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In this paper the suboptimal event-triggered consensus problem of Multiagent systems is investigated. Using the combinational
measurement approach, each agent only updates its control input at its own event time instants. Thus the total number of events
and the amount of controller updates can be significantly reduced in practice. Then, based on the observation of increasing the
consensus rate and reducing the number of triggering events, we have proposed the time-average cost of the agent system and
developed a suboptimal approach to determine the triggering condition.The effectiveness of the proposed strategy is illustrated by
numerical examples.

1. Introduction

In practical application of networked dynamical systems,
individual subsystems such as robots, vehicles, or mobile
sensors are required to work cooperatively to accomplish
complex tasks. This motivates the research on analysis and
synthesis of networked dynamical systems and distributed
coordination control of multiagent systems in recent years.
Typical research directions in this filed include, but are not
limited to, the problems of networked systemswith unreliable
communication links and quantized measurements [1–3],
multiagent consensus [4–6], distributed tracking [7], forma-
tion control [8], connectivity preservation [9], agent flocking
[10–12], rendezvous [13, 14], coverage, and deployment [15–
17].

To reduce the total cost in practical systems, when
implementing the communication and controller actuation
schemes for multiagent systems, a possible design may equip
each agentwith a small embeddedmicroprocessor and simple
communication and actuation modules. However, these low-
cost processors andmodules usually have only limited energy
and abilities. As a result, event-triggered schemes for practical
control systems with digital platforms are proposed; see [18–
21]. Recently, event-based distributed control strategies have
also been proposed for multiagent systems in [22–25]. Using
the deterministic strategy introduced in [19], the control

input of each agent is updated only when the measurement
error magnitude exceeds a certain threshold. It is also proved
that the lower bounds for the inter-event time intervals
are strictly positive to ensure there is no Zeno behavior.
Other works regarding event-triggered control formultiagent
systems include decentralized control over wireless sensor
networks [26], event-triggered consensus with second-order
dynamics [27], and event-based leader-follower tracking
[28].

The motivation of employing event-triggered control in
multiagent systems is to reduce the costs of communication
and controller updates so as to meet the hardware limitations
and to save energy. However, in the existing event-triggered
control of multiagent systems, the performance of the event-
triggered controller has not been studied yet [22–25]. In this
paper, we firstly present a short review of the combinational
measurement approach proposed in [29]. Compared with
the existing approach, this approach allows the controller of
each agent to be triggered only at the event time of itself,
which reduces the frequency of controller updates in practice.
Then, based on this control approach, we have investigated
the optimal control problem of the event-triggered control
system by formulating the average cost of the system. It is
noted that the combinational measurement approach can be
utilized to decouple the costs of different agents. By such cost
decoupling strategy, a suboptimal approach to determine the
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Table 1: Average cost 𝐽(𝑔) with different feedback gains and cost
coupling strengths; Δ = 0.01.

𝛽
𝑖

(𝜆
𝑖
, 𝜉
𝑖
)

(0.7, 0.2) (0.6, 0.6) (0.1, 0.8)

0.15 2.6352 6.9189 1.5428
√2𝜆
𝑖
𝜉
𝑖

2.0066 4.2239 1.4984
0.90 3.0605 4.3262 2.7932

triggering condition has been proposed. Numerical examples
show that the proposed approach can reduce the total cost of
the agent system during the consensus tasks.

The contribution of this work is as follows. Firstly, we
have proposed a formulation of the time-average cost for
multiagent systems with event-based controllers. This cost
can describe the tradeoff between increasing the consensus
rate and reducing the resource consumption. To the best of
our knowledge, there has been very few works regarding this
issue of event-triggered multiagent systems so far. Secondly,
we have decoupled the costs of different agents and then
found an upper bound of the cost for each agent. By this
approach, we are able to propose a distributed suboptimal
controller for the multiagent consensus problem.

The rest of this paper is organized as follows. Section 2
presents the event-triggered controller design of the multia-
gent system and the results of its convergence. In Section 3,
the average cost of the system is formulated and the subop-
timal triggering condition is obtained. In Section 4, simula-
tions are provided to illustrate the proposed strategies. Finally
the paper is concluded in Section 5.

