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Block circulant and circulant matrices have already become an ideal research area for solving various differential equations. In
this paper, we give the definition and the basic properties of FLS 𝑅-factor block circulant (retrocirculant) matrix over field F . Fast
algorithms for solving systems of linear equations involving thesematrices are presented by the fast algorithm for computingmatrix
polynomials.The unique solution is obtained when suchmatrix over a field F is nonsingular. Fast algorithms for solving the unique
solution of the inverse problem ofA𝑋 = 𝑏 in the class of the level-2 FLS (𝑅, 𝑟)-circulant(retrocirculant) matrix of type (𝑚, 𝑛) over
field F are given by the right largest common factor of the matrix polynomial. Numerical examples show the effectiveness of the
algorithms.

1. Introduction

It is well known that block circulant and circulant matri-
ces may play a crucial role in solving various differential
equations such as bi-Hamiltonian partial differential equa-
tions, discretized partial differential equations, Hyperbolic-
Parabolic partial differential equations, delay differential
equations, undamped matrix differential equations, frac-
tional diffusion equations, and Wiener-Hopf equations. By
the radial properties of the fundamental solution and radial
symmetry of the solution domain, Chen et al. [1] showed
the circulant or block circulant features of the coefficient
matrices for problems under pure Dirichlet or Neumann
boundary condition. Using circulant matrix, Karasözen and
Şimşek [2] considered periodic boundary conditions such
that no additional boundary terms will appear after semidis-
cretization. In [3], the resulting dense linear system exhibits
a special structure which can be solved very efficiently by a
circulant preconditioned conjugate gradient method. Meyer
and Rjasanow [4] have given an effective direct solution
method for certain boundary element equations in 3D. The
main theory of circulant dynamics considered in [5] is
about circulant matrix. Ruiz-Claeyssen et al. [6] discussed
factor block circulant and periodic solutions of undamped

matrix differential equations. Wilde [7] developed a theory
for the solution of ordinary and partial differential equations
whose structure involves the algebra of circulants. Using
circulant contraction of boundary, Chow andMilnes [8] got a
numerical solution of a class of Hyperbolic-Parabolic partial
differential equations. The Strang-type preconditioner was
also used to solve linear systems from differential algebraic
equations and delay differential equations; see [9–11].

Circulant matrices arise in many applications in math-
ematics, physics, and other applied sciences in problems
possessing a periodicity property [12–19] and they have been
put on a firm basis with the work of Davis [20] and Jiang
and Zhou [21]. The circulant matrices, long a fruitful subject
of research [20, 21], have in recent years been extended in
many directions [22–26]. Factor block circulant matrices and
𝑥
𝑛

−𝑥−1-circulants are other natural extensions of this well-
studied class and can be found in [12, 13].

Algorithms for solving systems of linear equations involv-
ing matrices with the circulant or factor circulant or 𝑟-
circulant structure were introduced in [27–32].

The problem of finding a real matrix 𝐴 of order 𝑛, sat-
isfying 𝐴𝑋 = 𝑏, for given 𝑛-dimension real vectors 𝑋 and
𝑏, is called the inverse problem of the linear system 𝐴𝑋 =
𝑏. The applications of this problem come from the study of
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absolute stability of a class of direct control systems [33].
Many authors have studied this problem for some special
structured matrices: Peng and Hu [34] for reflexive and
antireflexive matrices and Don [35], Chu [36], and Dai [37]
for symmetric matrices.

The fast algorithms presented in this paper avoid the
problems of error and efficiency produced by computing
a great number of triangular functions by means of other
general fast algorithms. There is only error of approximation
when the fast algorithm is realized by computers, so the result
of the computation is accurate in theory. Specially, the result
computed by a computer is accurate over the rational number
field.

Definition 1. Let𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
, 𝑅 be square matrices each

of order 𝑛. We assume that𝑅 commutes with each of the𝐴
𝑘
’s.

A FLS𝑅-factor block circulantmatrix of type (𝑚, 𝑛) over field
F , denoted by FLScirc

𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
), is meant to be a

square matrix of the form

A =

[
[
[
[
[
[
[

[

𝐴
0

𝐴
1

⋅ ⋅ ⋅ 𝐴
𝑚−1

𝑅𝐴
𝑚−1

𝐴
0
+ 𝐴
𝑚−1

⋅ ⋅ ⋅ 𝐴
𝑚−2

𝑅𝐴
𝑚−2
𝑅𝐴
𝑚−1
+ 𝐴
𝑚−2
⋅ ⋅ ⋅ 𝐴

𝑚−3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑅𝐴
2
𝑅𝐴
3
+ 𝐴
2
⋅ ⋅ ⋅ 𝐴

1

𝑅𝐴
1
𝑅𝐴
2
+ 𝐴
1
⋅ ⋅ ⋅ 𝐴

0
+ 𝐴
𝑚−1

]
]
]
]
]
]
]

]

. (1)

A FLS 𝑅-factor block circulant matrix of type (𝑚, 1) will
be referred to as a scalar FLS 𝑟-circulant matrix [38–40]. In
this case the matrix 𝑅 reduces to a nonzero scalar that we will
denote by 𝑟.When𝑅 is the identitymatrix 𝐼, we drop theword
“factor” in the above definition. This kind of matrices is just
FLS block circulant. In particular, when 𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑚−1
, 𝑅

are all FLS 𝑟-circulant matrices, this kind of matrix is called
level-2 FLS (𝑅, 𝑟)-circulant matrix of type (𝑚, 𝑛).

Definition 2. Let𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
, 𝑅 be squarematrices each

of order 𝑛. We assume that𝑅 commutes with each of the𝐴
𝑘
’s.

A FLS𝑅-factor block retrocirculantmatrix of type (𝑚, 𝑛) over
field F , denoted by FLSretrocirc

𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
), ismeant

to be a square matrix of the form

A =

[
[
[
[
[
[
[

[

𝐴
0
⋅ ⋅ ⋅ 𝐴

𝑚−2
𝐴
𝑚−1

𝐴
1
⋅ ⋅ ⋅ 𝐴

0
+ 𝐴
𝑚−1

𝑅𝐴
0

𝐴
2
⋅ ⋅ ⋅ 𝐴

1
+ 𝑅𝐴
0
𝑅𝐴
1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑚−2

⋅ ⋅ ⋅ 𝐴
𝑚−3
+ 𝑅𝐴
𝑚−4
𝑅𝐴
𝑚−3

𝐴
0
+ 𝐴
𝑚−1
⋅ ⋅ ⋅ 𝐴

𝑚−2
+ 𝑅𝐴
𝑚−3
𝑅𝐴
𝑚−2

]
]
]
]
]
]
]

]

. (2)

A FLS 𝑅-factor block retrocirculant matrix of type (𝑚, 1)
will be referred to as scalar FLS 𝑟-retrocirculant. In this case,
thematrix𝑅 reduces to a nonzero scalar thatwewill denote by
𝑟. When 𝑅 is the identity matrix 𝐼, we drop the word “factor”
in the above definition.This kind of matrices is just FLS block
retrocirculant. In particular, when𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑚−1
, 𝑅 are all

FLS 𝑟-circulant matrices, this kind of matrix is called level-2
FLS (𝑅, 𝑟)-retrocirculant matrix of type (𝑚, 𝑛).

For the convenience of application, we give the obvious
results in the following lemmas.

