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This paper proposes a scheduling strategy based on real-time pricing in smart grids. A hierarchical game is employed to analyze
the decision-making process of generators and consumers. We prove the existence and uniqueness of Nash equilibrium and utilize
a backward induction method to obtain the generation and consumption strategies. Then, we propose two dynamic algorithms
for the generators and consumers to search for the equilibrium in a distributed fashion. Simulation results demonstrate that the
proposed scheduling strategy can match supply with demand and shift load away from peak time.

1. Introduction

Matching supply with demand has been an active topic in
power systems. Traditionally, we have to provide enough gen-
eration capacity to meet peak demand [1]. This requires sub-
stantial infrastructures to be idle for all but a few days a year.
In recent years, demand response (DR) has been proposed
to reduce the peak demand by managing the consumption of
consumers [2]. DR can be implemented by various pricing
strategies, such as time of use (TOU), critical peak pricing
(CPP), extreme day CPP (ED-CPP), extreme day pricing
(EDP), and real-time pricing (RTP) [3]. For the RTP strategy,
the electricity price is published on a rolling basis. The price
for a given time period is determined before the start of the
period. With the development of smart grids, RTP can be
implemented within a shorter period.

Recently, game theory has been applied to the DR pro-
grams [4]. For instance, the congestion game was applied to
control the electricity consumption by dynamic pricing [5],
the noncooperative gamewas utilized to find the pricing con-
dition for demand response [6] and minimize the electricity
cost to consumers [7, 8], and the Stackelberg game was
applied to residential power scheduling [9], energy exchange
between electric vehicles and smart grids [10], and demand
response with one energy provider [11] and multiple energy

providers [12]. Nevertheless, few papers are devoted to the
DR program with the integration of generation scheduling.
In this study, we propose an integrated scheduling strategy
for the generators and the consumers based on a hierarchical
game approach and formulate the competitions among the
generators into a noncooperative game at the leader level.The
main contributions are as follows.

(i) The generation and consumption scheduling problem
is formulated as a hierarchical game, where the
generators act as the leaders and the consumers act
as the followers.

(ii) The existence and uniqueness of Nash equilibrium
are proved, and the optimal generation and consump-
tion strategies are obtained by a backward induction
method.

(iii) Two dynamic algorithms are proposed to search for
the optimal generation and consumption strategies in
a distributed fashion.

The rest of the paper is organized as follows.The schedul-
ing problem is formulated as a hierarchical game in Section 2.
We give the game analysis by the backward inductionmethod
in Section 3 and propose two dynamic algorithms to search
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Figure 1: Scheduling framework for smart grids.

for the equilibrium in Section 4. Section 5 shows the numer-
ical results. Finally, conclusions are summarized in Section 6.

2. Problem Formulation

As shown in Figure 1, we consider smart grids consisting
of generators, consumers, and an Independent Electricity
System Operator (IESO). The IESO is a nonprofit orga-
nization, which is responsible for operating the grids and
directing the operation of the participants by pricing. Each
consumer installs a smart meter to implement two-way
communicationswith the IESO.The intended operation cycle
is divided into 𝑇 time slots indexed by 𝑡 (𝑡 ∈ {1, 2, . . . , 𝑇}). In
each time slot, the generators determine the generation, and
then the consumers manage the consumption according to
the real-time price published by the IESO.

