𝑖

𝜃
𝑌
𝑡
= 𝐷
𝑖

𝜃
𝜉 + ∫

𝑇

𝑡

[𝜕
𝑦
𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)𝐷
𝑖

𝜃
𝑌
𝑠
+𝜕
𝑧
𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)𝐷
𝑖

𝜃
𝑍
𝑠

+𝐷
𝑖

𝜃
𝑓 (𝑠, 𝑌

𝑠
, 𝑍
𝑠
)] 𝑑𝑠 − ∫

𝑇

𝑡

𝐷
𝑖

𝜃
𝑍
𝑠
𝑑𝑊
𝑠
,

0 ≤ 𝜃 ≤ 𝑡 ≤ 𝑇.

(10)

Moreover, {𝐷
𝑡
𝑌
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} defined by (10) is a version of

{𝑍
𝑡
, 0 ≤ 𝑡 ≤ 𝑇}.

2.3. Reflected Backward Stochastic Differential Equations. A
reflected BSDE is a special kind of BSDEs, where the solution
is forced to stay above a given stochastic process, called the
obstacle. Let us introduce a 1-dimensional reflected BSDE
with the “obstacle” {𝑆

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) 𝑑𝑠 + 𝐾

𝑇
− 𝐾
𝑡
− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝑊
𝑠
, (11)

where the standard data (𝜉, 𝑓, 𝑆) satisfies the same conditions
as that in Assumption 1, and {𝑆

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is a R-

valued progressively measurable continuous process satisfy-
ing E(sup

0≤𝑡≤𝑇
(𝑆
+

𝑡
)
2
) < ∞, and 𝑆

𝑇
≤ 𝜉 a.s.

In El Karoui et al. [17], the authors proved the existence
and uniqueness of solution triple {(𝑌

𝑡
, 𝑍
𝑡
, 𝐾
𝑡
), 0 ≤ 𝑡 ≤ 𝑇}

to reflected BSDE (11), and they also gave some properties
of reflected BSDEs. Now we emphasize one of them which
announces that the square-integrable solution {𝑌

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}

corresponds to the value function of an optimal stopping time
problem.

Proposition 5. Let {(𝑌
𝑡
, 𝑍
𝑡
, 𝐾
𝑡
), 0 ≤ 𝑡 ≤ 𝑇} be the solution of

(11). Then for each 𝑡 ∈ [0, 𝑇],

𝑌
𝑡
= ess sup

V∈T𝑡
E [∫

V

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) 𝑑𝑠+𝑆V1{V<𝑇}+𝜉1{V=𝑇}F𝑡] ,

(12)

whereT is the set of all stopping times dominated by 𝑇, and

T
𝑡
= {V ∈ T; 𝑡 ≤ V ≤ 𝑇} . (13)
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Moreover, the optimal stopping time is 𝐷
𝑡
= inf{𝑡 ≤ 𝑢 ≤ 𝑇 :

𝑌
𝑢
= 𝑆
𝑢
} with the convention that 𝐷

𝑡
= 𝑇 if 𝑌

𝑢
> 𝑆
𝑢
, 𝑡 ≤ 𝑢 ≤

𝑇.

We give some further explanation of {𝐾
𝑡
}, a particular

component of solution triple to reflected BSDEs, which is a
continuous and increasing process such that𝐾

0
= 0 and

∫

𝑇

0

(𝑌
𝑡
− 𝑆
𝑡
) 𝑑𝐾
𝑡
= 0. (14)

Intuitively, 𝑑𝐾
𝑡
/𝑑𝑡 represents the amount of “push upward”

that we add to−𝑑𝑌
𝑡
/𝑑𝑡, so that {𝑌

𝑡
} keeps above the “obstacle”

{𝑆
𝑡
}. Equation (14) says that the push is minimal, in the sense

that we push only when the constraint is saturated, that is,
when 𝑌

𝑡
= 𝑆
𝑡
.

3. Pricing Formula for Convertible Bonds

In this section,we formulate the pricingmodel for convertible
bonds and give the optimal conversion timewhich plays a key
role in the following discussion.