Lemma 3. Let A = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) be a

FLS 𝑅-factor block circulant matrix over F and B =

𝐹𝐿𝑆𝑟𝑒𝑡𝑟𝑜𝑐𝑖𝑟𝑐
𝑅
(𝐴
𝑚−1
, 𝐴
𝑚−2
, . . . , 𝐴

1
, 𝐴
0
) a FLS 𝑅-factor block

retrocirculant matrix over F . Then BK = A or B = AK,
where

K = (

0 0 ⋅ ⋅ ⋅ 0 𝐼

0 0 ⋅ ⋅ ⋅ 𝐼 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐼 0 ⋅ ⋅ ⋅ 0 0

) . (3)

Lemma 4 (see [31]). Suppose that the partitioned polynomial
matrix (F(𝑥) 𝐼 0G(𝑥) 0 𝐼 ) is changed into the partitioned polyno-
mial matrix (D(𝑥) U(𝑥) V(𝑥)

0 S(𝑥) T(𝑥) ) by a series of elementary row
operations, then D(𝑥) is the right largest common factor of
the matrix polynomial F(𝑥) and G(𝑥), and U(𝑥)F(𝑥) +
V(𝑥)G(𝑥) = D(𝑥).

Thematrices, vectors, and polynomials considered in the
following are always over any field F .

2. The Properties of FLS 𝑅-Factor Block
Circulant Matrix

Wedefineℵ
𝑅
as the basic FLS𝑅-factor block circulantmatrix

over F ; that is,

ℵ
𝑅
=(

0 𝐼 0 ⋅ ⋅ ⋅ 0 0

0 0 𝐼 ⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 0 𝐼

𝑅 𝐼 0 ⋅ ⋅ ⋅ 0 0

)

𝑚×𝑚

. (4)

It is easily verified that the matrix polynomialG(𝑥) = 𝑥𝑚𝐼
𝑛
−

𝑥𝐼
𝑛
− 𝑅 is the form characteristic polynomial of the matrix

ℵ
𝑅
. In addition, ℵ𝑚

𝑅
= 𝑅𝐼
𝑚𝑛
+ ℵ
𝑅
.

In view of the structure of the powers of the basic FLS 𝑅-
factor block circulant matrix ℵ

𝑅
over F , it is clear that

A = FLScirc
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) =

𝑚−1

∑

𝑖=0

𝐴
𝑖
ℵ
𝑖

𝑅
. (5)

Thus,A is a FLS 𝑅-factor block circulant matrix over F if and
only ifA = F(ℵ

𝑅
) for somematrix polynomialF(𝑥) over F .

The matrix polynomial F(𝑥) = ∑𝑚−1
𝑖=0
𝐴
𝑖
𝑥
𝑖 will be called the

representer of the FLS 𝑅-factor block circulant matrixA over
F .

By Definition 1 and (5), it is clear thatA is a FLS 𝑅-factor
block circulant matrix over F if and only ifA commutes with
ℵ
𝑅
; that is,

Aℵ
𝑅
= ℵ
𝑅
A. (6)

In addition to the algebraic properties that can be easily
derived from the representation (5), we mention the follow-
ing.The product of two FLS𝑅-factor block circulant matrices
is a FLS 𝑅-factor block circulant matrix of the same type.

Furthermore, two FLS 𝑅-factor block circulant matrices,
A = FLScirc

𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) ,

B = FLScirc
𝑅
(𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑚−1
) ,

(7)
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commute if the 𝐴
𝑗
’s commute with the 𝐵

𝑗
’s. Since FLS 𝑟-

circulant matrices commute under multiplication, then level-
2 FLS (𝑅, 𝑟)-circulant matrices commute under multiplica-
tion.

Theorem 5. The inverse matrix A−1 of a nonsingular FLS 𝑅-
factor block circulant matrix A over F is also a FLS 𝑅-factor
block circulant matrix of the same type.

Proof. From representation (5), we haveA = ∑𝑚−1
𝑖=0
𝐴
𝑖
ℵ
𝑖

𝑅
and

A−1 is also a FLS 𝑅-factor block circulant matrix of the same
type if and only if there exist 𝐵

0
, 𝐵
1
, . . . , 𝐵

𝑚−1
over F such that

A
−1

=

𝑚−1

∑

𝑖=0

𝐵
𝑖
ℵ
𝑖

𝑅
, (8)

where 𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑚−1
are square matrices each of order 𝑛.

SinceAA−1 = 𝐼 and ℵ𝑚+𝑘
𝑅
= 𝑅ℵ
𝑘

𝑅
+ ℵ
𝑘+1

𝑅
, then

AA
−1

= (

𝑚−1

∑

𝑖=0

𝐴
𝑖
ℵ
𝑖

𝑅
)(

𝑚−1

∑

𝑖=0

𝐵
𝑖
ℵ
𝑖

𝑅
)

=

𝑚−1

∑

𝑖=0

𝐷
𝑖
ℵ
𝑖

𝑅

= 𝐼
𝑚𝑛

(9)

if and only if

𝐷
𝑚−1
= 𝐴
0
𝐵
𝑚−1
+ 𝐴
1
𝐵
𝑚−2
+ ⋅ ⋅ ⋅

+ 𝐴
𝑚−2
𝐵
1
+ 𝐴
𝑚−1
𝐵
0
= 0,

𝐷
𝑚−2
= 𝑅𝐴

𝑚−1
𝐵
𝑚−1
+ (𝐴
0
+ 𝐴
𝑚−1
) 𝐵
𝑚−2
+ ⋅ ⋅ ⋅

+ 𝐴
𝑚−3
𝐵
1
+ 𝐴
𝑚−2
𝐵
0
= 0,

...

𝐷
1
= 𝑅𝐴

2
𝐵
𝑚−1
+ (𝑅𝐴

3
+ 𝐴
2
) 𝐵
𝑚−2
+ ⋅ ⋅ ⋅

+ (𝐴
0
+ 𝐴
𝑚−1
) 𝐵
1
+ 𝐴
1
𝐵
0
= 0,

𝐷
0
= 𝑅𝐴

1
𝐵
𝑚−1
+ (𝑅𝐴

2
+ 𝐴
1
) 𝐵
𝑚−2
+ ⋅ ⋅ ⋅

+ (𝐴
0
+ 𝐴
𝑚−1
) 𝐵
0
= 𝐼
𝑛
,

(10)

if and only if

A(𝐵
𝑇

𝑚−1
, . . . , 𝐵

𝑇

1
, 𝐵
𝑇

0
)
𝑇

= (0, . . . , 0, 𝐼
𝑛
)
𝑇

. (11)

SinceA is nonsingular, so

(𝐵
𝑇

𝑚−1
, . . . , 𝐵

𝑇

1
, 𝐵
𝑇

0
)
𝑇

= A
−1

(0, . . . , 0, 𝐼
𝑛
)
𝑇

. (12)

By the above system of (12), the existence of 𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑚−1

in the system of (8) has been proved.

Theorem 6. LetA = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) (𝑅 ̸= 0) be

a FLS 𝑅-factor block circulant matrix of type (𝑚, 𝑛) over F .

Then A is nonsingular if and only if 𝐼
𝑛
is the right largest

common factor of the matrix polynomial F(𝑥) and G(𝑥),
whereF(𝑥) = ∑𝑚−1

𝑖=0
𝐴
𝑖
𝑥
𝑖 andG(𝑥) = 𝑥𝑚𝐼

𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Proof. Let H(𝑥) be the right largest common factor of the
matrix polynomialF(𝑥) and G(𝑥). Then there exists matrix
polynomialU

1
(𝑥), V

1
(𝑥), Q(𝑥) such that

U
1
(𝑥)F (𝑥) +V

1
(𝑥)G (𝑥) =H (𝑥) ,

F (𝑥) = Q (𝑥)H (𝑥) .
(13)

Substituting 𝑥 by ℵ
𝑅
in the equationF(𝑥) = Q(𝑥)H(𝑥),

we have F(ℵ
𝑅
) = Q(ℵ

𝑅
)H(ℵ

𝑅
). Since F(ℵ

𝑅
) = A is

nonsingular, then H(ℵ
𝑅
) is nonsingular. By Theorem 5, we

know that there exists matrix polynomial H
1
(𝑥) such that

H
1
(ℵ
𝑅
)H(ℵ

𝑅
) = 𝐼
𝑚𝑛
; then

H
1
(𝑥)U

1
(𝑥)F (𝑥) +H

1
(𝑥)V

1
(𝑥)G (𝑥)

=H
1
(𝑥)H (𝑥)

= 𝐼
𝑛
.