2.1. Consumer Level Formulation. Let 𝑅
𝑁
= {1, 2, . . . , 𝑁}

denote the set of consumers and x𝑡 = (𝑥𝑡
1
, . . . , 𝑥

𝑡

𝑖
, . . . , 𝑥

𝑡

𝑁
)

denote the consumption profile, where 𝑥𝑡
𝑖
is the consumption

of consumer 𝑖 (𝑖 ∈ 𝑅
𝑁
) in time slot 𝑡. To describe the profits

of consumers, we consider the following utility functionswith
linear decreasing marginal benefit [13]:

𝑊
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𝑖
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𝑖
) =
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(1)

where 𝜔𝑡
𝑖
(𝜔
𝑡

𝑖
> 0) represents the willingness to increase the

consumption in time slot 𝑡, and 𝜔𝑡
𝑖
/𝛼 denotes the maximal

demand for consumer 𝑖. For instance, the utility functions
with different 𝜔𝑡

𝑖
are shown in Figure 2, from which we see

that the utility function𝑊
𝑖
(⋅) has the following properties:

(i) 𝑊
𝑖
(⋅) is increasing with 𝑥𝑡

𝑖
, for 𝑖 ∈ 𝑅

𝑁
;

(ii) 𝑊
𝑖
(⋅) is a strictly concave function of 𝑥𝑡

𝑖
, for 𝑖 ∈ 𝑅

𝑁
;

(iii) 𝑊
𝑖
(⋅) equals zero if 𝑥𝑡

𝑖
= 0, for 𝑖 ∈ 𝑅

𝑁
.

Then, we can define the payoff of consumer 𝑖 as

𝑈
𝑐

𝑖
(x𝑡) = 𝛾𝑊

𝑖
(𝑥
𝑡

𝑖
, 𝜔
𝑡

𝑖
) − 𝑝
𝑡
𝑥
𝑡

𝑖
, (2)

where 𝑝𝑡 is the electricity price, and 𝛾 is a positive parameter.
Each consumer manages the consumption to maximize its

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

50

55

Electricity consumption (kW)

C
on

su
m

er
 p

ro
fit

Maximal demand
10, 𝛼 = 1

8, 𝛼 = 1

6, 𝛼 = 1

𝜔
t
i =

𝜔
t
i =

𝜔
t
i =

Figure 2: Utility functions.

payoff, which can be described as the following optimization
problems:

(𝑥
𝑡

𝑖
)
∗

= arg max
0≤𝑥
𝑡

𝑖
≤𝜔
𝑡

𝑖
/𝛼

𝑈
𝑐

𝑖
(x𝑡) , 𝑖 ∈ 𝑅

𝑁
. (3)

2.2. Generator Level Formulation. The generators aim to
maximize the profit without too much generation cost. Thus,
the payoff of generator 𝑘 is defined as

𝑈
𝑔

𝑘
(L𝑡) = 𝑝𝑡𝐿𝑡

𝑘
− 𝐶 (𝐿

𝑡

𝑘
) , (4)

where 𝑝𝑡𝐿𝑡
𝑘
and𝐶(𝐿𝑡

𝑘
) are the profit and the cost to generator

𝑘, respectively. As shown in Figure 3, the generation cost is
defined as a quadratic function [14]:

𝐶 (𝐿
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)
2
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𝑘
+ 𝑒
𝑘
, (5)

where 𝐿𝑡
𝑘
denotes the generation of generator 𝑘 in time slot 𝑡.

The generation profile is denoted asL𝑡 = (𝐿𝑡
1
, . . . , 𝐿

𝑡

𝑘
, . . . , 𝐿

𝑡

𝐾
).

The parameters 𝑏
𝑘
, 𝑑
𝑘
, and 𝑒

𝑘
are positive. Then, the optimal

generation can be obtained from the following optimization
problems:

(𝐿
𝑡

𝑘
)
∗

= argmax
𝐿
𝑡

𝑘

𝑈
𝑔

𝑘
(L𝑡) , 𝑘 ∈ 𝑅

𝐾
, (6)

where 𝑅
𝐾
= {1, 2, . . . , 𝐾} denotes the set of generators.

