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Comparison theorems between the spectral radii of different matrices are useful tools for judging the efficiency of preconditioners.
In this paper, some comparison theorems for the spectral radii of matrices arising from proper splittings of different semimonotone
matrices are presented.

1. Introduction and Preliminaries

Let 𝑂 be the null matrix with suitable size. The notation
𝐴 ≥ 𝑂 (𝐴 > 𝑂) denotes that all entries of matrix 𝐴 are
nonnegative (positive), and in this case matrix 𝐴 is called
nonnegative (positive). For two real 𝑚 × 𝑛 matrices, 𝐴, 𝐵,
𝐴 ≥ 𝐵 (𝐴 > 𝐵)means that𝐴−𝐵 ≥ 𝑂 (𝐴−𝐵 > 𝑂). The same
notation is valid for vectors. A real rectangular𝑚 × 𝑛matrix
𝐴 is said to be semimonotone if 𝐴† ≥ 𝑂 [1]; here 𝐴† is the
Moore-Penrose inverse of𝐴, that is, the unique matrix which
satisfies the Moore-Penrose equation 𝐴𝐴†𝐴 = 𝐴, 𝐴†𝐴𝐴† =
𝐴
†, (𝐴𝐴†)𝑇 = 𝐴𝐴†, and (𝐴†𝐴)𝑇 = 𝐴†𝐴 (𝐵𝑇 denotes the

transpose of 𝐵); see [2, 3].
Real rectangular linear system of the form

𝐴𝑥 = 𝑏, (1)
where𝐴 is a real𝑚×𝑛matrix and 𝑏 is a real𝑚-vector, appears
in many areas of mathematics. For example, finite difference
discretization of partial differential equations with Neumann
boundary conditions. Iterative methods for solving (1) can be
formulated by the decomposition of 𝐴 as 𝐴 = 𝑈 − 𝑉 [4], and
the approximation solution of (1) is generated by

𝑥
(𝑘+1)
= 𝑈
†
𝑉𝑥
(𝑘)
+ 𝑈
†
𝑏. (2)

The decomposition 𝐴 = 𝑈−𝑉 is called a proper splitting
if 𝑅(𝐴) = 𝑅(𝑈) and 𝑁(𝐴) = 𝑁(𝑈) [4], where 𝑅(𝐴) and

𝑁(𝐴) are the range and kernel of 𝐴, respectively. Let 𝜌(𝐶) be
the spectral radius of the real square matrix 𝐶; then, for the
proper splitting𝐴 = 𝑈−𝑉, the iterative scheme (2) converges
to the minimal norm least square solution 𝑥 = 𝐴†𝑏 of (1) for
any initial vector 𝑥0 if and only if 𝜌(𝑈†𝑉) < 1 [4, Corollary
1]. In this case, we say that the proper splitting 𝐴 = 𝑈 − 𝑉 is
a convergent splitting. Moreover, the fact that 𝑈 = 𝐴 + 𝑉 is
a proper splitting, as 𝐴 = 𝑈 − 𝑉 is a proper splitting, implies
that 𝜌(𝐴†𝑉) < 1 and 𝐼 + 𝐴†𝑉 is invertible, so we have 𝑈† =
(𝐼 +𝐴

†
𝑉)
−1
𝐴
† [1, Theorem 2.2] and𝑈†𝑉 = (𝐼 +𝐴†𝑉)−1𝐴†𝑉.

The next lemma shows the relation between the eigenvalues
of 𝑈†𝑉 and 𝐴†𝑉.

Lemma 1 (see [1, Lemma 2.6]). Let 𝐴 = 𝑈 − 𝑉 be a proper
splitting of real 𝑚 × 𝑛 matrix 𝐴. Let 𝜇𝑖, 1 ≤ 𝑖 ≤ 𝑠, and 𝜆𝑗, 1 ≤
𝑗 ≤ 𝑠, be the eigenvalues of 𝑈†𝑉 and 𝐴†𝑉, respectively. Then
for every 𝑗, we have 1 + 𝜆𝑗 ̸= 0. Also, for every 𝑖, there exists 𝑗
such that 𝜇𝑖 = (𝜆𝑗/(1 + 𝜆𝑗)) and, for every 𝑗, there exists 𝑖 such
that 𝜆𝑗 = (𝜇𝑖/(1 − 𝜇𝑖)).

For nonnegative matrix, there is a well-known result
which is shown next.