(14)

So 𝐼
𝑛
is the right largest common factor of the matrix

polynomialF(𝑥) andG(𝑥).
Conversely, if 𝐼

𝑛
is the right largest common factor of the

matrix polynomial F(𝑥) and G(𝑥), then there exists matrix
polynomialU(𝑥), V(𝑥) such that

U (𝑥)F (𝑥) +V (𝑥)G (𝑥) = 𝐼
𝑛
. (15)

Substituting 𝑥 by ℵ
𝑅
in the above matrix equations, we

have

U (ℵ
𝑅
)F (ℵ

𝑅
) +V (ℵ

𝑅
)G (ℵ

𝑅
) = 𝐼
𝑚𝑛
. (16)

SinceF(ℵ
𝑅
) = A andG(ℵ

𝑅
) = 0, then

U (ℵ
𝑅
)A = 𝐼

𝑚𝑛
. (17)

By (17), we know thatA is nonsingular.

Theorem 7. Let B = 𝐹𝐿𝑆𝑟𝑒𝑡𝑟𝑜𝑐𝑖𝑟𝑐
𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
)

(𝑅 ̸= 0) be a FLS 𝑅-factor block retrocirculant matrix of type
(𝑚, 𝑛) over F . Then B is nonsingular if and only if 𝐼

𝑛
is the

right largest common factor of thematrix polynomialF(𝑥) and
G(𝑥), whereF(𝑥) = ∑𝑚−1

𝑖=0
𝐴
𝑖
𝑥
𝑖 andG(𝑥) = 𝑥𝑚𝐼

𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Proof. SinceK is nonsingular, by Lemma 3,B is nonsingular
if and only if A is nonsingular. By Theorem 6, we know that
A is nonsingular if and only if 𝐼

𝑛
is the right largest common

factor of the matrix polynomial F(𝑥) and G(𝑥). Then B is
nonsingular if and only if 𝐼

𝑛
is the right largest common factor

of the matrix polynomialF(𝑥) andG(𝑥).

Theorem 8. Let A = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) (𝑅 ̸= 0)

be a nonsingular FLS 𝑅-factor block circulant matrix of type
(𝑚, 𝑛) over F . Then there exists matrix polynomial U(𝑥) such
that 𝐴−1 = U(ℵ

𝑅
).
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Proof. Since matrix A = FLScirc
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) is

nonsingular, we can change the partitioned polynomial
matrix (F(𝑥) 𝐼𝑛 0G(𝑥) 0 𝐼

𝑛

) into the partitioned polynomial matrix
(
𝐼
𝑛
U(𝑥) V(𝑥)

0 S(𝑥) T(𝑥)
) by a series of elementary row operations.

By Lemma 4, we have

U (𝑥)F (𝑥) +V (𝑥)G (𝑥) = 𝐼
𝑛
. (18)

Substituting 𝑥 by ℵ
𝑅
in the above matrix equations, we have

U (ℵ
𝑅
)F (ℵ

𝑅
) +V (ℵ

𝑅
)G (ℵ

𝑅
) = 𝐼
𝑚𝑛
. (19)

SinceF(ℵ
𝑅
) = A andG(ℵ

𝑅
) = 0, then

U (ℵ
𝑅
)A = 𝐼

𝑚𝑛
. (20)

By (20), we know that 𝐴−1 = U(ℵ
𝑅
).

Theorem 9. Let B = 𝐹𝐿𝑆𝑟𝑒𝑡𝑟𝑜𝑐𝑖𝑟𝑐
𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
)

(𝑅 ̸= 0) be a nonsingular FLS 𝑅-factor block retrocirculant
matrix of type (𝑚, 𝑛) over F . Then there exists matrix polyno-
mialU(𝑥) such that 𝐵−1 =KU(ℵ

𝑅
).

Proof. By Lemma 3, we know that B = AK. Since both B

and K are nonsingular, then A is nonsingular and B−1 =

KA−1. By Theorem 8, there exists matrix polynomial U(𝑥)
such that 𝐴−1 = U(ℵ

𝑅
). Then 𝐵−1 =KU(ℵ

𝑅
).

By Theorems 8 and 9, we can get the fast algorithm for
finding the inverse of the FLS 𝑅-factor block circulant matrix
or the inverse of the FLS𝑅-factor block retrocirculantmatrix.

Step 1. From the matrix A = FLScirc
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
)

(𝑅 ̸= 0) (or B = FLSretrocirc
𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
)(𝑅 ̸= 0)),

we get the matrix polynomial F(𝑥) = ∑𝑚−1
𝑖=0
𝐴
𝑖
𝑥
𝑖

,G(𝑥) =
𝑥
𝑚

𝐼
𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Step 2. Change the partitioned polynomial matrix (F(𝑥) 𝐼𝑛
G(𝑥) 0
)

into the partitioned polynomialmatrix (D(𝑥) U(𝑥)
0 S(𝑥) ) by a series

of elementary row operations.

Step 3. If D(𝑥) = 𝐼
𝑛
, then the matrix A = FLScirc

𝑅
(𝐴
0
, 𝐴
1
,

. . . , 𝐴
𝑚−1
) (or B = FLSretrocirc

𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
)) is

nonsingular andA−1 = U(ℵ
𝑅
) (orB−1 =KU(ℵ

𝑅
)).

3. Fast Algorithms for Solving a FLS
𝑅-Factor Block Circulant (or Retrocirculant)
Linear System

Consider the FLS 𝑅-factor block circulant (or retrocirculant)
linear system

A𝑋 = 𝑏, (21)

where A is a FLS 𝑅-factor block circulant (or retrocir-
culant) matrix of type (𝑚, 𝑛) over F , 𝑋 = (𝑥

01
, 𝑥
02
, . . .,

𝑥
0𝑛
, . . . , 𝑥

(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . . , 𝑥

(𝑚−1)𝑛
)
𝑇 and 𝑏 = (𝑏

(𝑚−1)𝑛
, . . .,

𝑏
(𝑚−1)2
, 𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇.

IfA is nonsingular, then (21) has a unique solution

𝑋 = A
−1

𝑏. (22)

The key problem is how to findA−1𝑏; for this purpose, we
first prove the following results.

Theorem 10. Let A = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) (𝑅 ̸= 0)

be a nonsingular FLS 𝑅-factor block circulant matrix of type
(𝑚, 𝑛) over F and 𝑏 = (𝑏

(𝑚−1)𝑛
, . . . , 𝑏

(𝑚−1)2
, 𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
, . . .,

𝑏
02
, 𝑏
01
)
𝑇. Then there exists a unique FLS 𝑅-factor block

circulant matrix E = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
) of type

(𝑚, 𝑛) over F such that the unique solution of A𝑋 = 𝑏 is
the last column (or the first column) of the partitioned matrix
(𝐸
𝑇

𝑚−1
, . . . , 𝐸

𝑇

1
, (𝐸
0
+ 𝐸
𝑚−1
)
𝑇

)
𝑇.

