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We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function 𝑤(𝑢(𝑠)) of the
unknown function 𝑢 with nonlinear function 𝑤 in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new
nonlinear retarded Volterra-Fredholm type integral inequalities.Nonlinear Anal. 69 (2008) 393–407] is changed into the composite
functions𝑤

1
(𝑢(𝑠)), 𝑤

2
(𝑢(𝑠)), . . . , 𝑤

𝑛
(𝑢(𝑠)) of the unknown function𝑢with different nonlinear functions𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
, respectively.

By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly.The derived
results can be applied in the study of solutions of ordinary differential equations and integral equations.

1. Introduction

The well-known Gronwall-Bellman inequality [1, 2] is the
following or can be equivalently regarded as the following:

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑎

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑎 + 𝑇] , (1)

where 𝑐 ≥ 0 is a constant,𝑓 is a given nonnegative continuous
function, and 𝑢 is the unknown function. It is often used to
estimate solutions of differential equations. In 1956 Bihari [3]
discussed

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

0

𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠. (2)

In 1990 Pinto [4] investigated

𝑢 (𝑡) ≤ 𝑐 (𝑡) +

𝑛

∑

𝑖=1

∫

𝑡

𝑎

𝑔
𝑖
(𝑠) 𝑤
𝑖
(𝑢 (𝑠)) 𝑑𝑠. (3)

Replacing the upper limit 𝑡 of the integral with a function
𝑏(𝑡) in (2), in 2000 Lipovan [5] improved Bihari’s results by

investigating the following so-called retarded Gronwall-like
inequalities:

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑏(𝑡)

𝑏(𝑡0)

𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠, (4)

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡0

𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠 + ∫

𝑏(𝑡)

𝑏(𝑡0)

𝑔 (𝑠) 𝑤 (𝑢 (𝑠)) 𝑑𝑠.

(5)

In 2005 Agarwal et al. [6] generally discussed

𝑢 (𝑡) ≤ 𝑐 (𝑡) +

𝑛

∑

𝑖=1

∫

𝑏𝑖(𝑡)

𝑏𝑖(𝑡0)

𝑔
𝑖
(𝑡, 𝑠) 𝑤

𝑖
(𝑢 (𝑠)) 𝑑𝑠, 𝑡

0
≤ 𝑡 < 𝑡

1
.

(6)

As required in estimation for solutions, invariant sets, and
stability, many generalized versions of the Gronwall-Bellman
inequality were given with an invariant decomposition [7–9],
a singular kernel [10, 11], and maxima [12, 13]. More results
about integral inequalities of single variable and multivari-
ables can be found, for example, the books [14, 15].

In order to investigate the behavior of solutions of a
linear Volterra-Fredholm type integral equation, a form of
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integral inequalities which contains multiple integrals of the
unknown,

𝑢 (𝑡)

≤ 𝑐 + ∫

𝛼(𝑇)

𝛼(𝑡0)

𝑏 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑎 (𝑡, 𝑠) [𝑓 (𝑠) 𝑢 (𝑠) + ∫

𝑠

𝛼(𝑡0)

𝑐 (𝑠, 𝜏) 𝑢 (𝜏) 𝑑𝜏] 𝑑𝑠,

∀𝑡 ∈ [𝑡
0
, 𝑇] ,

(7)

called linear Volterra-Fredholm type integral inequality with
retardation, is discussed by Pachpatte [16] in 2004.

In 2008Ma and Pe ̆carić [17] discussed more generally the
following inequality:

𝑢 (𝑡) ≤ 𝑐 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝜎
1
(𝑠)

× [𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) + ∫

𝑠

𝛼(𝑡0)

𝜎
2
(𝜏) 𝑤 (𝑢 (𝜏)) 𝑑𝜏] 𝑑𝑠

+ ∫

𝛼(𝑇)

𝛼(𝑡0)

𝜎
1
(𝑠)

× [𝑓 (𝑠) 𝑤 (𝑢 (𝑠)) + ∫

𝑠

𝛼(𝑡0)

𝜎
2
(𝜏) 𝑤 (𝑢 (𝜏)) 𝑑𝜏] 𝑑𝑠,

∀𝑡 ∈ 𝐼,

(8)

where 𝐼 = [𝑡
0
, 𝑇]. In 2011 Abdeldaim and Yakout [18] investi-

gated the following:

𝑢 (𝑡)

≤ 𝑐 + ∫

𝑡

𝛼(𝑡0)

𝑓 (𝑠) 𝑢 (𝑠)

× [𝑢 (𝑠) + ∫

𝑠

𝛼(𝑡0)

ℎ (𝜏) [𝑢 (𝜏) + ∫

𝜏

𝛼(𝑡0)

𝑔 (𝜉) 𝑢 (𝜉) 𝑑𝜉] 𝑑𝜏] 𝑑𝑠.

(9)

In 2013 Wang et al. [19] studied a new integral inequality of
Gronwall-Bellman-Pachpatte type

𝜑 (𝑢 (𝑡)) ≤ 𝑐 (𝑡)

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑓
1
(𝑡, 𝑠) 𝑤

1
(𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑓
1
(𝑡, 𝑠) 𝑤

1
(𝑢 (𝑠))

× (∫

𝑠

𝑡0

𝑓
2
(𝑠, 𝜏) 𝑤

2
(𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑓
1
(𝑡, 𝑠) 𝑤

1
(𝑢 (𝑠))

× (∫

𝑠

𝑡0

𝑓
2
(𝑠, 𝜏) 𝑤

2
(𝑢 (𝜏))

× (∫

𝜏

𝑡0

𝑓
3
(𝜏, 𝜉) 𝑤

3
(𝑢 (𝜉)) 𝑑𝜉) 𝑑𝜏)𝑑𝑠.