Consider two kinds of assets in ourmodel: one is the bank
account, whose process is

𝑑𝐵
𝑡
= 𝑟
𝑡
𝐵
𝑡
𝑑𝑡, (15)

and the other is the stock of a company with price process

𝑑𝑃
𝑡
= 𝜇
𝑡
𝑃
𝑡
𝑑𝑡 + 𝜎

𝑡
𝑃
𝑡
𝑑𝑊
𝑡
. (16)

Here, 𝑟
𝑡
, 𝜇
𝑡
, and 𝜎

𝑡
are the riskless interest rate, the expected

interest rate, and volatility rate of stocks, respectively, and
{𝑊
𝑡
, 𝑡 ≥ 0} is a 1-dimensional standard Brownian motion

under probability measure 𝑃. From now on, {F
𝑡
} stands for

the natural filtration generated by this Brownian motion.
We also assume that the financial market as well as

convertible bonds satisfies the following.

Assumption 6. In the financial market,

(1) it is perfect with no transactions costs, no taxes, and
equal access to information for all investors;

(2) there are no dividend payments or other disburse-
ments to common stockholders;

(3) the convertible bonds are not allowed to be called or
putted, and the issuer will not default;

(4) the convertible bonds can be converted at any time
before maturity date 𝑇, and the conversion ratio 𝐶 is
a constant;

(5) the riskless interest rate 𝑟
𝑡
, expected interest rate 𝜇

𝑡
,

and volatility rate 𝜎
𝑡
of stocks are all deterministic

bounded functions with respect to 𝑡; 𝜎
𝑡
is invertible

and the inverse 𝜎−1
𝑡

is also bounded.

Thus inspired by El Karoui et al. [20], for each time 𝑡,
pricing a convertible bond is the choice of stopping time V ∈
T
𝑡
with payoff𝐶𝑃V on exercise if V < 𝑇 and 𝜉 := max(𝐶𝑃

𝑇
, 𝐹)

if V = 𝑇, under the constraint that the price at time 𝑡 should
be no less than 𝐶𝑃

𝑡
. Denote

�̃�
𝑠
= 𝐶𝑃
𝑠
1
{𝑠≤𝑇}

+ 𝜉1
{𝑠=𝑇}

. (17)

Then for any given 𝑡 ∈ [0, 𝑇] and stopping time V ∈ T
𝑡
,

there exists unique hedging portfolio strategy (𝑋
𝑠
(V, �̃�V), 𝜋𝑠

(V, �̃�V)) ∈ S2F ×L2F, denoted also by (𝑋V
𝑠
, 𝜋

V
𝑠
), that replicates

�̃�V. In fact, it corresponds to a classical BSDE associated with
the terminal time V and terminal value �̃�V:

𝑑𝑋
V
𝑠
= [𝑟
𝑠
𝑋

V
𝑠
+ (𝜇
𝑠
− 𝑟
𝑠
) 𝜋

V
𝑠
] 𝑑𝑠 + 𝜎

𝑠
𝜋
V
𝑠
𝑑𝑊
𝑠
,

𝑋
V
V = �̃�V.

(18)

Set

𝑍
V
𝑠
= 𝜎
𝑠
𝜋
V
𝑠
, 𝜃

𝑠
= 𝜎
−1

𝑠
(𝜇
𝑠
− 𝑟
𝑠
) . (19)

Thus (18) can be rewritten as

−𝑑𝑋
V
𝑠
= − (𝑟

𝑠
𝑋

V
𝑠
+ 𝜃
𝑠
𝑍
V
𝑠
) 𝑑𝑠 − 𝑍

V
𝑠
𝑑𝑊
𝑠
,

𝑋
V
V = �̃�V.

(20)

Then, for rationality and fairness, the price of convertible
bond at time 𝑡 is given by a right-continuous adapted process
{𝑋
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} satisfying

𝑋
𝑡
= ess sup

V∈T𝑡
𝑋
𝑡
(V, �̃�V)

= ess sup
V∈T𝑡

E [∫
V

𝑡

− (𝑟
𝑠
𝑋

V
𝑠
+ 𝜃
𝑠
𝑍
V
𝑠
) 𝑑𝑠 + �̃�V | F𝑡] .