Proof. Since matrix A = FLScirc
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) is

nonsingular, the representer of A is F(𝑥) = ∑𝑚−1
𝑖=0
𝐴
𝑖
𝑥
𝑖 and

G(𝑥) = 𝑥𝑚𝐼
𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Let thematrix polynomialC(𝑥) = (𝐶
0
−𝐶
𝑚−1
)+∑
𝑚−1

𝑖=1
𝐶
𝑖
𝑥
𝑖

be constructed by 𝑏 = (𝑏
(𝑚−1)𝑛
, . . . , 𝑏

(𝑚−1)2
, 𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
,

. . . , 𝑏
02
, 𝑏
01
)
𝑇, where 𝐶

𝑖
= FLScirc

𝑟
(𝑏
𝑖1
− 𝑏
𝑖𝑛
, 𝑏
𝑖2
, . . . , 𝑏

𝑖𝑛
) (or

𝐶
𝑖
= FLScirc(𝑏

𝑖𝑛
, 𝑏
𝑖1
, . . . , 𝑏

𝑖(𝑛−1)
) or 𝐶

𝑖
= FLSretrocirc

𝑟
(𝑏
𝑖𝑛
, . . .,

𝑏
𝑖2
, 𝑏
𝑖1
)), the last column (or the first column) of 𝐶

𝑖
is

(𝑏
𝑖𝑛
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
)
𝑇, and the matrix 𝐶

𝑖
commutes with the ma-

trix 𝑅, for 𝑖 = 0, 1, . . . , 𝑚 − 1.
By Lemma 4 and Theorem 6, we can change the par-

titioned polynomial matrix (

F(𝑥)

.

.

. 𝐼𝑛 0
.
.
. C(𝑥)

G(𝑥)

.

.

. 0 𝐼𝑛

.

.

. 0

) into the parti-

tioned polynomial matrix (

𝐼𝑛

.

.

. U(𝑥)V(𝑥)
.
.
. H(𝑥)

0

.

.

. S(𝑥) T(𝑥)
.
.
. H
1
(𝑥)

) by a series of

elementary row operations. Then,

(
U (𝑥) V (𝑥)
S (𝑥) T (𝑥)

)(
F (𝑥)
G (𝑥)
) = (

𝐼
𝑛

0
) ,

(
U (𝑥) V (𝑥)
S (𝑥) T (𝑥)

)(
C (𝑥)
0
) = (

H (𝑥)
H
1
(𝑥)
) .

(23)

That is,

U (𝑥)F (𝑥) +V (𝑥)G (𝑥) = 𝐼
𝑛
, U (𝑥)C (𝑥) =H (𝑥) .

(24)

Substituting 𝑥 by ℵ
𝑅
in the above two equations, respec-

tively, we have

U (ℵ
𝑅
)F (ℵ

𝑅
) +V (ℵ

𝑅
)G (ℵ

𝑅
) = 𝐼
𝑚𝑛
.

U (ℵ
𝑅
)C (ℵ

𝑅
) =H (ℵ

𝑅
) .

(25)

SinceF(ℵ
𝑅
) = A andG(ℵ

𝑅
) = 0, then

U (ℵ
𝑅
)A = 𝐼

𝑚𝑛
. (26)

By (26), we know that U(ℵ
𝑅
) is a unique inverse A−1 of

A. LetE =H(ℵ
𝑅
) = FLScirc

𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
). By (25), we

have

A
−1

C (ℵ
𝑅
) = FLScirc

𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
) . (27)
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Since the last column (or the [(𝑚 − 1)𝑛 + 1]th column) of
the matrix A−1C(ℵ

𝑅
) is A−1𝑏 and the last column (or the

[(𝑚 − 1)𝑛 + 1]th column) of the FLScirc
𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
)

is the last column (or the first column) of the partitioned
matrix (𝐸𝑇

𝑚−1
, . . . , 𝐸

𝑇

1
, (𝐸
0
+ 𝐸
𝑚−1
)
𝑇

)
𝑇, by (27), we know that

the unique solutionA−1𝑏 ofA𝑋 = 𝑏 is the last column (or the
first column) of the partitioned matrix (𝐸𝑇

𝑚−1
, . . . , 𝐸

𝑇

1
, (𝐸
0
+

𝐸
𝑚−1
)
𝑇

)
𝑇.

By Theorem 10, we can get the fast algorithm for solving
the FLS𝑅-factor block circulant linear systemA𝑋 = 𝑏, where
A = FLScirc

𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) (𝑅 ̸= 0), 𝑋 = (𝑥

01
, 𝑥
02
, . . .,

𝑥
0𝑛
, . . . , 𝑥

(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . . , 𝑥

(𝑚−1)𝑛
)
𝑇, and 𝑏 = (𝑏

(𝑚−1)𝑛
, . . .,

𝑏
(𝑚−1)2
, 𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇.

Step 1. From the FLS 𝑅-factor block circulant linear system
A𝑋 = 𝑏, we get the matrix polynomial F(𝑥) = ∑𝑚−1

𝑖=0
𝐴
𝑖
𝑥
𝑖

andG(𝑥) = 𝑥𝑚𝐼
𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Step 2. Let the matrix polynomial C(𝑥) = (𝐶
0
− 𝐶
𝑚−1
)+

∑
𝑚−1

𝑖=1
𝐶
𝑖
𝑥
𝑖 be constructed by 𝑏 = (𝑏

(𝑚−1)𝑛
, . . . , 𝑏

(𝑚−1)2
, 𝑏
(𝑚−1)1

,
. . . , 𝑏
0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇, where 𝐶

𝑖
= FLScirc

𝑟
(𝑏
𝑖1
− 𝑏
𝑖𝑛
, 𝑏
𝑖2
, . . .,

𝑏
𝑖𝑛
) (or 𝐶

𝑖
= FLScirc(𝑏

𝑖𝑛
, 𝑏
𝑖1
, . . . , 𝑏

𝑖(𝑛−1)
) or 𝐶

𝑖
=

FLSretrocirc
𝑟
(𝑏
𝑖𝑛
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
)), the last column (or the

first column) of 𝐶
𝑖
is (𝑏
𝑖𝑛
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
)
𝑇, and the matrix 𝐶

𝑖

commutes with the matrix 𝑅, for 𝑖 = 0, 1, . . . , 𝑚 − 1.

Step 3. Change the partitioned polynomial matrix
(
F(𝑥) C(𝑥)
G(𝑥) 0 ) into the partitioned polynomial matrix
(
D(𝑥) H(𝑥)
0 H

1
(𝑥)
) by a series of elementary row operations.

Step 4. If D(𝑥) = 𝐼
𝑛
, then the FLS 𝑅-factor block cir-

culant linear system A𝑋 = 𝑏 has a unique solution.
Substituting 𝑥 by ℵ

𝑅
in matrix polynomial H(𝑥), we have

the FLS 𝑅-factor block circulant matrix E = H(ℵ
𝑅
) =

FLScirc
𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
). So the unique solution ofA𝑋 = 𝑏

is the last column (or the first column) of the partitioned
matrix (𝐸𝑇

𝑚−1
, . . . , 𝐸

𝑇

1
, (𝐸
0
+ 𝐸
𝑚−1
)
𝑇

)
𝑇.