2.3. IESO Pricing Model. The IESO operates the wholesale
markets and sets the electricity price to balance the sup-
ply and the demand. Following the principle of locational
marginal pricing (LMP), the price needs to reflect the value of
electricity at a specific location at the time that it is delivered.
To this end, we construct a real-time pricing function based
on the difference between the demand and the supply:

𝑝
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0
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𝑘
) , (7)
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Figure 3: Cost functions.

where 𝑝
0
(𝑝
0
> 0) is a basic price. The parameter 𝜆 (𝜆 > 0)

is to implement the elastic pricing such that the supply can
meet the demand.

3. Analysis of Hierarchical Game

In smart grids, the IESO can acquire information from the
consumers based on an advanced metering infrastructure
(AMI). Thus, the generation scheduling and the consump-
tion scheduling are performed with information asymmetry.
Specifically, the generators determine the generation first, and
then the consumers manage the consumption in response.
This multistage decision process can be formulated as a
hierarchical game consisting of a generator level subgame and
a consumer level subgame. In particular, the generators act
as the leaders, and the consumers act as the followers. Next,
we utilize the backward induction method to analyze the
hierarchical game and omit 𝑡 for convenience in the following
sections.

3.1. Consumer Level Subgame. We first give the definitions of
the consumer level subgame and the Nash equilibrium in the
game [15].

Definition 1. A consumer level subgame is defined as a triple
𝐶𝐺 = {𝑅

𝑁
, (𝑆
𝑖
)
𝑖∈𝑅
𝑁

, (𝑈
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𝑖
(x))
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𝑁

}, where𝑅
𝑁
is the set of active

consumers participating in the game, 𝑆
𝑖
= {𝑥
𝑖
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𝑖
≤
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𝑖
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is the payoff function.

Definition 2. An energy consumption profile x∗ is a Nash
equilibrium in the consumer level subgame if 𝑈𝑐

𝑖
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𝑖
∈ 𝑆
𝑖
, where 𝑥

−𝑖
is an energy con-

sumption profile of all consumers except for consumer 𝑖, and
𝑈
𝑐

𝑖
(𝑥
∗

𝑖
, 𝑥
∗

−𝑖
) denotes the payoff function of consumer 𝑖 given

the energy consumption of the other consumers.

It is noted that the Nash equilibrium is a set of strategies
where no one has an incentive to change unilaterally. Differ-
entiating 𝑈𝑐

𝑖
(x) with respect to 𝑥

𝑖
, we have
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) .

(9)

According to Definition 2, we know that the Nash equilib-
rium can be obtained from ℎ

𝑖
(x) = 0, which gives the

following equations:

𝛾𝜔
𝑖
− 𝛾𝛼𝑥

𝑖
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0
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𝑘
) = 0. (10)

Next, we derive the Nash equilibrium in the following theo-
rem.

Theorem 3. The consumer level subgame 𝐶𝐺 has a unique
Nash equilibrium if

𝑝
0
≤
𝛾𝛼

𝑁 − 3
, (11)

and the equilibrium is given as

𝑥
∗

𝑖
=

𝛾𝜔
𝑖
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0
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0
) − 𝑝
0
𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖

(𝛾𝛼 + 𝑝
0
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0
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0
)

+

𝑝
0
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0
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𝑘∈𝑅
𝐾
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0
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0
) (𝛾𝛼 + 𝑝

0
)
.

(12)

Proof. The constraints (11) can be obtained directly from the
pricing condition in [6], and the consumer level subgame has
a unique Nash equilibrium. Next, we will give the explicit
expression of the unique equilibrium. From (10), we have

𝛾𝜔
𝑖
− (𝛾𝛼 + 𝑝

0
) 𝑥
𝑖
= 𝑝
0
(∑

𝑖∈𝑅
𝑁

𝑥
𝑖
− 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
𝑘
) . (13)

Adding the two sides of (13) from 1 to𝑁, we obtain

∑

𝑖∈𝑅
𝑁

𝑥
𝑖
=

𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖
+ 𝜆𝑁𝑝

0
∑
𝑘∈𝑅
𝐾

𝐿
𝑘

𝛾𝛼 + 𝑝
0
+ 𝑁𝑝
0

. (14)

Then, the optimal consumption (12) is obtained by substitut-
ing (14) into (13).