(21)

By Proposition 5, it follows that the price process {𝑋
𝑡
, 0 ≤

𝑡 ≤ 𝑇} coincides with the solution of a reflected BSDE.

Theorem 7. Let Assumption 6 hold. Then the price process
{𝑋
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} of convertible bond satisfies the following

reflected BSDE with “obstacle” {𝐶𝑃
𝑡
, 0 ≤ 𝑡 ≤ 𝑇}:

𝑋
𝑡
= 𝜉 − ∫

𝑇

𝑡

(𝑟
𝑠
𝑋
𝑠
+ 𝜃
𝑠
𝑍
𝑠
) 𝑑𝑠 + 𝐾

𝑇
− 𝐾
𝑡
− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝑊
𝑠
.

(22)

Moreover, the stopping time 𝐷
𝑡
= inf{𝑡 ≤ 𝑠 ≤ 𝑇 : 𝑋

𝑠
=

𝐶𝑃
𝑠
} is the execution time of convertible bond; that is,

𝑋
𝑡
= ess sup

V∈T𝑡
𝑋
𝑡
(V, �̃�V) = 𝑋𝑡 (𝐷𝑡, �̃�𝐷𝑡) . (23)

Generally, a triple {(𝑥
𝑡
, 𝑧
𝑡
, 𝑘
𝑡
), 0 ≤ 𝑡 ≤ 𝑇} satisfying

(22) with 𝑥
𝑡
≥ 𝐶𝑃

𝑡
, 0 ≤ 𝑡 ≤ 𝑇 (but not necessarily

∫
𝑇

0
(𝑥
𝑡
− 𝐶𝑃
𝑡
)𝑑𝑘
𝑡
= 0) is called a superhedging strategy for

the convertible bond (𝐶𝑃
𝑡
, 𝜉). Consequently, the price 𝑋

𝑡
is

equal to the so-called upper price defined as the smallest
of the superhedging strategies for (𝐶𝑃

𝑡
, 𝜉). Moreover, the

continuous and increasing process {𝐾
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} indicates

the least amount of wealth that is needed extra in order to
keep 𝑋

𝑡
≥ 𝐶𝑃
𝑡
, 0 ≤ 𝑡 ≤ 𝑇. From the viewpoint of finance,
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{𝐾
𝑡
} can be interpreted as cumulative consumption process

during the hedging, and from (23), it may happen to consume
only after conversion.

Recall that for any American call option without divi-
dends-paying, the optimal execution time is always the
maturity date. So its price is equal to that of a corresponding
European call option. In fact, the convertible bonds possess a
similar property.

Theorem 8. Let Assumption 6 hold. Then the fair price of
convertible bond is given by

𝑋
𝑡
= E [∫

𝑇

𝑡

− (𝑟
𝑠
𝑋
𝑠
+ 𝜃
𝑠
𝑍
𝑠
) 𝑑𝑠 + 𝜉 | F

𝑡
]

= E
𝑃
[𝑒
−∫
𝑇

𝑡
𝑟𝑠𝑑𝑠𝜉 | F

𝑡
] ,

(24)

where 𝑃 is a risk neutral measure defined by

𝑑𝑃

𝑑𝑃
= exp{−∫

𝑇

0

𝜇
𝑡
− 𝑟
𝑡

𝜎
𝑡

𝑑𝑊
𝑡
−
1

2
∫

𝑇

0

(𝜇
𝑡
− 𝑟
𝑡
)
2

𝜎
2

𝑡

𝑑𝑡} .

(25)

Moreover, the optimal execution time for convertible bond
is exactly the maturity date 𝑇; that is, the convertible bonds
should not be converted in advance.

