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With the development of mine industry, tailings storage facility (TSF), as the important facility of mining, has attracted increasing
attention for its safety problems. However, the problems of low accuracy and slow operation rate often occur in current TSF
safety evaluation models. This paper establishes a reasonable TSF safety evaluation index system and puts forward a new TSF
safety evaluation model by combining the theories for the analytic hierarchy process (AHP) and improved back-propagation (BP)
neural network algorithm.The varying proportions of cross validation were calculated, demonstrating that this method has better
evaluation performance with higher learning efficiency and faster convergence speed and avoids the oscillation in the training
process in traditional BP neural network method and other primary neural network methods. The entire analysis shows the
combination of the two methods increases the accuracy and reliability of the safety evaluation, and it can be well applied in the
TSF safety evaluation.

1. Introduction

According to Dixon-Hardy and Engels [1], safety problem
caused by tailings has become one of the most serious prob-
lems inmine engineering. TSFs, as theman-made debris flow
source of danger with high potential energy, cause a waste
of resources, the loss of life and property, and environmental
pollution due to current limited production technology and
equipment, as well as safety awareness [2, 3]. With the indus-
trial development, the number of TSFs has reachedmore than
12,000 [4]; therefore, the research on it has academic value
but also economic and social benefits. The stability analysis
of the TSFs thus is indispensable for the research on mining
[4].

TSFs are used for piling up tailings and other industrial
waste residues, which can be usually divided into five systems,
including tailings storage system, flood control system, water
return system, transportation system, and safety manage-
ment system. This paper established a reasonable TSF safety

evaluation index system, which includes an exhaustive list of
seventeen evaluation indexes, and assessed the unambiguous
prioritisation of influence for the general objective based on
the AHP methodology with a case study.

Furthermore, several evaluation indexes in this system
were chosen as the input vectors of the improved BP neural
network (BPNN) to build a new TSF safety evaluation model
by adopting a variable learning rate, introducing the back-
propagation mechanism, improving the adjustment rate of
weights, and accelerating the convergence speed of the error
functions.

According to the simulation experiments, this improved
BPNN algorithm has better evaluation performance with
higher learning efficiency and faster convergence speed and
avoids the oscillation in the training process of traditional
BPNN algorithm.The entire analysis shows the combination
of improved BPNN algorithm and fuzzy AHP methodology
increases the accuracy and reliability of the safety evaluation,
and it can be well applied in the TSF safety evaluation.
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2. Background

Many domestic and overseas researchers have done
researches on the TSF safety problems. Yin et al. [4] intro-
duced the stability analysis model of a Chinese TSF; Rico et
al. [5] presented the urgent need for European regulations
regarding technical standards of tailings disposal; Wei et al.
[2] analyzed the current situation, shortcomings, and key
weaknesses, as well as future development trends for tailings
storage facilities;Hu andLiu [6] introduced the securitymon-
itoring system of a tailings dam. In the case of environmental
problems caused by TSFs, Romero et al. [7] studied the solid-
phase control on the mobility of potentially toxic elements in
an abandoned lead/zinc mine tailings impoundment.

In the case of previous research, stability analysis on TSFs
has been developed. Grangeia et al. [8] made the analysis
for assessing, preventing, mitigating, and controlling risks of
the TSF; Wang et al. [9] introduced the safety assessment of
the tailings pond with a case study; Yin et al. [10] made the
experimental study on the mechanism effect of seepage on
microstructure of tailings experiment; Sun et al. [11] pre-
sented a new tailings dam flood overtopping failure evolution
pattern and so forth.

However, previous studiesmainly focus on the prevention
of environment pollution instead of the inherent stability
of TSFs. Furthermore, the accuracy of analysis is limited
by qualitative evaluation to a large extent. Generally, this
kind of qualitative evaluation plays a role in prevention of
TSF accidents indeed, however, it’s easy to overlook hidden
dangers only through on-site inspection. In view of the
drawbacks in the current TSF safety evaluation methods,
this paper presented a more comprehensive approach for
the complicated safety evaluation to improve precision and
reliability.

3. Methodology

3.1. BPNN Algorithm

3.1.1. Network Frame. The traditional BPNN frame [12–14]
often consists of input layer, hidden layer, and output layer.
It sometimes contains more than one hidden layer; the
outputs of each layer are sent directly to each neuron of
the next layer [15]; it also may contain a bias neuron that
produces constant outputs but receives no inputs. If the frame
includes only one hidden layer, it is called one hidden layer
or three-layer BP neural network frame, which is shown in
Figure 1.
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Figure 1: Three-layer BP neural network frame.

value and the connection weight between input layer and
hidden layer, as expressed below:
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Likewise, the neurons derivation value of output layer can
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The expression of global error is given as [15]
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3.1.2. BPNN Algorithm Implementation. After the network
frame is determined, the prepared sample data should be
trained in the network with the following training steps [16,
17].