(10)

In this paper, on the basis of [17, 18], we discuss a newmultiple
iterated Volterra-Fredholm type integral inequality

𝑢 (𝑡) ≤ 𝑐 + ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡
1
)

× [𝑓
1
(𝑡
1
) 𝜑
1
(𝑢 (𝑡
1
)) + ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡
2
)

× [𝑓
2
(𝑡
2
) 𝜑
2
(𝑢 (𝑡
2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1

(𝑡
𝑛−1
)

× [𝑓
𝑛−1

(𝑡
𝑛−1
) 𝜑
𝑛−1

(𝑢 (𝑡
𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡
𝑛
) 𝜑
𝑛
(𝑢 (𝑡
𝑛
)) 𝑑𝑡
𝑛
]

× 𝑑𝑡
𝑛−1

⋅ ⋅ ⋅ ] 𝑑𝑡
2
] 𝑑𝑡
1

+ ∫

𝛼(𝑇)

𝛼(𝑡0)

ℎ
1
(𝑡
1
) [𝑓
1
(𝑡
1
) 𝜑
1
(𝑢 (𝑡
1
)) + ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡
2
)

× [𝑓
2
(𝑡
2
) 𝜑
2
(𝑢 (𝑡
2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1

(𝑡
𝑛−1
)

× [𝑓
𝑛−1

(𝑡
𝑛−1
) 𝜑
𝑛−1

(𝑢 (𝑡
𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡
𝑛
) 𝜑
𝑛
(𝑢 (𝑡
𝑛
))

× 𝑑𝑡
𝑛
] 𝑑𝑡
𝑛−1

⋅ ⋅ ⋅ ] 𝑑𝑡
2
] 𝑑𝑡
1
.

(11)

Using monotonization of some functions, we simplify the
above multicomposition in an operator form. The unknown
function will be estimated by known functions. Furthermore,
we apply our result to retarded nonlinear Volterra-Fredholm
type equations for estimation of solutions.
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2. Preliminaries

Throughout this paper, let R denote the set of real numbers,
R
+
= [0, +∞) and 𝐼 = [𝑡

0
, 𝑇]. For 𝑘 = 0, 1, let 𝐶𝑘(𝑀, 𝑆)

denote the class of 𝑘th order continuously differentiable func-
tions defined on the set𝑀 and ranged in the set 𝑆. For sim-
plicity, we use the product∏𝑛

𝑖=1
𝑓
𝑖
and∏1

𝑖=𝑛
𝑓
𝑖
to present the

composition 𝑓
1
∘ 𝑓
2
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑛
and 𝑓

𝑛
∘ 𝑓
𝑛−1

∘ ⋅ ⋅ ⋅ ∘ 𝑓
1
.

2.1.Monotonization. First, wemonotonize those𝜑
𝑖
s in inequ-

ality (11). Define

𝑤
1
(𝑢) :=max

𝜏∈[0,𝑢]

{𝜑
1
(𝜏)} ,

𝑤
𝑖+1
(𝑢) :=max

𝜏∈[0,𝑢]

{

𝜑
𝑖+1
(𝜏)

𝑤
𝑖
(𝜏)

}𝑤
𝑖
(𝑢) , 𝑖 = 1, . . . , 𝑛,

(12)

recursively. One can prove that

(P1) each 𝑤
𝑖
is a nondecreasing nonnegative continuous

function,

(P2) 𝜑
𝑖
(𝑢) ≤ 𝑤

𝑖
(𝑢), 𝑖 = 1, . . . , 𝑛,

(P3) 𝑤
𝑖+1

has stronger monotonicity than 𝑤
𝑖
, denoted by

𝑤
𝑖
∝ 𝑤
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑛 − 1; that is, by the definition
given in [4, 6], the ratios𝑤

𝑖+1
(𝑢)/𝑤

𝑖
(𝑢), 𝑖 = 1, . . . , 𝑛−1,

are all nondecreasing.

Thus, the sequence {𝜑
𝑖
} can be replaced by a larger but mono-

tonous one {𝑤
𝑖
} in (11). For a given constant 𝑢

𝑖
> 0, define

functions𝑊
𝑖
(𝑢, 𝑢
1
), 𝑖 = 1, 2, . . . , 𝑛, recursively by

𝑊
1
(𝑢, 𝑢
1
) :=∫

𝑢

𝑢1

𝑑𝑠

𝑤
1
(𝑠)

, (13)

𝑊
𝑖
(𝑢, 𝑢
𝑖
) :=∫

𝑢

𝑢𝑖

𝑤
𝑖−1
(∏
𝑖−1

ℓ=1
𝑊
−1

ℓ
(𝑠)) 𝑑𝑠

𝑤
𝑖
(∏
𝑖−1

ℓ=1
𝑊
−1

ℓ
(𝑠))

, 𝑖 = 2, . . . , 𝑛,

(14)

where we use𝑊
ℓ
and𝑊−1

ℓ
to denote𝑊

ℓ
(𝑢, 𝑢
ℓ
) and its inverse

when there is no confusion. Clearly, they are all strictly
increasing.

For given positive constants 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, define

̂W
𝑖
(𝑢) by

̂W
𝑖
(𝑢) := 𝑊

𝑖
(𝑢) + 𝑐

𝑖
, ∀𝑢 ∈ R

+
, 𝑖 = 1, 2, . . . , 𝑛, (15)

where𝑊
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are defined by (13) and (14), respec-

tively.

Lemma 1. Suppose that 𝜑
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are nonnegative

and integrable on [𝑡
0
, 𝑇]. Then 𝑊

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are

increasing and continuous differentiable functions, and

𝑑

𝑑𝜉

(

2

∏

𝑖=𝑛

𝑊
𝑖
∘ 𝑊
1
(𝜉)) =

1

𝑤
𝑛
(𝜉)

, (16)

𝑑

𝑑𝜉

(

2

∏

𝑖=𝑛

̂W
𝑖
∘
̂W
1
(𝜉))

=

𝑤
𝑛−1

(∏
𝑛−1

𝑖=1
𝑊
−1

𝑖
∘ (∏
2

𝑖=𝑛−1
̂W
𝑖
∘
̂W
1
(𝜉)))

𝑤
𝑛
(∏
𝑛−1

𝑖=1
𝑊
−1

𝑖
∘ (∏
2

𝑖=𝑛−1
̂W
𝑖
∘
̂W
1
(𝜉)))

⋅ ⋅ ⋅

𝑤
1
(𝑊
−1

1
∘
̂W
1
(𝜉))

𝑤
2
(𝑊
−1

1
∘
̂W
1
(𝜉))

1

𝑤
1
(𝜉)

, ∀𝜉 ≥ 𝑘 (𝑇) .