2. Event-Triggered Consensus

In this section we provide a review of the event-triggered
control with combinational measurement proposed in [29].
Consider a multiagent system with 𝑁 agents, labeled by
1, 2, . . . , 𝑁, which are required to achieve the consensus task.
The agent states at time 𝑡 are represented by 𝑥

𝑖
(𝑡) ∈ R𝑛, 𝑖 =

1, . . . , 𝑁. The dynamic of agent 𝑖 is

𝑥̇
𝑖 (𝑡) = 𝑢

𝑖 (𝑡) . (1)

The communication links among agents are considered to be
undirected and the communication topology of the system is
represented by an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 is
the vertex set and 𝐸 is the edge set. Agent 𝑗 is said to be a
neighbor of agent 𝑖 if and only if (𝑗, 𝑖) ∈ 𝐸 (or (𝑖, 𝑗) ∈ 𝐸). All
the neighbors of agent 𝑖 constitute the neighbor set𝑁

𝑖
.

The event-triggering mechanism is introduced in agent
control. The control input of agent 𝑖 will remain fixed until
the next triggering event occurs. Assume that the triggering
time sequence for agent 𝑖 is 𝑡

𝑖

0
, 𝑡
𝑖

1
, . . . , 𝑡

𝑖

𝑘
, . . ., where 𝑡

𝑖

0
= 0

is always a default triggering time. In the agent group, each
agent can obtain the state information of its communication
neighbors. When 𝑡 ∈ [𝑡

𝑖

𝑘
, 𝑡
𝑖

𝑘+1
), the control input of agent 𝑖

will depend on the states of itself and its neighbors at time 𝑡𝑖
𝑘
.
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Figure 1: Target state and measurement error of agent 𝑖.

To develop decentralized control, agent 𝑖’s local coordi-
nate system is introduced and the origin is at 𝑥

𝑖
(𝑡). The real-

time average state of agent 𝑖 and all its neighbors in this local
coordinate system is

𝑞
𝑖 (𝑡) =

1

𝑛
𝑖
+ 1

∑

𝑗∈𝑁𝑖

(𝑥
𝑗 (𝑡) − 𝑥

𝑖 (𝑡)) . (2)

At each triggering time point, agent 𝑖 measures this average
state and takes the measurement as its target; see Figure 1 for
an illustration in a 2Dplane.This target state will remain fixed
until the next triggering time comes. Thus the target state of
agent 𝑖 when 𝑡 ∈ [𝑡

𝑖

𝑘
, 𝑡
𝑖

𝑘+1
) is

𝑞
𝑖
(𝑡
𝑖

𝑘
) =

1

𝑛
𝑖
+ 1

∑

𝑗∈𝑁𝑖

(𝑥
𝑗
(𝑡
𝑖

𝑘
) − 𝑥
𝑖
(𝑡
𝑖

𝑘
)) . (3)

For 𝑡 ∈ [𝑡
𝑖

𝑘
, 𝑡
𝑖

𝑘+1
), the control law for agent 𝑖 is proposed in

[29] as follows:

𝑢
𝑖 (𝑡) = 𝜉

𝑖
𝑞
𝑖
(𝑡
𝑖

𝑘
)

=
𝜉
𝑖

𝑛
𝑖
+ 1

∑

𝑗∈𝑁𝑖

(𝑥
𝑗
(𝑡
𝑖

𝑘
) − 𝑥
𝑖
(𝑡
𝑖

𝑘
)) ,

(4)

where 𝜉
𝑖
is a positive real number to be determined. The

measurement error of agent 𝑖 will be

𝑒
𝑖 (𝑡) = 𝑞

𝑖
(𝑡
𝑖

𝑘
) − 𝑞
𝑖 (𝑡) . (5)

Since 𝑡
𝑖

0
= 0 is a triggering time instant, one has 𝑒

𝑖
(0) = 0. In

the sequel we will show how to use this error to determine the
triggering event that guarantees the consensus of the agent
group.

We denote 𝑥(𝑡) = (𝑥
𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇 as the augmented

state of the system and also denote 𝑒(𝑡) = (𝑒
𝑇

1
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))
𝑇.

From (4) and (5) one has

𝑥̇
𝑖 (𝑡) = −

𝜉
𝑖

𝑛
𝑖
+ 1

∑

𝑗∈𝑁𝑖

(𝑥
𝑖 (𝑡) − 𝑥

𝑗 (𝑡)) + 𝜉
𝑖
𝑒
𝑖 (𝑡) . (6)
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Figure 2: Communication topology and trajectories of agents.
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Figure 3: Control inputs of agents.