(1) Initialization of Network Training Parameters. BPNN
needed scale standardization. Initialize the connection
weight between each neuron within the interval [−1, 1] and
preset the allowable training error 𝑒, learning rate 𝑟, andmax-
imum iteration number 𝑁. The input data 𝑋 = {𝑥
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(2) Forward-Propagating Calculation of the Network. The
output value of the hidden layer is solved with Sigmoid
activation function 𝑓(𝑥), input vector𝑋, and the connection
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output value and the anticipative one; if 𝐸 < 𝑒, the training
ends; otherwise, go to step (3).

(3) Adjustment of Back-Propagation Network Error. The
weight allowance Δ𝑤
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between output and hidden layer and

Δ𝑤
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between input and hidden layer can be calculated with

weighting allowance function and total error 𝐸. Then Δ𝑤
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(4) Recalculation of Forward-Propagating of the Network. The
output value 𝑍 and total error 𝐸 are calculated with adjusted
connectionweights𝑤

ℎ𝑗
and𝑤

𝑖ℎ
. If𝐸 < 𝑒, the network training

ends; otherwise, return to step (3) until 𝐸 < 𝑒, or the iteration
number reaches𝑁.

3.2. The Optimization of BPNN Algorithm

3.2.1. Optimization of Convergence Rate. BPNN is based on
solid and rigorous theory derivation; however, it was also
found that there were many limitations in the training pro-
cess, including slow convergence rate, the emergence of local
extremum, and limitation of practical application. In view of
these drawbacks, the improved BP algorithm was proposed
for using the variable learning rate, adjusting the connection
weights between different nodes dynamically, improving the
convergence rate in the training process, and so on [18].
Figure 2 shows the propagation mechanism of improved BP
algorithm. The algorithm implementation procedure of the
improved BPNN is described in detail as follows.

The threshold of the network can be adjusted with the
weights and added into the weight matrix [19]. Suppose 𝑈
is expressed as the connection weight matrix between input
layer and hidden layer, 𝑉 is the connection weight matrix
between hidden layer and output layer, 𝑋 is the input vector,
𝑌 is the output vector of the network,𝑀 is the sumof samples,
𝑓(𝑥) is the activation function, and 𝑑
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Figure 2: Improved BP algorithm propagation mechanism.
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The forward-propagation process of improved BPNN
with the innovative adaptive learning rate algorithm is similar
to the process of the traditional one [20]:
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The general ideas of the weight adjustment are shown as
follows [21, 22].
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(2) Supposing 𝑊 is the whole weight matrix of the
BPNN, 𝑊 = [rs𝑈, rs𝑉]. To easily finish the back-
propagation calculation, we define𝑊∗ as the reversed
order weight matrix of𝑊,𝑊∗ = [rs𝑉, rs𝑈]. If 𝑚 and
𝑛 are the row vector numbers of the whole weight
matrix, then there exists a relationship:

𝑊
∗
= [rs𝑉, rs𝑈] = [𝑤1, 𝑤2, . . . , 𝑤𝑛, . . . , 𝑤𝑚] , (8)

where𝑚 = (𝐼 + 1) × 𝐽 + (𝐽 + 1) × 𝑃, 𝑛 = (𝐽 + 1) × 𝑃.
(3) The weights of𝑊∗ can be denoted as 𝑤

𝑖
, 𝑖 ∈ [1,𝑚].

If𝑊(𝑛) is the weight matrix of BPNN after learning 𝑛
times and𝑊∗(𝑛) is the reversed order weight matrix,
then the initial weight matrix and initial reversed
order weight matrix can be expressed as 𝑊(0) and
𝑊
∗
(0). When adjusting the weights of 𝑊∗, 𝑤

𝑖
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the value of 𝑤
𝑖
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In the forward-propagation stage, the learning termina-
tion condition of𝑊(𝑛) is

𝐸 (𝑛) ≤ 𝑒. (9)

Here, 𝐸(𝑛) is the error in the 𝑛th learning and 𝑒 is the
preset precision.

If it does not satisfy the termination condition, the
learning continues to enter the stage of back-propagation
error adjustment.