(17)

Proof. By the definition,𝑊
𝑖
(𝑠) (𝑖 = 1, 2, . . . , 𝑛) are increasing

and continuous differentiable functions. From (13) and (14),
we have

𝑑

𝑑𝜉

(

2

∏

𝑖=𝑛

𝑊
𝑖
∘ 𝑊
1
(𝜉))

= 𝑊
󸀠

𝑛
(

1

∏

𝑖=𝑛−1

𝑊
𝑖
(𝜉) ⋅ ⋅ ⋅ ) ⋅ ⋅ ⋅𝑊

󸀠

2
(𝑊
1
(𝜉))𝑊

󸀠

1
(𝜉)

=

𝑤
𝑛−1

(∏
𝑛−1

𝑖=1
𝑊
−1

𝑖
(∏
1

𝑖=𝑛−1
𝑊
𝑖
(𝜉)))

𝑤
𝑛
(∏
𝑛−1

𝑖=1
(𝑊
−1

𝑖
(∏
1

𝑖=𝑛−1
𝑊
𝑖
(𝜉))))

⋅ ⋅ ⋅

𝑤
1
(𝑊
−1

1
(𝑊
1
(𝜉)))

𝑤
2
(𝑊
−1

1
(𝑊
1
(𝜉)))

1

𝑤
1
(𝜉)

=

1

𝑤
𝑛
(𝜉)

.

(18)

Moreover,

𝑑

𝑑𝜉

(

2

∏

𝑖=𝑛

̂W
𝑖
∘
̂W
1
(𝜉))

=

𝑑 (𝑊
𝑛
(𝑊
𝑛−1

(⋅ ⋅ ⋅ (𝑊
2
(𝑊
1
(𝜉) + 𝑐

1
) + 𝑐
2
) ⋅ ⋅ ⋅ ) + 𝑐

𝑛−1
) + 𝑐
𝑛
)

𝑑𝜉

= 𝑊
󸀠

𝑛
(𝑊
𝑛−1

(⋅ ⋅ ⋅ (𝑊
2
(𝑊
1
(𝜉) + 𝑐

1
) + 𝑐
2
) ⋅ ⋅ ⋅ ) + 𝑐

𝑛−1
)

⋅ ⋅ ⋅𝑊
󸀠

2
(𝑊
1
(𝜉) + 𝑐

1
)𝑊
󸀠

1
(𝜉)

= 𝑤
𝑛−1

(∏

𝑛−1

𝑖=1
𝑊
−1

𝑖
(𝑊
𝑛−1

(⋅ ⋅ ⋅ (𝑊
2
(𝑊
1
(𝜉) + 𝑐

1
)

+𝑐
2
) ⋅ ⋅ ⋅ ) + 𝑐

𝑛−1
))
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× (𝑤
𝑛
(∏

𝑛−1

𝑖=1
𝑊
−1

𝑖
(𝑊
𝑛−1

(⋅ ⋅ ⋅ (𝑊
2
(𝑊
1
(𝜉) + 𝑐

1
) + 𝑐
2
) ⋅ ⋅ ⋅ )

+ 𝑐
𝑛−1
) ))

−1

⋅ ⋅ ⋅

𝑤
1
(𝑊
−1

1
(𝑊
1
(𝜉) + 𝑐

1
))

𝑤
2
(𝑊
−1

1
(𝑊
1
(𝜉) + 𝑐

1
))

1

𝑤
1
(𝜉)

.

(19)

By the definitions of̂W
𝑖
(𝑢), we have the relation (17).

2.2. Simplification with Operators. Let ℎ
𝑖
, 𝑓
𝑖
be positive con-

tinuous functions in (11), where 𝑖 = 1, 2, . . . , 𝑛, 𝑓
𝑛
(𝑡) ≡ 1.

DefineH
𝑖
: 𝐶([𝑡
0
, 𝑇]) → 𝐶([𝑡

0
, 𝑇]) by

H
𝑖
V (𝑡) := ∫

𝑡

𝛼(𝑡0)

ℎ
𝑖
(𝑠) V (𝑠) 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛, (20)

and defineF
𝑖
[𝑢] : 𝐶([𝑡

0
, 𝑇]) → 𝐶([𝑡

0
, 𝑇]) by

F
𝑖 [
𝑢] V (𝑡) := 𝑓𝑖 (𝑡) 𝑤𝑖 (𝑢 (𝑡)) + V (𝑡) , 𝑖 = 1, 2, . . . , 𝑛.

(21)

Having defined those operators, we can enlarge inequality
(11) by (12) in the simpler form

𝑢 (𝑡) ≤ 𝑘 (𝑡)

+ {

𝑛−1

∏

𝑖=1

(H
𝑖
∘F
𝑖 [
𝑢]) ∘H𝑛 ∘F𝑛 [𝑢] 0} (𝛼 (𝑡))

+ {

𝑛−1

∏

𝑖=1

(H
𝑖
∘F
𝑖 [
𝑢]) ∘H𝑛 ∘F𝑛 [𝑢] 0} (𝛼 (𝑇)) ,

∀𝑡 ∈ [𝑡
0
, 𝑇] ,

(22)

where 0 denotes a zero function.

2.3.W-Function. DefineW
𝑖
(𝑢)(𝛼(𝑇)) by

W
𝑖
(𝑢) (𝛼 (𝑇)) : = 𝑊

𝑖
(𝑢) + (

𝑖−1

∏

𝑗=1

H
𝑗
) ∘ (H

𝑖
𝑓
𝑖
(𝑡)) (𝛼 (𝑇)) ,

∀𝑢 ∈ R
+
, 𝑖 = 1, 2, . . . , 𝑛,

(23)

where 𝑊
𝑖
and H

𝑖
are defined by (14) and (20), respectively.