4 Journal of Applied Mathematics

The objective of the IESO is to achieve the balance
between supply and demand:

∑

𝑖∈𝑅
𝑁

𝑥
𝑖
= ∑

𝑘∈𝑅
𝐾

𝐿
𝑘
. (15)

Combining with (14), we calculate the pricing parameter 𝜆 as

𝜆 =

(𝛾𝛼 + 𝑝
0
+ 𝑁𝑝
0
)∑
𝑘∈𝑅
𝐾

𝐿
𝑘
− 𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖

𝑁𝑝
0
∑
𝑘∈𝑅
𝐾

𝐿
𝑘

. (16)

Substituting (15) and (16) into (7), we obtain the pricing func-
tion:

𝑝
∗
=

𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖
− (𝛾𝛼 + 𝑝

0
)∑
𝑘∈𝑅
𝐾

𝐿
𝑘

𝑁
, (17)

with which, the balance between supply and demand is
achieved.

3.2. Generator Level Subgame. In this section,we consider the
profit allocation among the generators with the knowledge of
pricing function in (17). Substituting (17) into (4), we obtain
the payoff of generator 𝑘:

𝑈
𝑔

𝑘
(L) =

𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖
− (𝛾𝛼 + 𝑝

0
)∑
𝑘∈𝑅
𝐾

𝐿
𝑘

𝑁
𝐿
𝑘

− 𝑏
𝑘
𝐿
2

𝑘
− 𝑑
𝑘
𝐿
𝑘
− 𝑒
𝑘
.

(18)

Then, the generator level subgame can be defined as follows.

Definition 4. A generator level subgame is defined as a triple
𝐺𝐺 = {𝑅

𝐾
, (𝑆
𝑘
)
𝑘∈𝑅
𝐾

, (𝑈
𝑔

𝑘
(L))
𝑘∈𝑅
𝐾

}, where 𝑅
𝐾
is the set of

active generators participating in the game, 𝑆
𝑘
is the set of

possible strategies that generator 𝑘 can take, and the payoff is
denoted by (18).

Next, we need to study the existence and uniqueness of
the Nash equilibrium for the generator level subgame 𝐺𝐺,
which requires the following lemma.

Lemma 5 (see [16]). A Nash equilibrium exists in the genera-
tor level subgame 𝐺𝐺 = {𝑅

𝐾
, (𝑆
𝑘
)
𝑘∈𝑅
𝐾

, (𝑈
𝑔

𝑘
(L))
𝑘∈𝑅
𝐾

}, if for all
𝑘 ∈ 𝑅
𝐾
,

(1) 𝑆
𝑘
is a nonempty, convex, and compact subset of some

Euclidean space R𝐾;
(2) 𝑈𝑔
𝑘
(L) is continuous in L and quasiconcave in 𝐿

𝑘
.

Theorem 6. The generator level subgame 𝐺𝐺 has a unique
Nash equilibrium if

(𝐾 − 3) (𝑝0 + 𝛾𝛼) ≤ 2𝑁𝑏𝑘. (19)

Proof. Let the strategy set 𝑆
𝑘
be a nonempty, convex, and

compact subset of some Euclidean space R𝐾. From (18), we
know that𝑈𝑔

𝑘
(L) is continuous in L. Taking the second order

derivative of 𝑈𝑔
𝑘
(L) with respect to 𝐿

𝑘
, we have

𝜕
2
𝑈
𝑔

𝑘
(L)

𝜕𝐿
2

𝑘

= −
2𝛾𝛼 + 2𝑝

0

𝑁
− 2𝑏
𝑘
. (20)

It is straightforward to see that the second order derivative
of 𝑈𝑔
𝑘
(L) with respect to 𝐿

𝑘
is negative, and thus 𝑈𝑔

𝑘
(L) is

concave in 𝐿
𝑘
. According to Lemma 5, we conclude that the

generator level subgame 𝐺𝐺 has at least one or more Nash
equilibriums.