To classify the process of back-propagation of the new
algorithm, we take any weight 𝑤

𝑖
in 𝑊∗; for example, the

adjustment process is shown below:
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In fact, when learning rate was lower, training time got
longer and convergence became slower. When learning rate
was too high, oscillation and divergence had emerged; this
caused an unstable system. After the complex adjustment
process, a new weight matrix 𝑊(𝑛 + 1) and a new reversed
order weight matrix 𝑊∗(𝑛 + 1) are acquired. 𝑊(𝑛 + 1) is
the optimal weight matrix of this network if the termination
condition (9) is met; otherwise,𝑊∗(𝑛 + 1) should be put into
a new round of adjustment until the termination condition
(9) is met.

3.2.2. The Improved BPNN Algorithm Implementation. The
application of improved BPNN with a new adaptive learning
rate algorithm should be implemented step by step from
the algorithm derivation to the computer programming.
Following are its general training steps [23].

(1) The initialization of BP neural network: set up the
network structure and confirm the expected input
and output of sample. Randomly select the minor
weight matrix 𝑊 and vector 𝜂 and set the error
precision 𝑒 of the network learning.

(2) Input sample with forward-propagation: record the
forward-propagating error of 𝐸(0) this time.

(3) Counterpropagation: adjust the weight. For weight
matrix𝑊∗ = [𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
, . . . , 𝑤

𝑚
] with reversed

order, select vector quantity Δ𝑤
𝑖
(𝑛), 𝑖 = 1, 2, . . . , 𝑚

to adjust the elements in it one by one. If the
gradient weight of error function is less than the
preset minimum gradient 𝜀, that is, 𝜕𝐸/𝜕𝑤

𝑖
< 𝜀, then

switch to step (5). If the gradient weight is larger than
the preset minimum gradient 𝜀, that is, 𝜕𝐸/𝜕𝑤

𝑖
> 𝜀,

then switch to step (4).
(4) Seeking the optimum weight in the gradient direc-

tion: adjust the weight according to (12) and calculate
error 𝐸(1) with forward-propagation. Compare 𝐸(1)

and 𝐸(0). If network error decreases, then increase
the learning rate, readjust the weight, and calculate
error 𝐸(1) with forward-propagation until the error
no longer decreases. If network error increases, then
decrease the learning rate, readjust the weight, and
calculate error 𝐸(1) with forward-propagation until
the error no longer decreases.

(5) Forward-propagation with new weight: update the
network value 𝐸(1). If the error is less than the preset
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Figure 3: Evaluation structure for the safe operation of the TSF.

precision 𝑒, then the network jumps out of the whole
propagation; stop the learning and turn to step (6). If
the error is larger than the preset precision 𝑒, make
𝑖 = 𝑖 + 1. When 𝑖 < 𝑚, which means that there is also
some weight of node that has not been adjusted, then
turn to step (2) and add a weight adjustment. When
𝑖 = 𝑚, whichmeans that all of weight of node has been
adjusted but the error at that time could not meet the
accuracy requirement, make 𝑖 = 0, a new round of
iterative learning from the first node.

(6) Finish the BP neural network learning and record the
final weight matrix.

4. Theory and Calculation

4.1. Establishment of Evaluation Index System. TSF safe oper-
ation is affected bymultiple aspects, including natural factors,
dam type and technology, management, and environment.
Statistics show that TSF failure modes include four types,

foundation failure, structure failure, overtopping failure,
and seepage failure; we analyzed the risk factors of these
failure modes and established the evaluation index system in
Figure 3.

4.2. AHP Procedures. The fuzzy AHP methodology is effec-
tive for sectors of risk assessment and has been successfully
applied in many fields [24–27]. In this paper, we analyzed the
safety situation of a typical TSF case in China based on fuzzy
AHP methodology.

We selected several experts’ perspectives and suggestions
from our research organisation, assessed the evaluation
indexes in this system according to the investigation reports
and the regional inspections, and finally ranked them by the
prioritisation of influence for the general objective of this
system [28]. The total sorting for the hierarchy structure is
shown in Table 1.

Our results indicate that each judgment matrix has a
satisfactory consistency because eachCR is less than 0.10 [24].
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Table 1: Total sorting for the hierarchy structure.