Since𝑊
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are continuous functions, W

𝑖
(𝑖 =

1, 2, . . . , 𝑛) are also continuous functions.
Define a function

̃W (𝜉) :=

2

∏

𝑖=𝑛

𝑊
𝑖
∘ 𝑊
1
(2𝜉 − 𝑐)

−

2

∏

𝑖=𝑛

W
𝑖
∘W
1
(𝜉) (𝛼 (𝑇)) , ∀𝜉 > 𝑐.

(24)

Lemma 2. Suppose that 𝜑
𝑖
(𝑢) (𝑖 = 1, . . . , 𝑛) are all continuous

such that 𝜑
𝑖
(𝑢) > 0 for 𝑢 > 0,𝑊

𝑖
(𝑖 = 1, 2, . . . , 𝑛) defined by

(13) and (14) satisfy𝑊
𝑖
(+∞) = +∞. Suppose that ℎ

𝑖
, 𝑓
𝑖
, and

𝜑
𝑖
(𝑖 = 1, . . . , 𝑛) satisfy

1

𝑤
𝑛
(2𝜉 − 𝑐)

− 𝑉 (𝜉) ≥ 0, ∀𝜉 > 𝑐, (25)

where

𝑉 (𝜉) :

=

𝑤
𝑛−1

(∏
𝑛−1

𝑖=1
𝑊
−1

𝑖
∘ (∏
2

𝑖=𝑛−1
W
𝑖
∘W
1
(𝜉) (𝛼 (𝑇))))

𝑤
𝑛
(∏
𝑛−1

𝑖=1
𝑊
−1

𝑖
∘ (∏
2

𝑖=𝑛−1
̃W
𝑖
∘W
1
(𝜉) (𝛼 (𝑇))))

⋅ ⋅ ⋅

𝑤
1
(𝑊
−1

1
∘W
1
(𝜉) (𝛼 (𝑇)))

𝑤
2
(𝑊
−1

1
∘W
1
(𝜉) (𝛼 (𝑇)))

1

𝑤
1
(𝜉)

,

(26)

and W
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are defined by (23). Then, ̃W(𝜉) is

nondecreasing, and̃W(𝜉) = 0 has a solution 𝜉 = 𝜉
0
with 𝜉

0
> 𝑐.

Proof. Using Lemma 1 and condition (25), we have

W
󸀠
(𝜉) =

1

𝑤
𝑛
(2𝜉 − 𝑐)

− 𝑉 (𝜉) ≥ 0. (27)

Thus̃W(𝜉) is a nondecreasing function. SincẽW(𝑐) < 0 and
lim
𝜉→∞

̃W(𝜉) = +∞, we see that ̃W(𝜉) = 0 has a solution
𝜉 = 𝜉
0
with 𝜉

0
> 𝑐.

3. Main Result

The following theorem shows that the unknown function is
estimated by the given known functions.

Theorem 3. Let 𝑐 be a positive constant. Suppose that ℎ
𝑛
(𝑡),

𝑓
𝑖
(𝑡), and ℎ

𝑖
(𝑡) ∈ 𝐶(𝐼,R

+
), 𝑖 = 1, . . . , 𝑛 − 1. Suppose that ℎ

𝑖
,

𝑓
𝑖
, ℎ
𝑖
, and 𝜑

𝑖
(𝑖 = 1, . . . , 𝑛) satisfy the assumption of Lemma 2.

Suppose that 𝛼 ∈ 𝐶
1
(𝐼, 𝐼) is nondecreasing such that 𝛼(𝑡) ≤ 𝑡

on 𝐼. Then the unknown 𝑢(𝑡) in (22) is estimated as

𝑢 (𝑡) ≤

𝑛

∏

𝑖=1

𝑊
−1

𝑖
{

2

∏

𝑖=𝑛

W
𝑖
∘W
1
(𝜉
0
) (𝛼 (𝑡))} , ∀𝑡 ∈ [𝑡

0
, 𝑇] .

(28)

Remark 4. As explained in Remark 2 in [6], different choices
of 𝑢
𝑖
in the definitions (13)-(14) of𝑊

𝑖
do not affect our results

(28).

Proof. For convenience, we cite some definitions in the
discussion of our proof as follows: for each fixed positive
continuous function 𝑢, define F

𝑖𝑗
[𝑢] : 𝐶([𝑡

0
, 𝑇]) →

𝐶([𝑡
0
, 𝑇]) by

F
𝑖𝑗 [
𝑢] V (𝑡) :

= 𝑓
𝑖
(𝑡)

𝑤
𝑖
(𝑊
−1

1
(⋅ ⋅ ⋅ (𝑊

−1

𝑗−1
(𝑢 (𝑡))) ⋅ ⋅ ⋅ ))

𝑤
𝑗
(𝑊
−1

1
(⋅ ⋅ ⋅ (𝑊

−1

𝑗−1
(𝑢 (𝑡))) ⋅ ⋅ ⋅ ))

+ V (𝑡) ,
(29)

where 𝑗 < 𝑖, 𝑖 = 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛 − 1.
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From (22), we have

𝑢 (𝑡)

≤ 𝑐 + {(

𝑛−1

∏

𝑖=1

H
𝑖
∘F
𝑖 [
𝑢]) ∘H

𝑛
∘F
𝑛 [
𝑢] 0} (𝛼 (𝑡))

+ {(

𝑛−1

∏

𝑖=1

H
𝑖
∘F
𝑖 [
𝑢]) ∘H

𝑛
∘F
𝑛 [
𝑢] 0} (𝛼 (𝑇)) ,

∀𝑡 ∈ [𝑡
0
, 𝑇
1
] .