Let 𝐿 be the Laplacianmatrix of the underlying graph𝐺. Also
let Ξ = diag{𝜉

1
, . . . , 𝜉

𝑁
} and𝑀 = diag{𝑛

1
+ 1, . . . , 𝑛

𝑁
+ 1}.

Then the compact form of the system equation is given by

𝑥̇ (𝑡) = − ((Λ𝐿) ⊗ 𝐼
𝑛
) 𝑥 (𝑡) + (Ξ ⊗ 𝐼

𝑛
) 𝑒 (𝑡) , (7)

where Λ = 𝑀
−1
Ξ. Since the communication is bidirectional,

graph 𝐺 is undirected and then 𝐿 is symmetric [5]. Consider
the candidate Lyapunov function

V (𝑡) =
1

2
𝑥
𝑇
(𝑡) (𝐿 ⊗ 𝐼

𝑛
) 𝑥 (𝑡) . (8)

One has

V̇ (𝑡) = 𝑥
𝑇
(𝑡) (𝐿 ⊗ 𝐼

𝑛
) 𝑥̇ (𝑡)

= 𝑥
𝑇
(𝑡) (𝐿 ⊗ 𝐼

𝑛
) (− ((Λ𝐿) ⊗ 𝐼

𝑛
) 𝑥 (𝑡) + (Ξ ⊗ 𝐼

𝑛
) 𝑒 (𝑡)) .

(9)

Let 𝑧
𝑖
(𝑡) = ∑

𝑗∈𝑁𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) and

𝑧 (𝑡) = (𝑧
𝑇

1
(𝑡) , . . . , 𝑧

𝑇

𝑁
(𝑡))
𝑇

. (10)

Then one has

𝑧 (𝑡) = (𝐿 ⊗ 𝐼
𝑛
) 𝑥 (𝑡) . (11)

From (9),

V̇ (𝑡) = −𝑧
𝑇
(𝑡) (Λ ⊗ 𝐼

𝑛
) 𝑧 (𝑡) + 𝑧

𝑇
(𝑡) (Ξ ⊗ 𝐼

𝑛
) 𝑒 (𝑡)

= −

𝑁

∑

𝑖=1

𝜉
𝑖

𝑛
𝑖
+ 1

󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2
+

𝑁

∑

𝑖=1

𝜉
𝑖
𝑧
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) .

(12)

Note that for any 𝑎 > 0 and any 𝑥, 𝑦 ∈ R𝑛, one always has
|𝑥
𝑇
𝑦| ≤ (𝑎/2)‖𝑥‖

2
+ (1/2𝑎)‖𝑦‖

2. Thus

V̇ (𝑡) ≤ −

𝑁

∑

𝑖=1

𝜉
𝑖

𝑛
𝑖
+ 1

󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑖=1

𝑎
𝑖
𝜉
𝑖

2

󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑖=1

𝜉
𝑖

2𝑎
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2
.

(13)

Enforcing
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝜂
𝑖

󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)
󵄩󵄩󵄩󵄩 (14)
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Figure 4: Measurement error norms of agents.

yields

V̇ (𝑡) ≤ −

𝑁

∑

𝑖=1

(
𝜉
𝑖

𝑛
𝑖
+ 1

−
𝑎
𝑖
𝜉
𝑖

2
−

𝜉
𝑖
𝜂
2

𝑖

2𝑎
𝑖

)
󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2
. (15)

Thus V̇(𝑡) ≤ 0 if 1/(𝑛
𝑖
+ 1) − 𝑎

𝑖
/2 − 𝜂

2

𝑖
/2𝑎
𝑖
> 0. From this, one

has 𝑎
𝑖
< 2/(𝑛

𝑖
+ 1) and 𝜂

𝑖
< √2𝑎

𝑖
/(𝑛
𝑖
+ 1) − 𝑎2

𝑖
. Notice that,

when 𝑎
𝑖
= 1/(𝑛

𝑖
+1),√2𝑎

𝑖
/(𝑛
𝑖
+ 1) − 𝑎2

𝑖
reaches its maximum

1/(𝑛
𝑖
+ 1). Also notice that

𝑧
𝑖 (𝑡) = − (𝑛

𝑖
+ 1) 𝑞

𝑖 (𝑡) . (16)