Theorem 11. Let B = 𝐹𝐿𝑆𝑟𝑒𝑡𝑟𝑜𝑐𝑖𝑟𝑐
𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
)

(𝑅 ̸= 0) be a nonsingular FLS 𝑅-factor block retrocirculant
matrix of type (𝑚, 𝑛) over F and 𝑏 = (𝑏

(𝑚−1)𝑛
, . . . 𝑏
(𝑚−1)2

,
𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇. Then there exists a unique

FLS 𝑅-factor block circulant matrix E = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑅
(𝐸
0
, 𝐸
1
,

. . . , 𝐸
𝑚−1
) of type (𝑚, 𝑛) over F such that the unique solution

of B𝑋 = 𝑏 is the last column (or the first column) of the
partitioned matrix ((𝐸

0
+ 𝐸
𝑚−1
)
𝑇

, 𝐸
𝑇

1
, . . . , 𝐸

𝑇

𝑚−1
)
𝑇.

Proof. Since both B and K are nonsingular, by Lemma 3,
we know that A is nonsingular and B𝑋 = 𝑏 if and
only if AK𝑋 = 𝑏. By Theorem 10, we know that there
exists a unique FLS 𝑅-factor block circulant matrix E =

FLScirc
𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
) of type (𝑚, 𝑛) over F such that

the unique solution of AK𝑋 = 𝑏 in a variable K𝑋 is the
last column (or the first column) of the partitioned matrix
(𝐸
𝑇

𝑚−1
, . . . , 𝐸

𝑇

1
, (𝐸
0
+ 𝐸
𝑚−1
)
𝑇

)
𝑇. So the unique solution 𝑋 of

B𝑋 = 𝑏 is the last column (or the first column) of the
partitioned matrix ((𝐸

0
+ 𝐸
𝑚−1
)
𝑇

, 𝐸
𝑇

1
, . . . , 𝐸

𝑇

𝑚−1
)
𝑇.

By Theorem 11, we can get the fast algorithm for solving
the FLS 𝑅-factor block retrocirculant linear systemB𝑋 = 𝑏,
where B = FLSretrocirc

𝑅
(𝐴
𝑚−1
, . . . , 𝐴

1
, 𝐴
0
) (𝑅 ̸= 0), 𝑋 =

(𝑥
01
, 𝑥
02
, . . . , 𝑥

0𝑛
, . . . , 𝑥

(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . . , 𝑥

(𝑚−1)𝑛
)
𝑇, and 𝑏 =

(𝑏
(𝑚−1)𝑛
, . . . , 𝑏

(𝑚−1)2
, 𝑏
(𝑚−1)1
, . . . , 𝑏

0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇.

Step 1. From the FLS 𝑅-factor block retrocirculant linear
system B𝑋 = 𝑏, we get the matrix polynomial F(𝑥) =
∑
𝑚−1

𝑖=0
𝐴
𝑖
𝑥
𝑖, G(𝑥) = 𝑥𝑚𝐼

𝑛
− 𝑥𝐼
𝑛
− 𝑅.

Step 2. Let the matrix polynomial C(𝑥) = (𝐶
0
− 𝐶
𝑚−1
) +

∑
𝑚−1

𝑖=1
𝐶
𝑖
𝑥
𝑖 be constructed by 𝑏 = (𝑏

(𝑚−1)𝑛
, . . . , 𝑏

(𝑚−1)2
, 𝑏
(𝑚−1)1

,
. . . , 𝑏
0𝑛
, . . . , 𝑏

02
, 𝑏
01
)
𝑇, where 𝐶

𝑖
= FLScirc

𝑟
(𝑏
𝑖1
− 𝑏
𝑖𝑛
, 𝑏
𝑖2
, . . .,

𝑏
𝑖𝑛
) (or 𝐶

𝑖
= FLScirc(𝑏

𝑖𝑛
, 𝑏
𝑖1
, . . . , 𝑏

𝑖(𝑛−1)
) or 𝐶

𝑖
=

FLSretrocirc
𝑟
(𝑏
𝑖𝑛
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
)), the last column (or the

first column) of 𝐶
𝑖
is (𝑏
𝑖𝑛
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
)
𝑇, and the matrix 𝐶

𝑖

commutes with the matrix 𝑅, for 𝑖 = 0, 1, . . . , 𝑚 − 1.

Step 3. Change the partitioned polynomial matrix
(
F(𝑥) C(𝑥)
G(𝑥) 0 ) into the partitioned polynomial matrix
(
D(𝑥) H(𝑥)
0 H

1
(𝑥)
) by a series of elementary row operations.

Step 4. If D(𝑥) = 𝐼
𝑛
, then the FLS 𝑅-factor block retro-

circulant linear system B𝑋 = 𝑏 has a unique solution.
Substituting 𝑥 by ℵ

𝑅
in matrix polynomial H(𝑥), we have

the FLS 𝑅-factor block circulant matrix E = H(ℵ
𝑅
) =

FLScirc
𝑅
(𝐸
0
, 𝐸
1
, . . . , 𝐸

𝑚−1
). So the unique solution of B𝑋 =

𝑏 is the last column (or the first column) of the partitioned
matrix ((𝐸

0
+ 𝐸
𝑚−1
)
𝑇

, 𝐸
𝑇

1
, . . . , 𝐸

𝑇

𝑚−1
)
𝑇.

4. Fast Algorithm for Solving the Inverse
Problem of A𝑋= 𝑏

In this section, sufficient and necessary conditions of exis-
tence of the unique solution of the inverse problemofA𝑋 = 𝑏
in the class of the level-2 FLS (𝑅, 𝑟)-circulant matrices of type
(𝑚, 𝑛) over F and that of the level-2 FLS (𝑅, 𝑟)-retrocirculant
matrices of type (𝑚, 𝑛) over F are presented. Fast algorithms
for solving the unique solution of the inverse problem of
A𝑋 = 𝑏 in the class of the level-2 FLS (𝑅, 𝑟)-circulant
matrices of type (𝑚, 𝑛) over F and that of the level-2 FLS
(𝑅, 𝑟)-retrocirculant matrices of type (𝑚, 𝑛) over F are given
by the right largest common factor of the matrix polynomial.

Theorem 12. Let 𝑋 = (𝑥
01
, 𝑥
02
, . . . , 𝑥

0𝑛
, . . . , 𝑥

(𝑚−1)1
, 𝑥
(𝑚−1)2

,
. . . , 𝑥
(𝑚−1)𝑛
)
𝑇, 𝑏 = (𝑏

01
, 𝑏
02
, . . . , 𝑏

0𝑛
, . . . , 𝑏

(𝑚−1)1
, 𝑏
(𝑚−1)2
, . . .,

𝑏
(𝑚−1)𝑛
)
𝑇

, 𝑅 = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐
𝑟
(𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛−1
), X = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐

𝑅

(𝑋
𝑚−1
− 𝑋
0
, 𝑋
𝑚−2
, . . . , 𝑋

1
, 𝑋
0
), and B = 𝐹𝐿𝑆𝑐𝑖𝑟𝑐

𝑅
(𝐵
𝑚−1
−

𝐵
0
, 𝐵
𝑚−2
, . . . , 𝐵

1
, 𝐵
0
), where 𝑋

𝑖
= 𝐹𝐿𝑆𝑐𝑖𝑟𝑐

𝑟
(𝑥
𝑖𝑛
− 𝑥
𝑖1
,

𝑥
𝑖(𝑛−1)
, . . . , 𝑥

𝑖2
, 𝑥
𝑖1
) and 𝐵

𝑖
= 𝐹𝐿𝑆𝑐𝑖𝑟𝑐

𝑟
(𝑏
𝑖𝑛
− 𝑏
𝑖1
, 𝑏
𝑖(𝑛−1)
, . . .,

𝑏
𝑖2
, 𝑏
𝑖1
), 𝑖 = 0, 1, . . . , 𝑚 − 1. Then the inverse problem of

A𝑋 = 𝑏 has a unique solution in the class of the level-2 FLS
(𝑅, 𝑟)-circulant matrices of type (𝑚, 𝑛) if and only if X𝑌 = 𝑏
has a unique solution.
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Proof. If the inverse problemofA𝑋 = 𝑏has a unique solution
in the class of the level-2 FLS (𝑅, 𝑟)-circulant matrices of type
(𝑚, 𝑛), then there exists a unique level-2 FLS (𝑅, 𝑟)-circulant
matrices of type (𝑚, 𝑛) A = FLScirc

𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
)

such thatA𝑋 = 𝑏. Then

FLScirc
𝑅
(𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑚−1
) (𝑋
𝑇

0
, . . . , 𝑋

𝑇

𝑚−1
)
𝑇

= (𝐵
𝑇

0
, 𝐵
𝑇

1
, . . . , 𝐵

𝑇

𝑚−1
)
𝑇

,

(28)

where 𝐴
𝑖
= FLScirc

𝑟
(𝑎
𝑖0
, 𝑎
𝑖1
, . . . , 𝑎

𝑖(𝑛−1)
).

Let 𝛽 = (𝑎
(𝑚−1)(𝑛−1)

, . . . , 𝑎
(𝑚−1)1
, 𝑎
(𝑚−1)0

+ 𝑎
(𝑚−1)(𝑛−1)

,

. . .,𝑎
1(𝑛−1)
, . . . , 𝑎

11
, 𝑎
10
+ 𝑎
1(𝑛−1)
, 𝑎
0(𝑛−1)
+ 𝑎
(𝑚−1)(𝑛−1)

, . . . , 𝑎
01
+

𝑎
(𝑚−1)1
, 𝑎
00
+ 𝑎
0(𝑛−1)
+ 𝑎
(𝑚−1)0
+ 𝑎
(𝑚−1)(𝑛−1)

)
𝑇.

By the multiplication of partitioned matrix and level-2
FLS (𝑅, 𝑟)-circulant matrices commute under multiplication
and (28), we know that 𝛽 is the unique solution ofX𝑌 = 𝑏.

If X𝑌 = 𝑏 has a unique solution 𝑌 = (𝑎
(𝑚−1)(𝑛−1)

, . . .,
𝑎
(𝑚−1)1
, 𝑎
(𝑚−1)0
, . . . , 𝑎

0(𝑛−1)
, . . . , 𝑎

01
, 𝑎
00
)
𝑇, and let A =

FLScirc
𝑅
(𝐴
0
− 𝐴
𝑚−1
, 𝐴
1
, . . . , 𝐴

𝑚−1
) and B = FLScirc

𝑅

(𝐵
𝑚−1
−𝐵
0
, 𝐵
𝑚−2
, . . . , 𝐵

1
, 𝐵
0
), where𝐴

𝑖
= FLScirc

𝑟
(𝑎
𝑖0
−𝑎
𝑖(𝑛−1)
,

𝑎
𝑖1
, . . . , 𝑎

𝑖(𝑛−1)
) and 𝐵

𝑖
= FLScirc

𝑟
(𝑏
𝑖𝑛
− 𝑏
𝑖1
,𝑏
𝑖(𝑛−1)
, . . . , 𝑏

𝑖2
,

𝑏
𝑖1
), 𝑖 = 0, 1, . . . , 𝑚 − 1. Then XA = B has a unique

solution A = X−1B. Since X−1𝑋 = (0, . . . , 0, 1)
𝑇, then

A𝑋 = X−1B𝑋 =BX−1𝑋 = 𝑏. SoA = X−1B is the unique
solution of the inverse problem ofA𝑋 = 𝑏 in the class of the
level-2 FLS (𝑅, 𝑟)-circulant matrices of type (𝑚, 𝑛).

Theorem 13. The inverse problem of A𝑋 = 𝑏 has a unique
solution in the class of the level-2 FLS (𝑅, 𝑟)-circulant matrices
of type (𝑚, 𝑛) if and only if 𝐼

𝑛
is the right largest common

factor of the matrix polynomialD(𝑥) andG(𝑥), whereD(𝑥) =
(𝑋
𝑚−1
−𝑋
0
) +∑
𝑚−1

𝑖=1
𝑋
𝑚−1−𝑖
𝑥
𝑖 andG(𝑥) = 𝑥𝑚𝐼

𝑛
−𝑥𝐼
𝑛
−𝑅 and

𝑋, 𝑏,𝑋
𝑖
(𝑖 = 0, 1, . . . , 𝑚 − 1) are given in Theorem 12.

Proof. By Theorem 12, we know that the inverse problem of
A𝑋 = 𝑏 has a unique solution in the class of the level-2 FLS
(𝑅, 𝑟)-circulant matrices of type (𝑚, 𝑛) if and only ifX𝑌 = 𝑏
has a unique solution, if and only if X is nonsingular, if and
only if 𝐼

𝑛
is the right largest common factor of the matrix

polynomialD(𝑥) and G(𝑥) by Theorem 6, whereX is given
inTheorem 12.

By Lemma 4 and Theorems 12 and 13, we have the
following fast algorithms for solving the unique solution of
the inverse problem ofA𝑋 = 𝑏 in the class of the level-2 FLS
(𝑅, 𝑟)-circulant matrices of type (𝑚, 𝑛).

Step 1. From 𝑋 = (𝑥
01
, 𝑥
02
, . . . , 𝑥

0𝑛
, . . . , 𝑥

(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . .,

𝑥
(𝑚−1)𝑛
)
𝑇 and 𝑏 = (𝑏

01
, 𝑏
02
, . . . , 𝑏

0𝑛
, . . . , 𝑏

(𝑚−1)1
, 𝑏
(𝑚−1)2
, . . .,

𝑏
(𝑚−1)𝑛
)
𝑇, we get thematrix polynomialD(𝑥) = (𝑋

𝑚−1
−𝑋
0
)+

∑
𝑚−1

𝑖=1
𝑋
𝑚−1−𝑖
𝑥
𝑖 and H(𝑥) = (𝐵

𝑚−1
− 𝐵
0
) + ∑

𝑚−1

𝑖=1
𝐵
𝑚−1−𝑖
𝑥
𝑖,

where 𝑋
𝑖
= FLScirc

𝑟
(𝑥
𝑖𝑛
− 𝑥
𝑖1
, 𝑥
𝑖(𝑛−1)
, . . . , 𝑥

𝑖2
, 𝑥
𝑖1
) and 𝐵

𝑖
=

FLScirc
𝑟
(𝑏
𝑖𝑛
− 𝑏
𝑖1
, 𝑏
𝑖(𝑛−1)
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
), 𝑖 = 0, 1, . . . , 𝑚 − 1.

Step 2. Change the partitioned polynomial matrix
(
D(𝑥) H(𝑥)
G(𝑥) 0 ) into the partitioned polynomial matrix

(
U(𝑥) V(𝑥)
0 S(𝑥) ) by a series of elementary row operations,

whereG(𝑥) = 𝑥𝑚𝐼
𝑛
− 𝑥𝐼
𝑛
− 𝑅, 𝑅 = FLScirc

𝑟
(𝑟
0
, 𝑟
1
, . . ., 𝑟

𝑛−1
).

Step 3. If U(𝑥) = 𝐼
𝑛
, then the X = FLScirc

𝑅
(𝑋
𝑚−1
−

𝑋
0
, 𝑋
𝑚−2
, . . . , 𝑋

1
, 𝑋
0
) is nonsingular. So the inverse problem

of A𝑋 = 𝑏 has a unique solution A = X−1B = V(ℵ
𝑅
) in

the class of the level-2 FLS (𝑅, 𝑟)-circulant matrices of type
(𝑚, 𝑛).