Proof. We begin with the first equality of (24). Noting (22)
and {𝑋

𝑡
, 0 ≤ 𝑡 ≤ 𝑇} given by (24) satisfying

−𝑑𝑋
𝑡
= − (𝑟

𝑡
𝑋
𝑡
+ 𝜃
𝑡
𝑍
𝑡
) 𝑑𝑡 − 𝑍

𝑡
𝑑𝑊
𝑡
,

𝑋
𝑇
= 𝜉,

(26)

it suffices to prove that

𝑋
𝑡
≥ 𝐶𝑃
𝑡
, 𝑑𝑃 ⊗ 𝑑𝑡, a.s., a.e. (27)

Consider another BSDE:

−𝑑𝑋


𝑡
= − (𝑟

𝑡
𝑋


𝑡
+ 𝜃
𝑡
𝑍


𝑡
) 𝑑𝑡 − 𝑍



𝑡
𝑑𝑊
𝑡
,

𝑋


𝑡
= 𝐶𝑃
𝑇
.

(28)

It is obvious that (𝐶𝑃
𝑡
, 𝜎
𝑡
𝐶𝑃
𝑡
) is the unique solution of (28),

where𝜎
𝑡
is the volatility rate of stock. Since 𝜉 ≥ 𝐶𝑃

𝑇
, the claim

(27) follows fromTheorem 2. And the second equality comes
from Girsanov’s theorem directly.

The second assertion can be confirmed byTheorem 7 due
to (24). This completes the proof.

FromTheorem 8, we can see that if there is no dividends-
paying for underlying stocks, then, as rational investors,
the best strategy is to keep the convertible bonds until
maturity date 𝑇 and decide whether to convert them or not
by comparing the face value with conversion value at that
time. Besides, there is no consumption throughout the whole
process.

As mentioned in the Introduction, the risk neutral mea-
sure 𝑃 plays a key role in the pricing of financial derivatives

due to the fundamental theorem of asset pricing. From (21)
and (25), it follows that

𝑋
𝑡
= ess sup

V∈T𝑡
E
𝑃
[𝑒
−∫
𝜏

𝑡
𝑟𝑠𝑑𝑠�̃�
𝜏
| F
𝑡
] . (29)

Equation (29) implies that the discounted fair price process
{𝑒
−∫
𝑡

0
𝑟𝑠𝑑𝑠𝑋
𝑡
} of convertible bond is exactly the Snell envelope

of discounted payoff process {𝑒−∫
𝑡

0
𝑟𝑠𝑑𝑠�̃�
𝑡
}. Then Theorem 8

tells us that it is equal to the conditional expectation of
𝑒
−∫
𝑇

0
𝑟𝑠𝑑𝑠�̃�
𝑇
in this case.

Remark 9. In fact, Theorem 8 is valid even when the coeffi-
cients 𝑟

𝑡
, 𝜇
𝑡
and 𝜎
𝑡
are random.The proof is similar as above.

Theorem I in [6] also obtained the same conclusion about
conversion time, whereas we adopt different methods.

4. Higher Loan Rate Case

In reality, the loan rate is usually higher than riskless interest
rate in a financial market. Therefore, in this section, we
discuss the pricing problem for convertible bonds under the
following assumption.

Assumption 10. The loan rate 𝑅
𝑡
is higher than riskless inter-

est rate 𝑟
𝑡
, which is also a deterministic bounded function

with respect to 𝑡.

Similar to the procedure in the above section, denote

𝑍
∗

𝑡
= 𝜎
𝑡
𝜋
∗

𝑡
, 𝜃

𝑡
= 𝜎
−1

𝑡
(𝜇
𝑡
− 𝑟
𝑡
) ,

𝑏 (𝑡, 𝑋
∗

𝑡
, 𝑍
∗

𝑡
) = − [𝑟

𝑡
𝑋
∗

𝑡
+ 𝜃
𝑡
𝑍
∗

𝑡
− (𝑅
𝑡
− 𝑟
𝑡
) (𝑋
∗

𝑡
− 𝜎
−1

𝑡
𝑍
∗

𝑡
)
−

] .