For each 𝑈𝑔
𝑘
(L), differentiating it with respect to 𝐿

𝑘
, we

obtain

ℎ
𝑘 (L) =

𝜕𝑈
𝑔

𝑘
(L)

𝜕𝐿
𝑘

= −(
𝛾𝛼 + 𝑝

0

𝑁
+ 2𝑏
𝑘
) 𝐿
𝑘

+

𝛾∑
𝑖∈𝑅
𝑁

𝜔
𝑖
− (𝛾𝛼 + 𝑝

0
)∑
𝑘∈𝑅
𝐾

𝐿
𝑘

𝑁
− 𝑑
𝑘
,

(21)

and differentiating 𝜕𝑈𝑔
𝑘
(L)/𝜕𝐿

𝑘
with respect to 𝐿

𝑘
and 𝐿

𝑙
, (𝑙 ∈

𝑅
𝑘
, 𝑙 ̸= 𝑘), respectively, we obtain the Jacobian matrix:

J =

[
[
[
[
[
[
[
[
[
[
[

[

𝜕ℎ
1 (L)
𝜕𝐿
1

𝜕ℎ
1 (L)
𝜕𝐿
2

. . .
𝜕ℎ
1 (L)
𝜕𝐿
𝐾

𝜕ℎ
2 (L)
𝜕𝐿
1

𝜕ℎ
2 (L)
𝜕𝐿
2

. . .
𝜕ℎ
2 (L)
𝜕𝐿
𝐾

...
... d

...
𝜕ℎ
𝐾 (L)
𝜕𝐿
1

𝜕ℎ
𝐾 (L)
𝜕𝐿
2

. . .
𝜕ℎ
𝐾 (L)
𝜕𝐿
𝐾

]
]
]
]
]
]
]
]
]
]
]

]

. (22)

We construct a matrix H = J + J𝑇,

H =

[
[
[
[
[
[
[
[
[
[
[

[

−
4𝛾𝛼 + 4𝑝

0

𝑁
− 4𝑏
𝑘

−
2𝛾𝛼 + 2𝑝

0

𝑁
. . . −

2𝛾𝛼 + 2𝑝
0

𝑁

−
2𝛾𝛼 + 2𝑝

0

𝑁
−
4𝛾𝛼 + 4𝑝

0

𝑁
− 4𝑏
𝑘
. . . −

2𝛾𝛼 + 2𝑝
0

𝑁

...
... d

...
−
2𝛾𝛼 + 2𝑝

0

𝑁
−
2𝛾𝛼 + 2𝑝

0

𝑁
. . . −

4𝛾𝛼 + 4𝑝
0

𝑁
− 4𝑏
𝑘

]
]
]
]
]
]
]
]
]
]
]

]

. (23)
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Given the constraints (19), H is strictly diagonally dominant,
and all its diagonal elements are negative. Following Gersh-
gorin’s theorem [17],H is negative definite.Thus, the generator
level subgame has a unique Nash equilibrium [18].

Remark 7. To implement RTP in smart grids, we choose
the linear pricing function. The reasons are as follows. First,
according to the technical report from U. S. Department of
Energy [19], the electricity price is almost linearly increased
with the total load. Second, a pricing condition in [6]
shows that the linear pricing function is sufficient to make
the demand response stable. Last but not least, the linear
pricing function is easy to ensure the existence of a unique
Nash equilibrium and derive the explicit expression of the
Nash equilibrium in the consumer level subgame, which is
necessary to the backward induction method in hierarchical
model. In practice, the pricing function (7) is not necessary
to be linear. For example, we can also choose the quadratic
pricing function.