Thus (14) can be rewritten as
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝛽
𝑖

󵄩󵄩󵄩󵄩𝑞𝑖 (𝑡)
󵄩󵄩󵄩󵄩 , 0 < 𝛽

𝑖
< 1. (17)

Then (15) becomes

V̇ (𝑡) ≤ −

𝑁

∑

𝑖=1

𝜉
𝑖
(1 − 𝛽

2

𝑖
)

2 (𝑛
𝑖
+ 1)

󵄩󵄩󵄩󵄩𝑧𝑖 (𝑡)
󵄩󵄩󵄩󵄩
2
. (18)

The triggering function for agent 𝑖 is

𝑔
𝑖
(𝑒
𝑖 (𝑡) , 𝑞𝑖 (𝑡)) =

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 − 𝛽
𝑖

󵄩󵄩󵄩󵄩𝑞𝑖 (𝑡)
󵄩󵄩󵄩󵄩 , 0 < 𝛽

𝑖
< 1. (19)

And an event of agent 𝑖 will be triggered when

𝑔
𝑖
(𝑒
𝑖 (𝑡) , 𝑞𝑖 (𝑡)) = 0. (20)

Notice that when an event is triggered, the control input
changes and the error 𝑒

𝑖
(𝑡) is automatically reset to 0.

It is noted that the triggering mechanism is designed in
such a way that the time derivative of the Lyapunov function
is enforced to be nonpositive by (17). However, this does
not sufficiently guarantee the convergence of the closed-loop
system. In a hybrid system, the interevent time may get
shorter and shorter for increasing 𝑘 such that infinitely many
events are triggered in a finite time interval. Such execution of
a hybrid system is called Zeno; see [30] and references therein
for more details. Generally speaking, in controller design
one may expect the agents are always triggered regularly and
there is no Zeno behavior. Actually, in [29] comprehensive
triggering behavior analysis has been provided and we have
the following lemma.

Lemma 1. Consider an agent 𝑖 with a nonempty neighbor set
𝑁
𝑖
. Its kinematic is given in (1) and its controller is the event-

triggered control (4), with (20) being the triggering condition.
If 𝑡
𝑖

𝑘
exists and 𝑞

𝑖
(𝑡
𝑖

𝑘
) ̸= 0, agent 𝑖 will only exhibit regular

triggering behavior for all 𝑡 > 𝑡
𝑖

𝑘
.



Abstract and Applied Analysis 5

0 10 20 30 40 50
0
2
4

t (s)

t1 k
+
1
−
t1 k

t (s)
0 10 20 30 40 50

0

5

t2 k
+
1
−
t2 k

t (s)
0 10 20 30 40 50

0
2
4

t3 k
+
1
−
t3 k

t (s)
0 10 20 30 40 50

0
5

10

t4 k
+
1
−
t4 k

t (s)
0 10 20 30 40 50

0

5

t5 k
+
1
−
t5 k

t (s)
0 10 20 30 40 50

0
5

10

t6 k
+
1
−
t6 k

Figure 5: Event instants and time intervals of agents.

Proof. Theproof of this lemma follows directly from Lemmas
2, 3, and 4 in [29].

Thenwe are at the position to present the consensus result
of the proposed event-triggered controller.

Theorem2 (see [29]). Consider a group of𝑁 agentsmoving in
the working spaceR𝑛.The dynamic of each agent is (1). Assume
that the communication graph 𝐺 is fixed and connected. If no
agent is located at the average state of its neighbors, the group
will achieve consensus asymptotically under the event-triggered
control law (4) with the triggering condition (20).

Remark 3. We note that the agent group may not achieve
consensus if more than one agent is located at the average of
all its neighbors. One strategy for solving this problem is to
use a subset of𝑁

𝑖
; for example,𝑁𝑠

𝑖
⊂ 𝑁
𝑖
, to compute 𝑞

𝑖
(𝑘+1)

and 𝑡
𝑖

𝑘+1
.Then, at 𝑡𝑖

𝑘+1
, when agent 𝑖 is no longer at the average

state of all its neighbors, the controller is switched back to use
𝑁
𝑖
.