(30)

Then the fair price𝑋∗
𝑡
of convertible bond in this case satisfies

the following reflected BSDEwith “obstacle” {𝐶𝑃
𝑡
, 0 ≤ 𝑡 ≤ 𝑇}:

𝑋
∗

𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑏 (𝑠, 𝑋
∗

𝑠
, 𝑍
∗

𝑠
) 𝑑𝑠 + 𝐾

∗

𝑇
− 𝐾
∗

𝑡
− ∫

𝑇

𝑡

𝑍
∗

𝑠
𝑑𝑊
𝑠
.

(31)

Noting that the generator 𝑏 of (31) is convex, we have the
following result by virtue of the convex analysis method from
El Karoui et al. [17].

Theorem11. LetAssumptions 6 and 10 hold.Then the fair price
𝑋
∗

𝑡
of convertible bond is

𝑋
∗

𝑡
= ess sup {𝑋𝛽

𝑡
: 𝑟
𝑡
≤ 𝛽
𝑡
≤ 𝑅
𝑡
} , (32)

where 𝑋𝛽
𝑡
is the solution of the following reflected BSDE with

“obstacle” {𝐶𝑃
𝑡
, 0 ≤ 𝑡 ≤ 𝑇}:

𝑋
𝛽

𝑡
= 𝜉 − ∫

𝑇

𝑡

[𝛽
𝑠
𝑋
𝛽

𝑠
+ 𝜎
−1

𝑠
(𝜇
𝑡
− 𝛽
𝑠
) 𝑍
𝛽

𝑠
] 𝑑𝑠

+ 𝐾
𝛽

𝑇
− 𝐾
𝛽

𝑡
− ∫

𝑇

𝑡

𝑍
𝛽

𝑠
𝑑𝑊
𝑠
.

(33)
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Proof. Since 𝑏(𝑡, 𝑥, 𝑧) is convex with respect to 𝑥 and 𝑧, the
polar process 𝐵(𝑡, 𝛽

𝑡
, 𝛾
𝑡
) associated with 𝑏 is given by

𝐵 (𝑡, 𝛽
𝑡
, 𝛾
𝑡
) = inf
(𝑥,𝑧)

{𝑏 (𝑡, 𝑥, 𝑧) + 𝛽
𝑡
𝑥 + 𝛾
𝑡
𝑧}

= inf
(𝑥,𝑧)

{(𝛽
𝑡
− 𝑟
𝑡
) 𝑥 + (𝑅

𝑡
− 𝑟
𝑡
) (𝑥 − 𝜎

−1

𝑡
𝑧)
−

+ (𝛾
𝑡
− 𝜃
𝑡
) 𝑧}

= inf
𝑧
{𝜎
−1

𝑡
(𝛽
𝑡
− 𝑟
𝑡
) 𝑧 + (𝛾

𝑡
− 𝜃
𝑡
) 𝑧}

(the second part gets its infimum when

𝑥 = 𝜎
−1

𝑡
𝑧)

=

{{

{{

{

0, when 𝜎−1
𝑡
(𝛽
𝑡
− 𝑟
𝑡
) + 𝛾
𝑡
− 𝜃
𝑡
= 0,

𝑟
𝑡
≤ 𝛽
𝑡
≤ 𝑅
𝑡
;

−∞, otherwise.
(34)

Thus, the unique solution of (31) is given by

𝑋
∗

𝑡
= ess sup {𝑋𝛽

𝑡
; 𝑟
𝑡
≤ 𝛽
𝑡
≤ 𝑅
𝑡
} , (35)

where𝑋𝛽
𝑡
is the solution of (33) corresponding to 𝛽.

Usually, it is not easy to determine the value of 𝛽 that
makes𝑋𝛽

𝑡
reach its essential supremum.However, comparing

(31) and (33), we find that they have the same solution when
𝛽
𝑡
= 𝑟
𝑡
, 0 ≤ 𝑡 ≤ 𝑇, under the constraint that

𝜎
−1

𝑡
𝑍
∗

𝑡
≤ 𝑋
∗

𝑡
𝑑𝑃 ⊗ 𝑑𝑡 a.s., a.e. (36)

Furthermore, the solution coincides with that of (26) by
Theorem 8. In fact, bymeans ofMalliavin calculus technique,
we have the following.