Theorem 14. Let 𝑋󸀠 = (𝑥
(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . . , 𝑥

(𝑚−1)𝑛
, . . . , 𝑥

01
,

𝑥
02
, . . . , 𝑥

0𝑛
)
𝑇. Then the inverse problem of C𝑋󸀠 = 𝑏 has

a unique solution in the class of the level-2 FLS (𝑅, 𝑟)-
retrocirculant matrices of type (𝑚, 𝑛) if and only ifX𝑌 = 𝑏 has
a unique solution, whereX, 𝑅, and 𝑏 are given inTheorem 12.

Proof. Since K𝑋 = 𝑋󸀠, where 𝑋 is given in Theorem 12
and K is given in (3), the inverse problem of C𝑋󸀠 = 𝑏
has a unique solution in the class of the level-2 FLS (𝑅, 𝑟)-
retrocirculantmatrices of type (𝑚, 𝑛) if and only if the inverse
problem ofCK𝑋 = 𝑏 in a variableCK has a unique solution
in the class of the level-2 FLS (𝑅, 𝑟)-circulant matrices of type
(𝑚, 𝑛). By Lemma 3, CK𝑋 = 𝑏 if and only if A𝑋 = 𝑏. By
Theorem 12, we know that the inverse problem of A𝑋 = 𝑏
has a unique solution in the class of the level-2 FLS (𝑅, 𝑟)-
circulant matrices of type (𝑚, 𝑛) if and only if X𝑌 = 𝑏 has a
unique solution.

Theorem 15. The inverse problem of C𝑋󸀠 = 𝑏 has a unique
solution in the class of the level-2 FLS (𝑅, 𝑟)-retrocirculant
matrices of type (𝑚, 𝑛) if and only if 𝐼

𝑛
is the right largest

common factor of the matrix polynomial D(𝑥) and G(𝑥),
where D(𝑥) and G(𝑥) are given in Theorem 13 and 𝑋󸀠 and 𝑏
are given in Theorem 14.

Proof. From the proof of Theorem 14, we know that the
inverse problem of C𝑋󸀠 = 𝑏 has a unique solution in the
class of the level-2 FLS (𝑅, 𝑟)-retrocirculant matrices of type
(𝑚, 𝑛) if and only if the inverse problem of A𝑋 = 𝑏 has a
unique solution in the class of the level-2 FLS (𝑅, 𝑟)-circulant
matrices of type (𝑚, 𝑛). By Theorem 13, the inverse problem
ofA𝑋 = 𝑏 has a unique solution in the class of the level-2 FLS
(𝑅, 𝑟)-circulant matrices of type (𝑚, 𝑛) if and only if 𝐼

𝑛
is the

right largest common factor of the matrix polynomial D(𝑥)
andG(𝑥).

By Lemma 4 and Theorems 14 and 15, we have the
following fast algorithms for solving the unique solution of
the inverse problem ofC𝑋󸀠 = 𝑏 in the class of the level-2 FLS
(𝑅, 𝑟)-retrocirculant matrices of type (𝑚, 𝑛).

Step 1. From 𝑋󸀠 = (𝑥
(𝑚−1)1
, 𝑥
(𝑚−1)2
, . . . , 𝑥

(𝑚−1)𝑛
, . . . , 𝑥

01
, 𝑥
02
,

. . . , 𝑥
0𝑛
)
𝑇 and 𝑏 = (𝑏

01
, 𝑏
02
, . . . , 𝑏

0𝑛
, . . . , 𝑏

(𝑚−1)1
, 𝑏
(𝑚−1)2
, . . .,

𝑏
(𝑚−1)𝑛
)
𝑇, we get thematrix polynomialD(𝑥) = (𝑋

𝑚−1
−𝑋
0
)+

∑
𝑚−1

𝑖=1
𝑋
𝑚−1−𝑖
𝑥
𝑖 and H(𝑥) = (𝐵

𝑚−1
− 𝐵
0
) + ∑

𝑚−1

𝑖=1
𝐵
𝑚−1−𝑖
𝑥
𝑖,

where 𝑋
𝑖
= FLScirc

𝑟
(𝑥
𝑖𝑛
− 𝑥
𝑖1
, 𝑥
𝑖(𝑛−1)
, . . . , 𝑥

𝑖2
, 𝑥
𝑖1
) and 𝐵

𝑖
=

FLScirc
𝑟
(𝑏
𝑖𝑛
− 𝑏
𝑖1
, 𝑏
𝑖(𝑛−1)
, . . . , 𝑏

𝑖2
, 𝑏
𝑖1
), 𝑖 = 0, 1, . . . , 𝑚 − 1.

Step 2. Change the partitioned polynomial matrix
(
D(𝑥) H(𝑥)
G(𝑥) 0 ) into the partitioned polynomial matrix
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(
U(𝑥) V(𝑥)
0 S(𝑥) ) by a series of elementary row operations, where

G(𝑥) = 𝑥𝑚𝐼
𝑛
− 𝑥𝐼
𝑛
− 𝑅 and 𝑅 = FLScirc

𝑟
(𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑛−1
).

Step 3. If U(𝑥) = 𝐼
𝑛
, then the X = FLScirc

𝑅
(𝑋
𝑚−1
−

𝑋
0
, 𝑋
𝑚−2
, . . . , 𝑋

1
, 𝑋
0
) is nonsingular. So the inverse problem

of C𝑋󸀠 = 𝑏 has a unique solution C = V(ℵ
𝑅
)K in the

class of the level-2 FLS (𝑅, 𝑟)-retrocirculant matrices of type
(𝑚, 𝑛).

5. Numerical Examples

Example 1. Solve the FLS 𝑅-factor block circulant linear
system

A𝑋 = 𝑏, (29)

where A = FLScirc
𝑅
(𝐴
0
, 𝐴
1
), 𝑅 = ( 2 1

3 3
) , 𝐴
0
= (
1 2

6 3
) , 𝐴
1
=

(
1 0

0 1
), and 𝑏 = (0, 3, 0, 3)𝑇.
From A = FLScirc

𝑅
(𝐴
0
, 𝐴
1
), we get the polynomial

matrix

F (𝑥) = (
1 + 𝑥 2

6 3 + 𝑥
) , (30)

G (𝑥) = (
𝑥
2

− 𝑥 − 2 −1

−3 𝑥
2

− 𝑥 − 3
) , (31)

respectively.
Let 𝐶
0
= FLScirc

3
(𝑏
01
− 𝑏
02
, 𝑏
02
) = FLScirc

3
(3, 0) = (

3 0

0 3
),

𝐶
1
= FLScirc

3
(𝑏
11
− 𝑏
12
, 𝑏
12
) = FLScirc

3
(3, 0) = (

3 0

0 3
) ,

C (𝑥) = (𝐶
0
− 𝐶
1
) + 𝐶
1
𝑥 = (
3𝑥 0

0 3𝑥
) .

(32)

Then,

(
F (𝑥) C (𝑥)
G (𝑥) 0

)

= (

1 + 𝑥 2 3𝑥 0

6 3 + 𝑥 0 3𝑥

−2 − 𝑥 + 𝑥
2

−1 0 0

−3 −3 − 𝑥 + 𝑥
2

0 0

) .