(30)

Define a function 𝑧
1
(𝑡) by the function on the right-hand side

of (30). Then, 𝑧
1
(𝑡) is a positive and nondecreasing function

on [𝑡
0
, 𝑇]. Using (30), we have

𝑢 (𝑡) ≤ 𝑧
1
(𝑡) , ∀𝑡 ∈ [𝑡

0
, 𝑇] , (31)

𝑧
1
(𝑡
0
) = 𝑐 + {(

𝑛−1

∏

𝑖=1

H
𝑖
∘F
𝑖 [
𝑢]) ∘H

𝑛
∘F
𝑛 [
𝑢] 0} (𝛼 (𝑇)) .

(32)

Differentiating 𝑧
1
(𝑡) with respect to 𝑡, using (31) we have

𝑧
󸀠

1
(𝑡) = 𝛼

󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡)) 𝑤

1
(𝑢 (𝛼 (𝑡)))

+ [(

𝑛−1

∏

𝑖=2

H
𝑖
∘F
𝑖 [
𝑢]) ∘H

𝑛
∘F
𝑛 [
𝑢] 0] (𝛼 (𝑡))]

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡)) 𝑤

1
(𝑧
1
(𝛼 (𝑡)))

+ [(

𝑛−1

∏

𝑖=2

H
𝑖
∘F
𝑖
[𝑧
1
]) ∘H

𝑛
∘F
𝑛
[𝑧
1
] 0] (𝛼 (𝑡))] ,

(33)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. From (33), we have

𝑧
󸀠

1
(𝑡)

𝑤
1
(𝑧
1
(𝑡))

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡)) + [(

𝑛−1

∏

𝑖=2

H
𝑖
∘F
𝑖1
[𝑧
1
])

∘H
𝑛
∘F
𝑛1
[𝑧
1
] 0] (𝛼 (𝑡))] ,

(34)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Integrating both sides of the above inequal-

ity from 𝑡
0
to 𝑡, we have

𝑊
1
(𝑧
1
(𝑡))

≤ 𝑊
1
(𝑧
1
(𝑡
0
)) +H

1
(𝑓
1
(𝑠)) (𝛼 (𝑡))

+ [H
1
∘ (

𝑛−1

∏

𝑖=2

H
𝑖
∘F
𝑖1
[𝑧
1
]) ∘H

𝑛
∘F
𝑛1
[𝑧
1
] 0] (𝛼 (𝑡))

≤ 𝑊
1
(𝑧
1
(𝑡
0
)) +H

1
(𝑓
1
(𝑠)) (𝛼 (𝑇))

+ [H
1
∘ (

𝑛−1

∏

𝑖=2

H
𝑖
∘F
𝑖1
[𝑧
1
]) ∘H

𝑛
∘F
𝑛1
[𝑧
1
] 0] (𝛼 (𝑡)) ,

(35)

for 𝑡 ∈ [𝑡
0
, 𝑇].

Let 𝑧
2
(𝑡) denote the function on the right-hand side of

(35); we can see that 𝑧
2
(𝑡) is a positive and nondecreasing

function on [𝑡
0
, 𝑇]. From (35), we obtain

𝑧
1
(𝑡) ≤ 𝑊

−1

1
(𝑧
2
(𝑡)) , ∀𝑡 ∈ [𝑡

0
, 𝑇] , (36)

𝑧
2
(𝑡
0
) = 𝑊

1
(𝑧
1
(𝑡
0
)) + (H

1
𝑓
1
(𝑠)) (𝛼 (𝑇)) . (37)

Differentiating 𝑧
2
(𝑡) with respect to 𝑡, using (36) we obtain

𝑧
󸀠

2
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡
2
) [𝑓
2
(𝑡
2
)

𝑤
2
(𝑧
1
(𝑡
2
))

𝑤
1
(𝑧
1
(𝑡
2
))

+ [(

𝑛−1

∏

𝑖=3

H
𝑖
∘F
𝑖1
[𝑧
1
])

∘H
𝑛
∘F
𝑛1
[𝑧
1
] 0]]𝑑𝑡

2
]

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡
2
)

× [𝑓
2
(𝑡
2
)

𝑤
2
(𝑊
−1

1
(𝑧
2
(𝑡
2
)))

𝑤
1
(𝑊
−1

1
(𝑧
2
(𝑡
2
)))

+ [(

𝑛−1

∏

𝑖=3

H
𝑖
∘F
𝑖1
[𝑊
−1

1
∘ 𝑧
2
]) ∘H

𝑛

∘F
𝑛1
[𝑊
−1

1
∘ 𝑧
2
] 0]]𝑑𝑡

2
] ,

∀𝑡 ∈ [𝑡
0
, 𝑇] .

(38)
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From (38), we have

𝑧
󸀠

2
(𝑡) 𝑤
1
(𝑊
−1

1
(𝑧
2
(𝑡)))

𝑤
2
(𝑊
−1

1
(𝑧
2
(𝑡)))

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡
2
) 𝑓
2
(𝑡
2
) 𝑑𝑡
2

+ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) [H

2
∘ (

𝑛−1

∏

𝑖=3

H
𝑖
∘F
𝑖2
[𝑧
2
])

∘H
𝑛
∘F
𝑛2
[𝑧
2
] 0] (𝛼 (𝑡)) ,

(39)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. From (39), we have

𝑊
2
(𝑧
2
(𝑡)) ≤ 𝑊

2
(𝑧
2
(𝑡
0
))

+ [H
1
∘ (H
2
𝑓
2
(𝑠))] (𝛼 (𝑡))

+ [H
1
∘H
2
∘ (

𝑛−1

∏

𝑖=3

H
𝑖
∘F
𝑖2
[𝑧
2
])

∘H
𝑛
∘F
𝑛2
[𝑧
2
] 0] (𝛼 (𝑡))

≤ 𝑊
2
(𝑧
2
(𝑡
0
)) + [H

1
∘ (H
2
𝑓
2
(𝑠))] (𝛼 (𝑇))

+ [H
1
∘H
2
∘ (

𝑛−1

∏

𝑖=3

H
𝑖
∘F
𝑖2
[𝑧
2
])