Lemma 12. Let Assumptions 6 and 10 hold. Then the solution
{(𝑋
𝑡
, 𝑍
𝑡
), 0 ≤ 𝑡 ≤ 𝑇} of (26) satisfies

𝜎
−1

𝑡
𝑍
𝑡
≤ 𝑋
𝑡
, 𝑑𝑃 ⊗ 𝑑𝑡 a.s., a.e. (37)

Proof. By Theorem 4, the version of {(𝐷
𝑢
𝑋
𝑡
, 𝐷
𝑢
𝑍
𝑡
), 0 ≤ 𝑢 ≤

𝑡 ≤ 𝑇}, where {(𝑋
𝑡
, 𝑍
𝑡
), 0 ≤ 𝑡 ≤ 𝑇} is the solution of (26), is

given by

−𝑑𝐷
𝑢
𝑋
𝑡
= − (𝑟

𝑡
𝐷
𝑢
𝑋
𝑡
+ 𝜃
𝑡
𝐷
𝑢
𝑍
𝑡
) 𝑑𝑡 − 𝐷

𝑢
𝑍
𝑡
𝑑𝑊
𝑡
,

𝐷
𝑢
𝑋
𝑇
= 𝐷
𝑢
𝜉.

(38)

And {𝐷
𝑡
𝑋
𝑡
, 0 ≤ 𝑡 ≤ 𝑇} is a version of {𝑍

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}. So (37)

is equivalent to

𝜎
−1

𝑡
𝐷
𝑡
𝑋
𝑡
≤ 𝑋
𝑡
𝑑𝑃 ⊗ 𝑑𝑡 a.s., a.e. (39)

Denote 𝑋𝑢
𝑡
= 𝜎
−1

𝑢
𝐷
𝑢
𝑋
𝑡
and 𝑍𝑢

𝑡
= 𝜎
−1

𝑢
𝐷
𝑢
𝑍
𝑡
for 0 ≤ 𝑢 ≤

𝑡 ≤ 𝑇. Then {(𝑋𝑢
𝑡
, 𝑍
𝑢

𝑡
), 0 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇} is the solution of

following BSDE:

−𝑑𝑋
𝑢

𝑡
= − (𝑟

𝑡
𝑋
𝑢

𝑡
+ 𝜃
𝑡
𝑍
𝑢

𝑡
) 𝑑𝑡 − 𝑍

𝑢

𝑡
𝑑𝑊
𝑡
,

𝑋
𝑢

𝑇
= 𝜎
−1

𝑢
𝐷
𝑢
𝜉.

(40)

Thus, by Theorem 2 for (40) and (26), if the terminal
condition satisfies

𝜎
−1

𝑡
𝐷
𝑡
𝜉 ≤ 𝜉 𝑑𝑃 ⊗ 𝑑𝑡 a.s., a.e., (41)

then (39) and (37) hold obviously. In fact, if we set 𝜉 =

𝑓(𝐶𝑃
𝑇
), where 𝑓(𝑥) = 𝐹 + (𝑥 − 𝐹)

+, then 𝑓 can be
approximated by 𝐶1 functions 𝑓

𝑛
as

𝑓
𝑛
(𝑥) = 𝑓 (𝑥) , for |𝑥 − 𝐹| ≥ 1

𝑛
,

0 ≤ 𝑓


𝑛
(𝑥) ≤ 1, ∀𝑥.

(42)

Thus we have

𝐷
𝑡
𝜉 = lim
𝑛→∞

𝐷
𝑡
𝑓
𝑛
(𝜉)

= 𝜒
[𝐹,∞)

(𝐶𝑃
𝑇
)𝐷
𝑡
(𝐶𝑃
𝑇
)

= 𝜒
[𝐹,∞)

(𝐶𝑃
𝑇
) ⋅ 𝐶𝑃
𝑇
⋅ 𝜎
𝑡
.