Evaluation indexes Weight Sorting
Dam type and technology 𝑃

1
0.0299 9

Tailings composition and physical characteristics analysis 𝑃
2

0.0093 15
The proportion of the side slope and the saturation line observations 𝑃

3
0.1169 3

Dam seismic capacity 𝑃
4

0.0708 5
The sturdiness and displacement of the tailings dam 𝑃

5
0.0129 13

The sturdiness of drainage tunnel 𝑃
6

0.0325 8
Design of dam drainage and flood control installation 𝑃

7
0.1631 2

Stability and reliability of the flood control system 𝑃
8

0.2726 1
Runnability of returning water pump station 𝑃

9
0.0199 11

Design of dam water return installation 𝑃
10

0.0562 6
Stability and reliability of the water return system 𝑃

11
0.1057 4

Runnability of tailings pump station 𝑃
12

0.0292 10
The condition of concentration basin and concentrator 𝑃

13
0.0035 17

Stability of tailings transportation system 𝑃
14

0.0116 14
The management organisation structure 𝑃

15
0.0143 12

Safety technical standards and regulations 𝑃
16

0.0060 16
Regular and casual safety inspection and maintenance 𝑃

17
0.0455 7

Overall, themost risky index is the stability and reliability
of the flood control system; it may depend on the design of
dam drainage and flood control installation, which is also
the second most risky index. The third most risky index,
the proportion of the side slope and the saturation line
observations, may cause an increase in dam slumping due
to pipe and dam slope seepage. The fourth most risky index
is the stability and reliability of the water return system,
which should be emphasised because it will directly affect
flood control system and even the entire safe operation of
TSFs. In addition, dam seismic capacity, regular and casual
safety inspection and maintenance, and the sturdiness of
drainage tunnel are also important in this example. Actually,
no evaluation index in this system should be neglected
because the indexes may interact with each other. Therefore,
relevant precautions should be taken timely by the order of
prioritisation and emergency to avoid accidents and dangers.

On the basis of the total sorting, the top five evaluation
indexes are chosen as the input vectors 𝑥

1
to 𝑥
5
of the

improved BP neural network to build a new TSF safety
evaluationmodel, namely, stability and reliability of the flood
control system 𝑥

1
, design of dam drainage and flood control

installation 𝑥
2
, the proportion of the side slope and the

saturation line observations 𝑥
3
, stability and reliability of the

water return system 𝑥
4
, and dam seismic capacity 𝑥

5
.

4.3. Preparation of Samples (See [29])

4.3.1. Training Sample. TSF safety evaluation is a pattern
recognition problem in essence. We compared the measured
values of a group or several groups of TSF safety risk factors
with the standard values and analyzed the closest safety eval-
uation level of measured values, and that was the recognition
result of BPNN model. Based on improved BP algorithm
principles, this paper integrated the safety posture grade of

TSFs to construct the training samples for the network with
chosen indexes. In order to improve them, this paper adopted
the section interpolation method to extend the training
sample set. Through the comparative analysis of the linear
interpolation and random interpolation, the network model
trained by the extended samples proved to be more stable.
Here, we selected three typical China’s typical TSF examples
in Hunan province and obtained 63 training samples to
form the training samples set for our research according to
the investigation reports and the regional inspections of all
indexes in this model from year 2009 to 2013, and a total of
78 samples were chosen in this model.

4.3.2. Test Sample. We selected 5 groups of monitoring data
consisting of 15 testing samples. In order to obtain the
simulation results more accurately, the cross validations were
calculated; that is, 15 testing samples were chosen randomly
from 78 total samples for several times until each sample was
tested once.

4.4. Determination of BP Network Topology. The settings of
network topology include the number of network layers
and hidden layers, nodes number of the input layer, the
output layer, and the hidden layer. The reasonability of the
setting directly relates to the precision and objectivity of the
evaluation and the application value of this model [23].

4.4.1. Network Layer. As described before, if the hidden layer
is solved with Sigmoid function and the activation function
between input layer and output layer is a linear function, the
multilayer forward neural network with single hidden layer
is approximate to rational function with any precision. It is
not difficult to get the conclusion that the training effect is
easily reached by increasing the nodes number of hidden
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Figure 4: Improved BP algorithm training error.
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Figure 5: Traditional BP algorithm training error.

layer to improve the network precision and decrease the
error.Therefore, a three-layer networkmodel was built in this
paper.

4.4.2. Nodes Number. The nodes number of input and output
layer is mainly determined by the practical situation in the
research. Here, we chose five nodes for input layer corre-
sponding to five chosen indexes, as well as one node for
output layer corresponding to recognition result of the TSF
safety evaluation. Finally, ten optimal hidden layer nodes
were chosen with golden cut method.