∘H
𝑛
∘F
𝑛2
[𝑧
2
] 0] (𝛼 (𝑡)) ,

(40)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Proceeding with the same derivation as in

(36) to (40) and so on, we obtain

𝑊
𝑛−2

(𝑧
𝑛−2

(𝑡)) ≤ 𝑊
𝑛−2

(𝑧
𝑛−2

(𝑡
0
))

+ [(

𝑛−2

∏

𝑖=1

H
𝑖
)𝑓
𝑛−2

(𝑠)] (𝛼 (𝑡))

+ [(

𝑛−2

∏

𝑖=1

H
𝑖
) ∘H

𝑛−1
∘F
(𝑛−1)(𝑛−2)

[𝑧
𝑛−2
]

∘H
𝑛
∘F
𝑛(𝑛−2)

[𝑧
𝑛−2
] 0] (𝛼 (𝑡))

≤ 𝑊
𝑛−2

(𝑧
𝑛−2

(𝑡
0
))

+ [(

𝑛−2

∏

𝑖=1

H
𝑖
)𝑓
𝑛−2

(𝑠)] (𝛼 (𝑇))

+ [(

𝑛−2

∏

𝑖=1

H
𝑖
) ∘H

𝑛−1
∘F
(𝑛−1)(𝑛−2)

[𝑧
𝑛−2
]

∘H
𝑛
∘F
𝑛(𝑛−2)

[𝑧
𝑛−2
] 0] (𝛼 (𝑡)) ,

(41)

for all 𝑡 ∈ [𝑡
0
, 𝑇], where𝑊

𝑛−2
is defined by (14).

Define a function 𝑧
𝑛−1
(𝑡) by the function on the right-

hand side of (41).Then 𝑧
𝑛−1
(𝑡) is a positive and nondecreasing

function on [𝑡
0
, 𝑇]. From (41), we get

𝑧
𝑛−2

(𝑡) ≤ 𝑊
−1

𝑛−2
(𝑧
𝑛−1

(𝑡)) , ∀𝑡 ∈ [𝑡
0
, 𝑇] , (42)

𝑧
𝑛−1

(𝑡
0
)

= 𝑊
𝑛−2

(𝑧
𝑛−2

(𝑡
0
)) + [(

𝑛−2

∏

𝑖=1

H
𝑖
)𝑓
𝑛−2

(𝑠)] (𝛼 (𝑇)) .

(43)

Differentiating 𝑧
𝑛−1
(𝑡) with respect to 𝑡, we have

𝑧
󸀠

𝑛−1
(𝑡) = 𝛼

󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [(

𝑛−1

∏

𝑖=2

H
𝑖
) ∘F

(𝑛−1)(𝑛−2)
[𝑧
𝑛−2
]

∘H
𝑛
∘F
𝑛(𝑛−2)

[𝑧
𝑛−2
] 0] (𝛼 (𝑡))

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [(

𝑛−1

∏

𝑖=2

H
𝑖
) ∘F

(𝑛−1)(𝑛−2)
[𝑊
−1

𝑛−2
∘ 𝑧
𝑛−1
]

∘H
𝑛
∘F
𝑛(𝑛−2)

[𝑊
−1

𝑛−2
∘ 𝑧
𝑛−1
] 0] (𝛼 (𝑡)) ,

(44)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Then (44) is equivalent to

𝑧
󸀠

𝑛−1
(𝑡) 𝑤
𝑛−2

(𝑊
−1

1
(𝑊
−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧
𝑛−1

(𝑡
𝑛−1
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1

(𝑊
−1

1
(𝑊
−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧
𝑛−1

(𝑡
𝑛−1
))) ⋅ ⋅ ⋅ )))

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) [(

𝑛−1

∏

𝑖=2

H
𝑖
)𝑓
𝑛−1

(𝑠)] (𝛼 (𝑡))

+ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [(

𝑛−1

∏

𝑖=2

H
𝑖
) ∘H

𝑛
∘F
𝑛(𝑛−1)

[𝑧
𝑛−1
] 0] (𝛼 (𝑡)) ,

(45)
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for all 𝑡 ∈ [𝑡
0
, 𝑇]. Integrating both sides of (45) from 𝑡

0
to 𝑡,

we have

𝑊
𝑛−1

(𝑧
𝑛−1

(𝑡))

≤ 𝑊
𝑛−1

(𝑧
𝑛−1

(𝑡
0
)) + [(

𝑛−1

∏

𝑖=1

H
𝑖
)𝑓
𝑛−1

(𝑠)] (𝛼 (𝑡))

+ [(

𝑛−1

∏

𝑖=1

H
𝑖
) ∘H

𝑛
∘F
𝑛(𝑛−1)

[𝑧
𝑛−1
] 0] (𝛼 (𝑡))

≤ 𝑊
𝑛−1

(𝑧
𝑛−1

(𝑡
0
)) + [(

𝑛−1

∏

𝑖=1

H
𝑖
)𝑓
𝑛−1

(𝑠)] (𝛼 (𝑇))

+ [(

𝑛−1

∏

𝑖=1

H
𝑖
) ∘H

𝑛
∘F
𝑛(𝑛−1)

[𝑧
𝑛−1
] 0] (𝛼 (𝑡)) ,

(46)

for all 𝑡 ∈ [𝑡
0
, 𝑇].

Define a function 𝑧
𝑛
(𝑡) by the function on the right-

hand side of (46); then, 𝑧
𝑛
(𝑡) is a positive and nondecreasing

function on [𝑡
0
, 𝑇]. From (46), we have

𝑧
𝑛−1

(𝑡) ≤ 𝑊
−1

𝑛−1
(𝑧
𝑛
(𝑡)) , ∀𝑡 ∈ [𝑡

0
, 𝑇] , (47)

𝑧
𝑛
(𝑡
0
) = 𝑊

𝑛−1
(𝑧
𝑛−1

(𝑡
0
)) + [(

𝑛−1

∏

𝑖=1

H
𝑖
)𝑓
𝑛−1

(𝑠)] (𝛼 (𝑇)) .