𝑝 = 𝑝
0
(∑

𝑖∈𝑅
𝑁

𝑥
𝑖
− 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
𝑘
)

2

+ 𝑝
1
. (24)

Substituting (24) into the payoff function (2), we obtain

𝑈
𝑐

𝑖
(x) = 𝛾𝑊𝑖 (𝑥𝑖, 𝜔𝑖)

− (𝑝
0
(∑

𝑖∈𝑅
𝑁

𝑥
𝑖
− 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
𝑘
)

2

+ 𝑝
1
)𝑥
𝑖
.

(25)

Then, we can obtain the second derivative of the payoff
function (25) with respect to 𝑥

𝑖
:

𝜕
2
𝑈
𝑐

𝑖
(x)

𝜕𝑥
2

𝑖

= −𝛾𝜃

− 4𝑝
0
(∑

𝑖∈𝑅
𝑁

𝑥
𝑖
− 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
𝑘
) − 2𝑝

0
𝑥
𝑖
.

(26)

We can choose sufficient small 𝜆 to make the second
derivative (26) negative, that is, the existence of Nash equi-
librium. However, it is infeasible to find the conditions of
𝜆 to ensure (26) always to be negative. Further, we cannot
obtain the explicit expression of the Nash equilibrium from
𝜕𝑈
𝑐

𝑖
(x)/𝜕𝑥

𝑖
= 0.

Remark 8. For the LMP in wholesale electricity markets, we
need to set different prices for different areas in the power
system. In fact, the proposed pricing function (7) can be seen
as the electricity price at a specific area in one time slot, and
(∑
𝑖∈𝑅
𝑁

𝑥
𝑖
−𝜆∑
𝑘∈𝑅
𝐾

𝐿
𝑘
) describes the power usage in the area.

For a predefined pricing parameter 𝜆, we see that the price is
increased with the difference between the total load and the
total supply, which consists with the roles of LMP.

Remark 9. The scheduling model proposed in this work only
deals with the power balance in one area. In practice, we
need to consider the scheduling with operating constraints,

for example, power flow between different areas, which will
introduce the voltage phase angles to the pricing function. In
that case, the pricing function is defined as

𝑝
𝑐
= 𝑝
0
(∑

𝑖∈𝑅
𝑁

𝑥
𝑡

𝑖
− 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
𝑡

𝑘
) + 𝐵

𝑛𝑚
(𝛿
𝑛
− 𝛿
𝑚
) , (27)

where 𝑛 and 𝑚 are the indices of different areas in power
system, 𝐵

𝑛𝑚
is the susceptance of bus 𝑛−𝑚, and 𝛿

𝑛
and 𝛿
𝑚
are

the voltage phase angles of area 𝑛 and𝑚, respectively. In this
study, 𝛿

𝑛
and 𝛿

𝑚
are neglected because we only consider the

electricity scheduling in one area. For electricity scheduling
in the whole power system, we also need to consider the
transmission congestion on the transmission line, which
requires additional pricing models. The pricing method to
solve the transmission congestion is out of the scope of this
study.

4. Distributed Algorithms
and Implementations

4.1. Iterative Algorithms. In smart grids, the generators and
the consumers need to search for the optimal generation
and consumption in a distributed fashion. We propose two
distributed iterative algorithms to search for the optimal
generation and consumption. The generation scheduling
algorithm for generator 𝑘 is defined as

𝐿
𝑘 (𝑛 + 1) = [𝐺𝑘 (L)]

+

= [𝐿
𝑘 (𝑛) + 𝜇𝑘ℎ𝑘 (L)]

+

= [𝐿
𝑘 (𝑛) + 𝜇𝑘 (𝑝 (𝑛) −

𝛾𝛼 + 𝑝
0

𝑁
𝐿
𝑘 (𝑛)

− 2𝑏
𝑘
𝐿
𝑘 (𝑛) − 𝑑𝑘)]