(43)

Since

𝐶𝑃
𝑇
= 𝐶𝑃
0
exp{∫

𝑇

0

(𝜇
𝑡
−
1

2
𝜎
2

𝑡
)𝑑𝑡 + ∫

𝑇

0

𝜎
𝑡
𝑑𝑊
𝑡
} , (44)

it follows that

𝐷
𝑡
(𝐶𝑃
𝑇
) = 𝐷

𝑡
(𝐶𝑃
0
exp{∫

𝑇

0

(𝜇
𝑡
−
1

2
𝜎
2

𝑡
)𝑑𝑡 + ∫

𝑇

0

𝜎
𝑡
𝑑𝑊
𝑡
})

= 𝐶𝑃
𝑇
⋅ 𝜎
𝑡
+ 𝐶𝑃
𝑇
𝐷
𝑡
(∫

𝑇

0

(𝜇
𝑡
−
1

2
𝜎
2

𝑡
)𝑑𝑡)

= 𝐶𝑃
𝑇
⋅ 𝜎
𝑡
.

(45)

Consequently, we get

𝜎
−1

𝑡
𝐷
𝑡
𝜉 = 𝜒
[𝐹,∞)

(𝐶𝑃
𝑇
) 𝐶𝑃
𝑇
≤ 𝐹 + (𝐶𝑃

𝑇
− 𝐹)
+

= 𝜉. (46)

This completes the proof.

Remark 13. Notice that (38) holds under the assumption that
𝑟
𝑡
, 𝜇
𝑡
, and 𝜎

𝑡
are deterministic.Therefore (5) in Assumption 6

is necessary.

Concluding all discussions above, we have themain result
of this paper.

Theorem 14. Let Assumptions 6 and 10 hold. Then the pricing
formula of convertible bond is not affected by higher loan rate
𝑅
𝑡
. The fair price 𝑋∗

𝑡
is given by (24). Moreover, the portfolio

strategy 𝜋∗
𝑡
is given by

𝜋
∗

𝑡
= 𝜋
𝑡
= 𝜎
−1

𝑡
𝐷
𝑡
𝑋
𝑡
= E
𝑃
[𝑒
−∫
𝑇

𝑡
𝑟𝑠𝑑𝑠𝜒
[𝐹,∞)

(𝐶𝑃
𝑇
) 𝐶𝑃
𝑇
| F
𝑡
] ,

(47)

where 𝑃 is defined as (25).
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Proof. Similar to the proof ofTheorem 8, the solution of (26)
coincides with that of reflected BSDE (33) with 𝛽

𝑡
= 𝑟
𝑡
. Thus,

by Lemma 12, it follows that 𝜎−1
𝑡
𝑍
𝑡
≤ 𝑋
𝑡
, a.s., a.e. for (33).

Further it has the same solution with (31) byTheorem 11.
In a word, the price𝑋∗

𝑡
of convertible bond is the solution

of (26) actually. Hence the first claim is true. At last, (47) can
be easily obtained by the proof of Lemma 12.

In fact, if all parameters in (24) and (47) are constants, we
can get the following explicit representation of fair price 𝑋∗

𝑡

and portfolio strategy 𝜋∗
𝑡
.

Corollary 15. Let the loan rate 𝑅
𝑡
, the riskless interest rate 𝑟

𝑡
,

and the volatility rate 𝜎
𝑡
be all constants.Then the fair price𝑋∗

𝑡

and portfolio strategy 𝜋∗
𝑡
are given by

𝑋
∗

𝑡
= 𝐶𝑃
𝑡
𝑁(𝑑
1
) − 𝐹𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑
2
) + 𝐹𝑒

−𝑟(𝑇−𝑡)
,

𝜋
∗

𝑡
= 𝐶𝑃
𝑡
𝑁(𝑑
1
) ,

(48)

where 𝑑
1
and 𝑑

2
are defined as

𝑑
1
=

ln (𝐶𝑃
𝑡
/𝐹) + (𝑟 + 𝜎

2
/2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,

𝑑
2
=

ln (𝐶𝑃
𝑡
/𝐹) + (𝑟 − 𝜎

2
/2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,

(49)

and 𝑁(𝑥) stands for the cumulation distribution function of
standard normal distribution.