(48)

Differentiating 𝑧
𝑛
(𝑡) with respect to 𝑡, using (47) we have

𝑧
󸀠

𝑛
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) [(

𝑛

∏

𝑖=2

H
𝑖
) ∘F

𝑛(𝑛−1)
[𝑧
𝑛−1
] 0] (𝛼 (𝑡))

≤ 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡))

× [(

𝑛

∏

𝑖=2

H
𝑖
) ∘F

𝑛(𝑛−1)
[𝑊
−1

𝑛−1
∘ 𝑧
𝑛
] 0] (𝛼 (𝑡)) ,

(49)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. From (49), we have

𝑧
󸀠

𝑛
(𝑡) 𝑤
𝑛−1

(𝑊
−1

1
(𝑊
−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧
𝑛
(𝑡
𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛
(𝑊
−1

1
(𝑊
−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧
𝑛
(𝑡
𝑛
))) ⋅ ⋅ ⋅ )))

= 𝛼
󸀠
(𝑡) ℎ
1
(𝛼 (𝑡)) [(

𝑛

∏

𝑖=2

H
𝑖
) 1 ] (𝛼 (𝑡)) ,

(50)

for all 𝑡 ∈ [𝑡
0
, 𝑇], where 1 denote the constant function V(𝑡) ≡

1. Integrating both sides of the above inequality from 𝑡
0
to 𝑡,

we obtain

𝑊
𝑛
(𝑧
𝑛
(𝑡)) − 𝑊

𝑛
(𝑧
𝑛
(𝑡
0
)) ≤ [(

𝑛

∏

𝑖=1

H
𝑖
) 1] (𝛼 (𝑡)) , (51)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. From (36), (42), (47), and (51), we have

𝑧
1
(𝑡) ≤ 𝑊

−1

1
(𝑊
−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧
𝑛
(𝑡))) ⋅ ⋅ ⋅ ))

≤

𝑛

∏

𝑖=1

𝑊
−1

𝑖
{𝑊
𝑛
(𝑧
𝑛
(𝑡
0
)) + [(

𝑛

∏

𝑖=1

H
𝑖
) 1] (𝛼 (𝑡))} ,

(52)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Substituting (37), (43), and (48) into (52),

we have

𝑧
1
(𝑡) ≤

𝑛

∏

𝑖=1

𝑊
−1

𝑖
{𝑊
𝑛
(

2

∏

𝑖=𝑛−1

W
𝑖
∘W
1
(𝑧
1
(𝑡
0
)) (𝛼 (𝑇)))

+ [(

𝑛

∏

𝑖=1

H
𝑖
) 1] (𝛼 (𝑡))} ,

(53)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Since 𝑇 is chosen arbitrarily, we have

𝑧
1
(𝑡) ≤

𝑛

∏

𝑖=1

𝑊
−1

𝑖
{𝑊
𝑛
(

2

∏

𝑖=𝑛

W
𝑖
∘W
1
(𝑧
1
(𝑡
0
)) (𝛼 (𝑡)))} ,

(54)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. By the definition of 𝑧

1
and (32), we have

2𝑧
1
(𝑡
0
) − 𝑐

= 𝑐 + 2{(

𝑛−1

∏

𝑖=1

H
𝑖
∘F
𝑖 [
𝑢]) ∘H

𝑛
∘F
𝑛 [
𝑢] 0} (𝛼 (𝑇))

= 𝑧
1
(𝑇) .

(55)

From (54) and (55), we have

2𝑧
1
(𝑡
0
) − 𝑐 ≤

𝑛

∏

𝑖=1

𝑊
−1

𝑖
{

2

∏

𝑖=𝑛

W
𝑖
∘W
1
(𝑧
1
(𝑡
0
)) (𝛼 (𝑇))} ,

(56)
or
2

∏

𝑖=𝑛

𝑊
𝑖
∘ 𝑊
1
(2𝜉 − 𝑐) −

2

∏

𝑖=𝑛

W
𝑖
∘W
1
(𝜉) (𝛼 (𝑇)) ≤ 0. (57)

By the definition ofW(𝜉), the assumption ofTheorem 3, and
(57), we observe that

W (𝑧
1
(𝑡
0
)) ≤ 0 =W (𝜉

0
) . (58)

By Lemma 2,W(𝜉) is increasing. From the last inequality and
(31) we have the desired estimation (28).

We define the following functions:

𝐸 (𝑢) = 𝑊
2
{𝑊
1
(2𝑢 − 𝑐)}

− 𝑊
2
{𝑊
1
(𝑢) + (H

1
𝑓
1
(𝑡)) (𝛼 (𝑇))}

−H
1
∘ (H
2
1) (𝛼 (𝑇)) ,

(59)

for all 𝑢 > 𝑐, where𝑊
𝑖
, 𝑖 = 1, 2 are defined by (13) and (14),

respectively.
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Example 5. Let 𝑛 = 2, 𝑓
1
(𝑡), ℎ
𝑖
(𝑡), 𝜑
𝑖
,𝑊
𝑖
, 𝑖 = 1, 2, 𝛼 be as in

Theorem 3; 𝑐 is a positive constant. Suppose that the function
𝐸(𝑢) is increasing and 𝐸(𝑢) = 0 has a solution 𝑐 for 𝑢 > 𝑐. If
𝑢(𝑡) satisfies (22), then

𝑢 (𝑡)

≤ 𝑊
−1

1
{𝑊
−1

2
{𝑊
2
{𝑊
1
(𝑐) + (H

1
𝑓
1
(𝑡)) (𝛼 (𝑡))}

−H
1
∘ (H
2
1) (𝛼 (𝑡)) } } , ∀𝑡 ∈ [𝑡

0
, 𝑇] ,

(60)

where𝑊−1
𝑖
(𝑖 = 1, 2) are inverse functions of𝑊

𝑖
, respectively.