+

,

(28)

where 𝑝(𝑛) is the price to be announced to the generators for
generation scheduling:

𝑝 (𝑛) = 𝑝0 (1 − 𝜆) ∑

𝑘∈𝑅
𝐾

𝐿
𝑘 (𝑛) . (29)

The consumption scheduling algorithm for consumer 𝑖 is
defined as

𝑥
𝑖 (𝑚 + 1) = [𝐺𝑖 (x)]

+
= [𝑥
𝑖 (𝑚) + 𝜃𝑖ℎ𝑖 (x)]

+

= [𝑥
𝑖 (𝑚) + 𝜃𝑖 (𝛾𝜔𝑖 − (𝛾𝛼 + 𝑝0) 𝑥𝑖 (𝑚) − 𝑝 (𝑚)) ]

+
,

(30)

where 𝑝(𝑚) is the price published to the consumers for
consumption scheduling:

𝑝 (𝑚) = 𝑝0(∑

𝑖∈𝑅
𝑁

𝑥
𝑖 (𝑚) − 𝜆 ∑

𝑘∈𝑅
𝐾

𝐿
∗

𝑘
) . (31)

In the iterative algorithms, 𝑚 and 𝑛 are iterative steps, and
𝜇
𝑘
and 𝜃
𝑖
are step sizes. Algorithms (28) and (30) are imple-

mented on different time scales. Specifically, the generators
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Input: 𝐿
𝑘
(1) = 0.1; 𝑥

2
(1) = 0.1; 𝑛 = 0;𝑚 = 0; 𝑡 = 0;

𝑅
𝐾
= {1, 2, . . . , 𝐾}; 𝑅

𝑁
= {1, 2, . . . , 𝑁};

Output: Optimal 𝑝∗; 𝐿∗
𝑘
; 𝑥∗
𝑖
;

While 𝑡 < 24 do
𝑡 ← 𝑡 + 1

While 󵄨󵄨󵄨󵄨𝐿𝑘(𝑛 + 1) − 𝐿𝑘(𝑛)
󵄨󵄨󵄨󵄨 < 𝜀 do

𝑛 ← 𝑛 + 1;
𝑝 (𝑛) = 𝑝

0
(1 − 𝜆) Σ

𝑘∈𝑅𝐾
𝐿
𝑘
(𝑛);

for all 𝑘 ∈ 𝑅
𝐾
do

𝐿
𝑘
(𝑛 + 1) = [𝐿

𝑘
(𝑛) + 𝜇ℎ

𝑘
(L)]+;

end for
end while
while 󵄨󵄨󵄨󵄨𝑥𝑖(𝑚 + 1) − 𝑥𝑖(𝑚)

󵄨󵄨󵄨󵄨 < 𝜀 do
𝑚 ← 𝑚 + 1;
𝑝(𝑚) = 𝑝

0
(Σ
𝑖∈𝑅𝑁
𝑥
𝑖
(𝑚) − 𝜆Σ

𝑘∈𝑅𝐾
𝐿
∗

𝑘
));

for all 𝑖 ∈ 𝑅
𝑁
do

𝑥
𝑖
(𝑚 + 1) = [𝑥

𝑖
(𝑚) + 𝜃ℎ

𝑖
(x)]+;

end for
end while

end while

Algorithm 1: Distributed electricity scheduling.

first search for the optimal generation 𝐿∗
𝑘
by algorithm (28),

and then the consumers search for the optimal consumption
by algorithm (30). The pricing function (29) is equal to the
pricing function (31) at the Nash equilibrium because of
the balance between supply and demand. Since the price is
known to the generators and the consumers, the iterative
algorithms (28) and (30) in a distributed fashion. Next, we
give the convergence conditions of the algorithms.