Lemma 2 (see [5, Theorem 2.21]). Let 𝐴, 𝐵 be 𝑛 × 𝑛matrices;
if 𝐴 ≥ 𝐵 ≥ 𝑂, then 𝜌(𝐴) ≥ 𝜌(𝐵).
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Using the notation of nonnegative matrix, the proper
regular and proper weak regular splittings, which are the
natural extensions of the regular and weak regular splittings
of a real square matrix [5, 6], are defined as follows.

Definition 3. For a real𝑚×𝑛matrix𝐴, the splitting𝐴 = 𝑈−𝑉
is called

(1) proper regular splitting if it is a proper splitting such
that 𝑈† ≥ 𝑂 and 𝑉 ≥ 𝑂 [7, Definition 1], [8,
Definition 1.2];

(2) proper weak regular splitting of first type if it is a
proper splitting such that 𝑈† ≥ 𝑂 and 𝑈†𝑉 ≥ 𝑂;
proper weak regular splitting of second type if it is a
proper splitting such that 𝑈† ≥ 𝑂 and 𝑉𝑈† ≥ 𝑂 [7,
Definition 1], [8, Definition 1.2].

It should be remarked that Jena et al. [8] only considered
proper weak regular splitting of first type; they name it as
proper weak regular splitting. The existence of the proper
splitting is discussed in [4]; there is an example in [4] to show
how to construct such splitting.

Let 𝐴 = 𝑈 −𝑉 be a proper regular splitting of 𝐴; Berman
and Plemmons in [4] showed that 𝜌(𝑈†𝑉) < 1 if and only if
𝐴
†
≥ 𝑂. Other convergence results of proper regular and/or

weak regular splitting can be found in [8, 9]. Comparison
theorems between the spectral radii of matrices are useful
tools for analyzing the rate of convergence of iterative meth-
ods or for judging the efficiency of preconditioners [8, 10–12].
There is also a connection to population dynamics [11]. Some
comparison theorems of proper splittings of a semimonotone
matrix are established recently in [8, 13].

Our basic purpose here is to give a new convergence
theorem for proper weak regular splitting of a semimono-
tone matrix and to derive the comparison theorems of
proper regular and proper weak regular splittings of different
semimonotone matrices. The condition of new convergence
theorem is weaker than that in [8], and the comparison
results generalized the corresponding results in [5, 8, 11].
The comparison results can be further used for judging the
efficiency of the preconditioners.

2. Main Results

Recall that the proper regular splitting of a semimonotone
matrix is a convergent splitting [4, 8]. For properweak regular
splitting of a semimonotone matrix, we have the following
convergence theorem.

Theorem 4. Let 𝐴 = 𝑈 − 𝑉 be a proper weak regular splitting
(of any type) of real𝑚 × 𝑛matrix 𝐴. If 𝐴† ≥ 𝑂 and 𝐴†𝑉 ≥ 𝑂,
then

𝜌 (𝑉𝑈
†
) = 𝜌 (𝑈

†
𝑉) =

𝜌 (𝐴
†
𝑉)

1 + 𝜌 (𝐴†𝑉)
< 1. (3)

Proof. Note that 𝐴†𝑉 ≥ 𝑂; the proof is essentially analogous
to that in [8]. We omit it here.

Remark 5. Jena et al. [8] concluded that, for a proper weak
regular splitting of real 𝑚 × 𝑛 matrix 𝐴, the convergence
conditions are 𝐴† ≥ 𝑂 and 𝑉 ≥ 𝑂, so the condition of
Theorem 4 is weaker than that in [8]. To see this, let

𝐴 = [
2 −1 0

−3 2 0
] , 𝑈 [

2 0 0

−3 1 0
] , 𝑉 = [

0 1 0

0 −1 0
] .

(4)

Then 𝐴 is a semimonotone matrix and𝐴 = 𝑈−𝑉 is a proper
weak regular splitting of𝐴. It is easy to see that𝐴†𝑉 ≥ 𝑂 and
𝜌(𝑈
†
𝑉) = 0.5 < 1, but 𝑉 ≥ 𝑂 does not hold.

Let 𝐴1 and 𝐴2 be two semimonotone matrices and let
𝐴1 = 𝑈1 − 𝑉1 and 𝐴2 = 𝑈2 − 𝑉2 be proper splittings
of 𝐴1 and 𝐴2, respectively. In what follows, we will present
the comparison results between 𝜌(𝑈†

1
𝑉1) and 𝜌(𝑈

†

2
𝑉2). The

comparison theorems for proper regular splittings are given
first.