Remark 6. If 𝑤
1
= 𝑤
2
in Example 5, then the result in

Example 5will yield the conclusion that appeared inTheorem
2.1
󸀠 in [17]. Since if 𝑤

1
= 𝑤
2
, then𝑊

2
(𝑢) = 𝑢 − 𝑢

2
,𝑊−1
2
(𝑢) =

𝑢+𝑢
2
, from (60), we have 𝑢(𝑡) ≤ 𝑊−1

1
{𝑊
1
(𝑐) +𝐻

1
(𝑡) +𝐻

2
(𝑡)}

for all 𝑡 ∈ [𝑡
0
, 𝑇].

4. Application

In this section, we apply our result inTheorem 3 to investigate
the retarded Volterra-Fredholm integral equations

𝑥 (𝑡) = 𝑥
0

+ ∫

𝑡

𝑡0

𝐹
1
{𝑠, 𝑥 (𝑠 − 𝑑 (𝑠)) , ∫

𝑠

𝑡0

𝐹
2 [
𝜏, 𝑥 (𝜏 − 𝑑 (𝜏))] 𝑑𝜏} 𝑑𝑠

+ ∫

𝑇

𝑡0

𝐹
1
{𝑠, 𝑥 (𝑠 − 𝑑 (𝑠)) , ∫

𝑠

𝑡0

𝐹
2 [
𝜏, 𝑥 (𝜏 − 𝑑 (𝜏))] 𝑑𝜏} 𝑑𝑠,

(61)

for 𝑡 ∈ [𝑡
0
, 𝑇], where 𝑥 ∈ 𝐶(𝐼,R), 𝑑 ∈ 𝐶

1
(𝐼, 𝐼) is non-

decreasing with 𝑡 − 𝑑(𝑡) ≥ 𝑡
0
, 𝑑(𝑡
0
) = 0, 𝑑󸀠(𝑡) < 1, 𝐹

1
∈

𝐶(𝐼 × R2,R), and 𝐹
2
∈ 𝐶(𝐼 × R,R). Let 𝛽(𝑡) = 𝑡 − 𝑑(𝑡); then

𝛽(𝑡) ∈ 𝐶
1
(𝐼, 𝐼), 𝛽(𝑡) ≤ 𝑡. Since 𝛽󸀠(𝑡) = 1 − 𝑑󸀠(𝑡) > 0, 𝛽(𝑡) is an

increasing and invertible function.
The following corollary gives the bound on the solution

of (61).

Corollary 7. Suppose that the 𝐹
1
, 𝐹
2
in (61) satisfy the condi-

tions
󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑠, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ ℎ
1
(𝑠) [𝑓
1
(𝑠) 𝑤
1
(|𝑥|) +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
] , (62)

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑠, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ℎ
2
(𝑠) 𝑤
2
(|𝑥|) , (63)

where𝑓
1
(𝑠), ℎ
1
(𝑠), ℎ
2
(𝑠),𝑤
1
(𝑠), and𝑤

2
(𝑠) are as inTheorem 3;

let 𝑀 = max
𝑡∈[𝑡0 ,𝑇]

(1/𝛽
󸀠
(𝛽
−1
(𝑡))) < ∞. Assume that the

function

𝐸
∗
(𝑢) = 𝑊

2
[𝑊
1
(2𝑢 −

󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
)]

− 𝑊
2
[𝑊
1
(𝑢) + ∫

𝛽(𝑇)

𝛽(𝑡0)

𝑀ℎ
1
(𝑠) 𝑓
1
(𝑠) 𝑑𝑠]

− ∫

𝛽(𝑇)

𝛽(𝑡0)

𝑀ℎ
1
(𝑠) × [∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝜏) 𝑑𝜏] 𝑑𝑠

(64)

is increasing and𝐸∗(𝑢) = 0 has a solution 𝑐 for 𝑢 > 𝜉
0
. If 𝑥(𝑡) is

a solution of (61), then

|𝑥 (𝑡)| ≤ 𝑊
−1

1

× {𝑊
−1

2
[𝑊
2
[𝑊
1
(𝑐)

+∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽
−1
(𝑠)) 𝑓
1
(𝛽
−1
(𝑠)) 𝑑𝑠]

+ ∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽
−1
(𝑠))

× [∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽
−1
(𝜏)) 𝑑𝜏] 𝑑𝑠]} ,

∀𝑡 ∈ [𝑡
0
, 𝑇] ,

(65)

where𝑊
1
,𝑊
2
,𝑊−1
1
, and𝑊−1

2
are as in Theorem 3.

Proof. Using the conditions (62)-(63) we have

|𝑥 (𝑡)| ≤
󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(|𝑥 (𝑠 − 𝑑 (𝑠))|)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤
2
(|𝑥 (𝜏 − 𝑑 (𝜏))|) 𝑑𝜏] 𝑑𝑠

+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(|𝑥 (𝑠 − 𝑑 (𝑠))|)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤
2
(|𝑥 (𝜏 − 𝑑 (𝜏))|) 𝑑𝜏] 𝑑𝑠

=
󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤
2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤
2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

≤
󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝛽(𝑠)

𝛽(𝑡0)

𝑀ℎ
2
(𝛽
−1
(𝜏))𝑤

2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠
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+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤
1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝛽(𝑠)

𝛽(𝑡0)

𝑀ℎ
2
(𝛽
−1
(𝜏))𝑤

2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠

≤
󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽
−1
(𝑠))

× [𝑓
1
(𝛽
−1
(𝑠)) 𝑤

1
(|𝑥 (𝑠)|)

+ ∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽
−1
(𝜏))𝑤

2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠

+ ∫

𝛽(𝑇)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽
−1
(𝑠))

× [𝑓
1
(𝛽
−1
(𝑠)) 𝑤

1
(|𝑥 (𝑠)|)

+∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽
−1
(𝜏))𝑤

2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠,

(66)

for 𝑡 ∈ [𝑡
0
, 𝑇], where several changes of variables are made.

Applying the result of Theorem 3 to the last inequality, we
obtain the desired estimation (65).
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