(33)

We can change the above partitioned polynomial matrix
into the partitioned polynomial matrix

(
(
(
(
(

(

1 0 −
21

2
𝑥 −
25

2
𝑥
2

+
1

2
𝑥
3

+ 3𝑥
4

𝑧
1

0 1
21

2
𝑥 + 9𝑥

2
5

2
𝑥 −
5

2
𝑥
2

−
3

2
𝑥
3

0 0 ∗ ∗

0 0 ∗ ∗

)
)
)
)
)

)

,

(34)

where 𝑧
1
= −(5/2)𝑥+(5/3)𝑥

2

+(19/6)𝑥
3

−(1/3)𝑥
4

−(1/2)𝑥
5, by

a series of elementary row operations, where the polynomials
lying in ∗ need not to be known.

Since D(𝑥) = 𝐼
2
, then the FLS 𝑅-factor block circulant

linear system A𝑋 = 𝑏 has a unique solution. On the other
hand,

H (𝑥)

= (

−
21

2
𝑥 −
25

2
𝑥
2

+
1

2
𝑥
3

+ 3𝑥
4

𝑧
1

21

2
𝑥 + 9𝑥

2
5

2
𝑥 −
5

2
𝑥
2

−
3

2
𝑥
3

)

=(

−
21

2
−
5

2

21

2

5

2

)𝑥 +(

−
25

2

5

3

9 −
5

2

)𝑥
2

+(

1

2

19

6

0 −
3

2

)𝑥
3

+ (

3 −
1

3

0 0

)𝑥
4

+ (

0 −
1

2

0 0

)𝑥
5

,

(35)

where 𝑧
1
= −(5/2)𝑥+ (5/3)𝑥

2

+ (19/6)𝑥
3

− (1/3)𝑥
4

− (1/2)𝑥
5.

Substituting 𝑥 by ℵ
𝑅
in the above matrix polynomial

H(𝑥), we have the FLS 𝑅-factor block circulant matrix

E =H (ℵ
𝑅
) = (
−5 2

6 −3
) 𝐼
4
+ (
−11 5

15 −6
)ℵ
𝑅

= FLScirc
𝑅
(𝐸
0
, 𝐸
1
) ,

(36)

where 𝐸
0
= (
−5 2

6 −3
), 𝐸
1
= (
−11 5

15 −6
), and ℵ

𝑅
= (
0 𝐼
2

𝑅 𝐼
2

). Then
partitioned matrix is as follows:

(
𝐸
1

𝐸
0
+ 𝐸
1

) = (

−11 5

15 −6

−16 7

21 −9

) . (37)

So the unique solution of A𝑋 = 𝑏 is the last column of
the partitioned matrix ( 𝐸1

𝐸
0
+𝐸
1

); that is,𝑋 = (5, −6, 7, −9)𝑇.

Example 2. Find the solution of the inverse problem ofA𝑋 =
𝑏 in the class of the level-2 FLS (𝑅, 3)-circulant matrices of
type (2, 2), where 𝑋 = (0, 1, 2, 3)𝑇, 𝑏 = (1, 2, 1, 2)𝑇, and 𝑅 =
FLScirc

3
(1, 3).

From 𝑋 = (0, 1, 2, 3)𝑇, 𝑏 = (1, 2, 1, 2)𝑇, and 𝑅 =
FLScirc

3
(1, 3), we get the polynomial matrix

D (𝑥) = (
𝑥 2

6 2 + 𝑥
) , H (𝑥) = (

𝑥 𝑥

3𝑥 2𝑥
) , (38)

G (𝑥) = (
−1 − 𝑥 + 𝑥

2

−3

−9 −4 − 𝑥 + 𝑥
2
) , (39)
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respectively. Then,

(
D (𝑥) H (𝑥)
G (𝑥) 0

)

= (

𝑥 2 𝑥 𝑥

6 2 + 𝑥 3𝑥 2𝑥

−1 − 𝑥 + 𝑥
2

−3 0 0

−9 −4 − 𝑥 + 𝑥
2

0 0

) .

(40)

We can change the above partitioned polynomial matrix
into the partitioned polynomial matrix

[
[
[

[

1 0 𝑧
2
𝑧
3

0 1 𝑧
4
𝑧
5

0 0 ∗ ∗

0 0 ∗ ∗

]
]
]

]

, (41)

where 𝑧
2
= (19/127)𝑥−(63/508)𝑥

2

+(19/508)𝑥
3

+(3/508)𝑥
4,

𝑧
3
= (29/762)𝑥 − (185/1524)𝑥

2

+ (8/381)𝑥
3

+ (1/254)𝑥
4,

𝑧
4
= (267/254)𝑥 − (39/254)𝑥

2

− (9/254)𝑥
3, and 𝑧

5
=

(225/254)𝑥−(10/127)𝑥
2

−(3/127)𝑥
3, by a series of elementary

row operations, where the polynomials lying in ∗ need not to
be known.

Since U(𝑥) = 𝐼
2
, then the inverse problem of A𝑋 = 𝑏

has a unique solution in the class of the level-2 FLS (𝑅, 3)-
circulant matrices of type (2, 2). On the other hand,

V (𝑥) = (
𝑧
2
𝑧
3

𝑧
4
𝑧
5

)

= (

19

127

29

762

267

254

225

254

)𝑥 +(

−
63

508
−
185

1524

−
39

254
−
10

127

)𝑥
2

+(

19

508

8

381

−
9

254
−
3

127

)𝑥
3

+ (

3

508

1

254

0 0

)𝑥
4

,

(42)

where 𝑧
2
= (19/127)𝑥−(63/508)𝑥

2

+(19/508)𝑥
3

+(3/508)𝑥
4,

𝑧
3
= (29/762)𝑥−(185/1524)𝑥

2

+(8/381)𝑥
3

+(1/254)𝑥
4, 𝑧
4
=

(267/254)𝑥− (39/254)𝑥
2

−(9/254)𝑥
3, and 𝑧

5
= (225/254)𝑥−

(10/127)𝑥
2

− (3/127)𝑥
3.

Substituting 𝑥 by ℵ
𝑅
in the above matrix polynomial

V(𝑥), we know that a unique solution of the inverse problem
of A𝑋 = 𝑏 in the class of the level-2 FLS (𝑅, 3)-circulant
matrices of type (2, 2) is

A = V (ℵ
𝑅
) = −

1

127
(
77 47

141 124
) 𝐼
4

+
1

127
(
48 26

78 74
)ℵ
𝑅
= FLScirc

𝑅
(𝐴
0
, 𝐴
1
)

=
1

127
(

−77 −47 48 26

−141 −124 78 74

282 248 −29 −21

744 530 −63 −50

) ,

(43)

where 𝐴
0
= −(1/127) (

77 47

141 124
), 𝐴
1
= (1/127) (

48 26

78 74
), and

ℵ
𝑅
= (
0 𝐼
2

𝑅 𝐼
2

).

6. Conclusion

We give the definition and the basic properties of FLS 𝑅-
factor block circulant (retrocirculant) matrix over field F .
A fast algorithm for solving a FLS 𝑅-factor block circulant
linear system is presented, and extension is made to solve a
FLS 𝑅-factor block retrocirculant linear system by using the
relationship between a FLS 𝑅-factor block circulant matrix
and a FLS𝑅-factor block retrocirculant matrix. Sufficient and
necessary conditions of existence of the unique solution of the
inverse problemofA𝑋 = 𝑏 in the class of a FLS𝑅-factor block
circulant (retrocirculant) matrices over field F are presented.
Fast algorithms for solving the unique solution of the inverse
problem of A𝑋 = 𝑏 in the class of a FLS 𝑅-factor block
circulant (retrocirculant) matrices over F are given by using
the right largest common factor of the matrix polynomial.
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