Theorem 6. Let 𝐴1 and 𝐴2 be two semimonotone matrices
and let 𝐴1 = 𝑈1 − 𝑉1 and 𝐴2 = 𝑈2 − 𝑉2 be proper regular
splittings of 𝐴1 and 𝐴2, respectively. If 𝐴†2 ≥ 𝐴

†

1
and 𝑉2 ≥ 𝑉1,

then

𝜌 (𝑈
†

1
𝑉1) ≤ 𝜌 (𝑈

†

2
𝑉2) < 1. (5)

Proof. As 𝐴1 and 𝐴2 are semimonotone matrices and 𝐴1 =
𝑈1 − 𝑉1 and 𝐴2 = 𝑈2 − 𝑉2 are proper regular splittings, it
follows from [4] that 𝜌(𝑈†

𝑖
𝑉𝑖) < 1 for 𝑖 = 1, 2. Thus all we

need to show is 𝜌(𝑈†
1
𝑉1) ≤ 𝜌(𝑈

†

2
𝑉2).

For 𝑖 = 1, 2, note that the matrices 𝐴†
𝑖
𝑉𝑖 are nonnegative;

Perron-Frobenius theorem (cf. [5]) states that the spectral
radius 𝜌(𝐴†

𝑖
𝑉𝑖) of 𝐴

†

𝑖
𝑉𝑖 is an eigenvalue corresponding to a

nonnegative eigenvector; then from Lemma 1, (𝜌(𝐴†
𝑖
𝑉𝑖)/(1 +

𝜌(𝐴
†

𝑖
𝑉𝑖))) ≥ 0 is an eigenvalue of 𝑈†

𝑖
𝑉𝑖; hence, 𝜌(𝑈

†

𝑖
𝑉𝑖) ≥

(𝜌(𝐴
†

𝑖
𝑉𝑖 )/(1 + 𝜌(𝐴

†

𝑖
𝑉𝑖))). Again, by Perron-Frobenius the-

orem, 𝑈†
𝑖
𝑉𝑖 ≥ 𝑂 implies existence of a nonnegative vector

𝑥 (𝑥 ̸= 0) such that 𝑈†
𝑖
𝑉𝑖𝑥 = 𝜌(𝑈

†

𝑖
𝑉𝑖)𝑥. Then

𝐴
†

𝑖
𝑉𝑖𝑥 = (𝐼 − 𝑈

†

𝑖
𝑉𝑖)
−1

𝑈
†

𝑖
𝑉𝑖𝑥 =

𝜌 (𝑈
†

𝑖
𝑉𝑖)

1 − 𝜌 (𝑈
†

𝑖
𝑉𝑖)

𝑥 (6)

implies (𝜌(𝑈†
𝑖
𝑉𝑖)/(1 − 𝜌(𝑈

†

𝑖
𝑉𝑖))) ≥ 0 is an eigenvalue of 𝐴†

𝑖
𝑉𝑖;

hence, 𝜌(𝐴†
𝑖
𝑉𝑖) ≥ (𝜌(𝑈

†

𝑖
𝑉𝑖)/(1 − 𝜌(𝑈

†

𝑖
𝑉𝑖))); that is, 𝜌(𝑈

†

𝑖
𝑉𝑖) ≤

(𝜌(𝐴
†

𝑖
𝑉𝑖)/(1 + 𝜌(𝐴

†

𝑖
𝑉𝑖))). Therefore, we have

𝜌 (𝑈
†

𝑖
𝑉𝑖) =

𝜌 (𝐴
†

𝑖
𝑉𝑖)

1 + 𝜌 (𝐴
†

𝑖
𝑉𝑖)

. (7)

Note that 𝑉1 ≥ 𝑂; then, 𝐴
†

2
≥ 𝐴
†

1
and 𝑉2 ≥ 𝑉1 lead to

𝐴
†

2
𝑉2 ≥ 𝐴

†

1
𝑉1 ≥ 𝑂, and Lemma 2 yields 𝜌(𝐴†

1
𝑉1) ≤ 𝜌(𝐴

†

2
𝑉2).

Let 𝑓(𝜆) = (𝜆/(1 + 𝜆)); then, 𝑓(𝜆) is a strictly increasing
function for 𝜆 > 0. Hence the inequality 𝜌(𝑈†

1
𝑉1) ≤ 𝜌(𝑈

†

2
𝑉2)

holds.