Proposition 10. Suppose the generator level subgame 𝐺𝐺 has
a unique inner Nash equilibrium L∗. The dynamic algorithm
(28) converges to the unique Nash equilibrium if

𝜇
𝑘
<

2𝑁

(𝑁 + 1) (𝛾𝛼 + 𝑝0) + 2𝑁𝑏𝑘

, 𝑘 ∈ 𝑅
𝐾
. (32)

Proposition 11. Suppose the consumer level subgame 𝐶𝐺 has
a unique inner Nash equilibrium x∗. The dynamic algorithm
(30) converges to the unique Nash equilibrium if

𝜃
𝑖
<

2

𝛾𝛼 + (𝑁 + 1) 𝑝0

, 𝑖 ∈ 𝑅
𝑁
. (33)

The proofs are omitted here. Interesting readers can find
the details in [6].

4.2. Implementations. In this section, we provide distributed
implementations for the scheduling strategy in smart grids.
The programming pseudocode of the scheduling strategy is
given in Algorithm 1. Specifically, the generators compete
to maximize the payoff (18) and search for the optimal
generation by algorithm (28).Then, the consumers decide the
optimal consumption by algorithm (30). Both of the prices
(29) and (31) are announced by the IESO.

5. Numerical Results

In the simulations, the entire time cycle is divided into 24
time slots representing 24 hours in a day. The numbers of
consumers and generators are set to be 100 and 5, respectively.
Before giving the numerical results, we define the daily
average price as

𝑝 =

∑
24

𝑡=1
𝑝
𝑡
(∑
𝑖∈𝑅
𝑁

𝑥
𝑡

𝑖
)

∑
24

𝑡=1
∑
𝑖∈𝑅
𝑁

𝑥
𝑡

𝑖

. (34)

To characterize the peak load shifting, we adopt the peak-to-
average ratio (PAR) defined in [7].

PAR =
24max

𝑡∈{1,...,24}
∑
𝑖∈𝑅
𝑁

𝑥
𝑡

𝑖

∑
24

𝑡=1
∑
𝑖∈𝑅
𝑁

𝑥
𝑡

𝑖

. (35)

The balance between the total electricity consumption
and the supply is shown in Figure 4 for the RTP-based
scheduling strategy. In comparison, the difference between
the total electricity consumption and the supply is large for
the flat pricing-based scheduling strategy. From Figure 5, we
see that the RTP-based scheduling strategy can implement
peak load shifting by flexible pricing. Specifically, the IESO
increases the price at the peak time and decreases the price at
the non-peak time. We show the convergence of algorithms
(28) and (30) in Figures 6 and 7, respectively. The results
indicate that the generators and the consumers can both
search for the optimal strategies within 30 iterations, which
demonstrate the rapid convergence speed.

We compare the average price, the PAR, and the daily
load in Table 1. The results demonstrate that the RTP-based
scheduling strategy lowers the average price compared with
the flat pricing-based scheduling strategy and also reduces
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Table 1: Comparison of the scheduling strategies with RTP and flat
pricing.

Pricing strategy Average price
(cents/kWh) PAR Daily load

(kWh)
Flat pricing 12.9 1.17 2402.5

RTP 12.6 1.10 2309.3
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Figure 7: Convergence of algorithm (30).

the PAR. Furthermore, the daily load under the RTP-based
scheduling strategy is smaller than that under the flat pricing-
based scheduling strategy, which indicates the advantage of
electricity saving.

6. Conclusions

In this paper, we propose a RTP-based scheduling strategy
based on the hierarchical game in smart grids, where the
generators act as the leaders and the consumers act as the fol-
lowers. The distributed scheduling algorithms are proposed
to be implemented by the generators and the consumers
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with rapid convergence speed. It is shown that the RTP-
based scheduling strategy outperforms the flat pricing-based
scheduling strategy in terms of the load matching and
load shifting and reduces the average price, the daily load,
and the PAR. This can benefit both the consumers and
the generators in electricity markets. In the future, we will
consider the robustness of the proposed scheduling strategy
with disturbances and delays.
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