5. Simulation Experiments
Analysis and Results

5.1. Performance Analysis of the Improved Algorithm. In order
to verify the effectiveness of this improved model, this paper
made the numerical experiments to compare the actual result
of improved BPNN and traditional one [30, 31].

In our study, MATLAB 7.0 was used to realize the
neural network model and the algorithm by using nonlinear
approximation property of neural network to deal with this
complex nonlinear function.

The nonlinear function is constructed as

𝑦 = sin (𝑥) , 𝑥 = [0, 2𝜋] . (15)
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Figure 6: Improved BP algorithm fitting curve.

1

0.5

0

0 1 2 3 4 5 6 7 8

−0.5

−1

−1.5

Nonlinear function

Standard curve
fitting algorithm

Figure 7: Traditional BP algorithm fitting curve.

Two models with ten nodes in the hidden layer and 63
training samples were simulated at the same experiment envi-
ronment. Sigmoid function is expressed as transfer function
of hidden layer and output layer; we defined anticipated
training precision as 0.0001 andmaximumoperation number
as 10000. The training errors of both training models are
shown in Figures 4 and 5, together with the fitting curves in
Figures 6 and 7.

From the figures above, we can analyze that the improved
BPNN algorithm makes the learning of network weights
more efficient, optimizes the convergence speed, and avoids
the oscillation of the traditional BPNN algorithm. Experi-
ment results confirm the feasibility of TSF safety evaluation
model proposed in this paper.

5.2. Results and Discussion. We introduced the simulation
experiments into real example for the TSF safety evaluation
model. Here, danger coefficient is the target value, usually
divided into four levels [12]: 0.1, 0.2, 0.3, and 0.4; they
correspond to the four result grades: safe, defective, seriously
defective, and extremely dangerous.
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Table 2: The result of the improved BP algorithm.

SN Expert evaluation Algorithm evaluation Dangerous index
1 0.3 0.3 𝑥

1
, 𝑥
2

2 0.4 0.4 𝑥
2
, 𝑥
3
, 𝑥
4

3 0.1 0.1
4 0.2 0.2 𝑥

2

5 0.4 0.4 𝑥
1
, 𝑥
3
, 𝑥
4

Table 3: The result of comparison of algorithms.

Methods Average
accuracy (%)

Average operation
time (s)

Fuzzy comprehensive
evaluation method 71 1026

RBFNN algorithm 68.9 183
GRNN algorithm 84.2 132
EIMNN algorithm 81.5 158
Traditional BP
algorithm 79.8 164

Improved BP
algorithm 96.1 45

Among them, expert evaluation was obtained by the
investigation reports and the regional inspections. From
Table 2, it can be seen that the results of our evaluationmodel
and expert evaluation are equivalent, and this algorithm has
proved that it can accurately calculate the dangerous indexes.

To well evaluate the application ability of the safety
evaluation model proposed in this paper, we compared its
accuracy and operation time with fuzzy comprehensive eval-
uation method and other primary neural network methods,
as shown in Table 3.

While RBFNN is radial basis function neural network,
EIMNN is Elmanneural network andGRNNrefers to general
regression neural network.

To sum up, this improved safety evaluation model has
better performance than other primary neural networkmeth-
ods and fuzzy comprehensive evaluation method, whether in
accuracy or in operation time.

6. Conclusion

This paper presented a new safety evaluation approach to
assess the safe operation of TSF; simulation experiments
verified that the proposed algorithm evaluation is accurate
and efficient and can be well applied in engineering practice.

First, this paper established a reasonable TSF safety
evaluation index system, which includes an exhaustive list of
seventeen evaluation indexes and assessed the unambiguous
prioritisation of influence for the general objective based
on the AHP methodology with a case study. Next, on the
basis of the AHP total sorting, several evaluation indexes
were chosen as the input vectors of the improved BPNN
algorithm to build a new TSF safety evaluationmodel; it opti-
mized the convergence speed, adopted the back-propagation
mechanism to decrease the algorithm errors, and avoided

the oscillation in the training process of traditional BPNN
algorithm.The varying proportions of cross validations were
calculated; this improved algorithm proved to have higher
accuracy and faster convergence speed, according to several
simulation experiments and comparisons with other primary
neural networkmethods and fuzzy comprehensive evaluation
method.

Through an efficient combination of improvedBPNNand
fuzzy AHP methodology using qualitative and quantitative
analyses, this paper presents amore comprehensive approach
for the complicated safety evaluation to improve precision,
accuracy, and reliability.
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