Remark 7. The assumptions 𝐴†
2
≥ 𝐴

†

1
and 𝑉2 ≥ 𝑉1

of Theorem 4 can be weakened as 𝐴†
2
𝑉2 ≥ 𝐴

†

1
𝑉1.
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For different proper regular splittings of one semimono-
tone matrix 𝐴, the following corollary is obtained.

Corollary 8 (see [8,Theorem 3.2]). Let𝐴 be a semimonotone
matrix and let 𝐴 = 𝑈1 − 𝑉1 = 𝑈2 − 𝑉2 be two proper regular
splittings of 𝐴. If 𝑉2 ≥ 𝑉1, then

𝜌 (𝑈
†

1
𝑉1) ≤ 𝜌 (𝑈

†

2
𝑉2) < 1. (8)

When we consider the monotone matrices, we have the
following corollaries directly.

Corollary 9 (see [11, Theorem 4.2]). Let 𝐴1 and 𝐴2 be two
monotone matrices and let 𝐴1 = 𝑈1 −𝑉1 and 𝐴2 = 𝑈2 −𝑉2 be
regular splittings of 𝐴1 and 𝐴2, respectively. If 𝐴−12 ≥ 𝐴

−1

1
and

𝑉2 ≥ 𝑉1, then

𝜌 (𝑈
−1

1
𝑉1) ≤ 𝜌 (𝑈

−1

2
𝑉2) < 1. (9)

Corollary 10. Let 𝐴1 and 𝐴2 be two monotone matrices and
let 𝐴1 = 𝑈1 − 𝑉1 and 𝐴2 = 𝑈2 − 𝑉2 be regular splittings of 𝐴1
and 𝐴2, respectively. If 𝐴−12 𝑉2 ≥ 𝐴

−1

1
𝑉1, then

𝜌 (𝑈
−1

1
𝑉1) ≤ 𝜌 (𝑈

−1

2
𝑉2) < 1. (10)

Corollary 11 (see [5, Theorem 3.32]). Let 𝐴 be a monotone
matrix and let 𝐴 = 𝑈1 −𝑉1 = 𝑈2 −𝑉2 be two regular splittings
of 𝐴. If 𝑉2 ≥ 𝑉1, then

𝜌 (𝑈
−1

1
𝑉1) ≤ 𝜌 (𝑈

−1

2
𝑉2) < 1. (11)

Next the comparison results for proper weak regular
splittings are given.

Theorem 12. Let 𝐴1 and 𝐴2 be two semimonotone matrices
and let𝐴1 = 𝑈1 −𝑉1 and𝐴2 = 𝑈2 −𝑉2 be proper weak regular
splittings of the same types of𝐴1 and𝐴2, respectively. If𝐴†2𝑉2 ≥
𝐴
†

1
𝑉1 ≥ 𝑂, then

𝜌 (𝑈
†

1
𝑉1) ≤ 𝜌 (𝑈

†

2
𝑉2) < 1. (12)

Proof. Note that𝐴†
2
𝑉2 ≥ 𝐴

†

1
𝑉1 ≥ 𝑂; fromTheorem 4we have

𝜌(𝑈
†

𝑖
𝑉𝑖) < 1 (𝑖 = 1, 2). Analogous to the proof of Theorem 6,

the desired comparison results are obtained.

Theorem 13. Let 𝐴1 and 𝐴2 be two semimonotone matrices
and let𝐴1 = 𝑈1 −𝑉1 and𝐴2 = 𝑈2 −𝑉2 be proper weak regular
splittings of different types of 𝐴1 and 𝐴2, respectively. Assume
that 𝐴†

1
− 𝐴
†

2
≥ 𝑂 and 𝐴†

2
𝑉2 ≥ 𝑂. If 𝑈†1 −𝑈

†

2
≥ 𝐴
†

1
−𝐴
†

2
, then

𝜌 (𝑈
†

1
𝑉1) ≤ 𝜌 (𝑈

†

2
𝑉2) < 1. (13)

Proof. Since 𝐴2 = 𝑈2 − 𝑉2 is a proper weak regular splitting
of semimonotone matrix 𝐴2 and 𝐴

†

2
𝑉2 ≥ 𝑂, it follows from

Theorem 4 that 𝜌(𝑈†
2
𝑉2) < 1. Hence, it suffices to show that

𝜌(𝑈
†

1
𝑉1) ≤ 𝜌(𝑈

†

2
𝑉2).