Proof. By (24) and (47), the conclusion follows easily from
usual calculational techniques for classical probability. So we
just omit the details.

5. Numerical Simulation

In this section, we calculate hedging strategies at the initial
time 𝑡 = 0 explicitly in the case that all coefficients are
constants according to Corollary 15 and discuss the influence
of the following parameters, which can further illustrate our
results obtained in this paper. Here we fix 𝐶 = 4.5, 𝜇 = 0.11,
𝜎 = 0.30, and 𝑇 = 10 years throughout this section.

5.1.The Influence of Initial Stock Price 𝑃
0
. We set 𝑟 = 0.05 and

𝐹 = 1000 yuan, then Figure 1 depicts the influence of 𝑃
0
to

𝑋
∗

0
and 𝜋∗

0
. We find that the higher the initial stock price, the

higher the price of convertible bond, and one should putmore
money into the stockmarket for investment, correspondingly.
For example, when 𝑃

0
= 39.2 yuan, the price of convertible

bond is 619.6 yuan, and to hedge the risk of convertible bond,
one should invest 35.98 yuan into the stock market. When
𝑃
0
= 60 yuan, the price increases to 645.8 yuan and the

amount invested into stocks is 95.16 yuan.This coincides with
our intuition because the latter case seems to bring more
profit for investors.

5.2. The Influence of Riskless Interest Rate 𝑟. We set 𝑃
0
= 50

and 𝐹 = 1000 yuan and let riskless interest rate 𝑟 vary from
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Figure 4: The simulation for the price.

0.045 to 0.055. Figure 2 indicates that high riskless interest
rate depresses the price of convertible bond but provokes the
investment into the stockmarket. In fact, under this situation,
the price of convertible bond decreases because of the high
discounting rate; simultaneously investors tend to put more
money into the stock market.

5.3. The Influence of Face Price 𝐹. Figure 3 illustrates that
another factor, the face price, also makes positive effect on
the price of convertible bond. It is reasonable since the higher
the face price is, the more profits an investor gains at the
maturity date from the bond characteristic of convertible
bond.Therefore, the desire of investors to put money into the
stock market will be weakened at the same time.

From Figures 1, 2, and 3, we can see that the amount
invested into the stock market is always less than the total
wealth of an investor in the hedging portfolio, which confirms
our results obtained in Section 4.

5.4. The Simulation for the Price of Convertible Bond 𝑋∗
𝑡
.

Fixing 𝑃
0
= 50 yuan, 𝑟 = 0.05, and 𝐹 = 1000 yuan, Figure 4

gives out 4 times of simulations of the stock price process
and the corresponding price process of convertible bond,
according to (16) and (48), respectively. It shows that the price
of convertible bond is higher than the conversion value of it
throughout the expiry time and again the amount invested
into stocks is less than the total wealth of an investor in the
hedging portfolio. Therefore, for a rational investor, he just
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needs to hold the convertible bond and consider executing
the conversion right only at thematurity date, which has been
confirmed theoretically byTheorems 8 and 14.

6. Conclusion and Extension

It is the first attempt to take the difference of riskless interest
rate and loan rate into consideration when formulating
the pricing model for convertible bonds, to the authors’
knowledge. There are three distinctive features of our paper.
(1) We establish the pricing formula for convertible bonds
through reflected BSDEs, which introduce an increasing
process to push the price upwards of conversion value. (2)
Thanks to comparison theorem, we obtain the fair price and
hedging portfolio explicitly by degenerating reflected BSDEs
to BSDEs.We also conclude that the optimal conversion time
for convertible bonds is the maturity date as a byproduct.
(3) We prove an important fact for convertible bonds that
the fair price is not affected by the higher loan rate in
a financial market by Malliavin calculus. Besides, some
numerical simulations are given and discussed to illustrate
our conclusions.

In this paper, there are two main assumptions: one is that
the underlying stocks are without dividend, and the other
is that the convertible bonds are not allowed to be called
or putted. In order to apply our results into practice better,
we will try to relax the constraints to obtain more available
models in our future work.
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