Assume first that𝐴1 = 𝑈1−𝑉1 is of second type and𝐴2 =
𝑈2 − 𝑉2 is of first type. Note that the splittings 𝐴1 = 𝑈1 − 𝑉1
and 𝐴2 = 𝑈2 − 𝑉2 are proper splittings; then, 𝑈

†

𝑖
𝑈𝑖𝐴
†

𝑖
= 𝐴
†

𝑖
,

𝑈
†

𝑖
𝐴 𝑖𝐴
†

𝑖
= 𝑈
†

𝑖
, for 𝑖 = 1, 2, and𝐴†

1
𝐴1𝑈
†

1
= 𝑈
†

1
and𝐴†

1
𝑈1𝑈
†

1
=

𝐴
†

1
(see, e.g., [3, Exercise 1.3(2)]). Using 𝑈†

1
− 𝑈
†

2
≥ 𝐴
†

1
− 𝐴
†

2

we obtain

𝑈
†

2
𝑉2𝐴
†

2
= 𝑈
†

2
(𝑈2 − 𝐴2) 𝐴

†

2
= 𝐴
†

2
− 𝑈
†

2

≥ 𝐴
†

1
− 𝑈
†

1
= 𝑈
†

1
(𝑈1 − 𝐴1) 𝐴

†

1

= 𝑈
†

1
𝑉1𝐴
†

1

= 𝐴
†

1
𝑉1𝑈
†

1
≥ 𝑂.

(14)

For 𝑈†
1
𝑉1 ≥ 𝑂 and 𝑈

†

2
𝑉2 ≥ 𝑂, by Perron-Frobenius theorem

(cf. [5]), there exist two nonzero vectors 𝑥 ≥ 0 and 𝑦 ≥ 0 such
that

𝑉1𝑈
†

1
𝑥 = 𝜌 (𝑈

†

1
𝑉1) 𝑥, 𝑦

𝑇
𝑈
†

2
𝑉2 = 𝑦

𝑇
𝜌 (𝑈
†

2
𝑉2) . (15)

Thus

𝜌 (𝑈
†

2
𝑉2) 𝑦
𝑇
𝐴
†

2
𝑥 = 𝑦

𝑇
𝑈
†

2
𝑉2𝐴
†

2
𝑥

≥ 𝑦
𝑇
𝐴
†

1
𝑉1𝑈
†

1
𝑥 = 𝜌 (𝑈

†

1
𝑉1) 𝑦
𝑇
𝐴
†

1
𝑥.

(16)

By assumption 𝐴†
1
≥ 𝐴
†

2
we obtain

𝜌 (𝑈
†

2
𝑉2) 𝑦
𝑇
𝐴
†

2
𝑥 ≥ 𝜌 (𝑈

†

1
𝑉1) 𝑦
𝑇
𝐴
†

2
𝑥. (17)

Therefore

𝜌 (𝑈
†

1
𝑉1) ≤ 𝜌 (𝑈

†

2
𝑉2) . (18)

The case that 𝐴1 = 𝑈1 − 𝑉1 is of first type and 𝐴2 = 𝑈2 − 𝑉2
is of second type can be proved in a similar way.

The proof is completed.

When considering the monotone matrices, the condition
𝐴
−1

2
𝑉2 ≥ 𝑂 for the convergence of weak regular splitting

(weak nonnegative splitting in [11]) is not necessary. Hence
we have the following corollary.

Corollary 14. Let 𝐴1 and 𝐴2 be two monotone matrices and
let 𝐴1 = 𝑈1 − 𝑉1 and 𝐴2 = 𝑈2 − 𝑉2 be weak regular splittings
of different types of𝐴1 and𝐴2, respectively. Assume that𝐴−1

1
−

𝐴
−1

2
≥ 𝑂. If 𝑈−1

1
− 𝑈
−1

2
≥ 𝐴
−1

1
− 𝐴
−1

2
, then

𝜌 (𝑈
−1

1
𝑉1) ≤ 𝜌 (𝑈

−1

2
𝑉2) < 1. (19)

3. Conclusion

In this paper, a new convergence theorem for proper weak
regular splitting of a semimonotone matrix and two com-
parison theorems for proper weak regular and proper weak
regular splittings of different semimonotone matrices are
given. The obtained results are improved and/or generalized
the previous results. Applying the comparison results to judge
the efficiency of the preconditioners for rectangular linear
system needs further study.
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