3. Suboptimal Triggering

In a practical multiagent system, fast achievement of the
coordination tasks with least resource consumption is often
expected. For consensus problem discussed in this work, one
may expect the highest consensus rate with the least amount
of events and controller updating executions. However, there
is a tradeoff between these two factors. On the one hand,

to achieve fast consensus and precise control, one may
require the norm of the measurement error ‖𝑒

𝑖
(𝑡)‖ as smaller

as possible, which may call for high frequency of event
triggering and controller updating. On the other hand, to
save energy and communication bandwidth, one may reduce
the triggering frequency and thus the amount of controller
updating, which contradicts the above mentioned consensus
rate expectation. The goal of this section is to balance a
tradeoff between increasing the consensus rate and reducing
events and controller updates.

It is noted that, if ‖𝑒
𝑖
(𝑡)‖ = 0, agent 𝑖 takes the center of

all its neighbors 𝑞
𝑖
(𝑡) as the target point. Then it may achieve

consensus faster than using 𝑞
𝑖
(𝑡
𝑖

𝑘
) since 𝑞

𝑖
(𝑡) is the real-time

neighborhood center. Thus ‖𝑒
𝑖
(𝑡)‖ can be considered as the

measurement cost of agent 𝑖.The smaller this cost is, the faster
the consensus rate can be. However, directly using ‖𝑒

𝑖
(𝑡)‖ as

the measurement cost is not a better choice since, when all
the agents are very close to each other, ‖𝑒

𝑖
(𝑡)‖ goes to 0 and

cannot reflect the consensus rate well. To solve this problem,
we let the measurement cost of agent 𝑖 be

𝑠
𝑖 (𝑡) =

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑞𝑖 (𝑡)
󵄩󵄩󵄩󵄩

. (21)

This definition can represent the measurement deviation of
the real-time neighborhood center from its true value. It is
better than directly using ‖𝑒

𝑖
(𝑡)‖ as the measurement cost

since 𝑠
𝑖
(𝑡) is also well defined to reflect the consensus rate

when ‖𝑒
𝑖
(𝑡)‖ tends to 0 as time goes to infinity.The lower this

cost is, the faster the consensus rate can be.
To formulate the above mentioned tradeoff, we should

also find away to count the amount of triggering events for all
the agents. Let the entire triggering cost of agent 𝑖 be its total
number of triggering events. Then during the time interval
[𝑡
𝑖

𝑘
, 𝑡
𝑖

𝑘+1
), the triggering cost of agent 𝑖 is 1.Thus we can define

the time-average triggering cost as

𝜎
𝑖 (𝑡) =

2

(𝑡𝑖
𝑘+1

− 𝑡𝑖
𝑘
)
2
(𝑡 − 𝑡
𝑖

𝑘
) , 𝑡 ∈ [𝑡

𝑖

𝑘
, 𝑡
𝑖

𝑘+1
) . (22)

This definition implies that the total cost in a single event time
interval [𝑡𝑖

𝑘
, 𝑡
𝑖

𝑘+1
) is always 1; that is,

∫

𝑡
𝑖

𝑘+1

𝑡
𝑖

𝑘

𝜎
𝑖 (𝑡) 𝑑𝑡 = 1. (23)

The lower the cost 𝜎
𝑖
(𝑡), the fewer the amount of event

triggering and controller updating and thus the resource
consumption can be.

Then we can define the comprehensive time-average cost
of agent 𝑖, that is, the per-period cost, as

𝑠
𝑖 (𝑡) + 𝜆

𝑖
𝜎
𝑖 (𝑡) , (24)

where 𝜆
𝑖
is the cost coupling strength.The objective is to find

a balance between the estimation error and the triggering
frequency. Namely, we are aiming to find a set of optimal
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triggering policies to minimize the average cost of the agent
group, which is defined by

𝐽 (𝑔) = lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑁

∑

𝑖=1

(𝑠
𝑖 (𝑡) + 𝜆

𝑖
𝜎
𝑖 (𝑡)) 𝑑𝑡, (25)

where 𝑔 = {𝑔
𝑖
, . . . , 𝑔

𝑁
} is the collection of triggering

functions. Since all the agents are coupled by the event-
triggered control, the whole group exhibits the behavior
of a complex hybrid system. Thus to solve the problem
of minimizing 𝐽(𝑔) by designing 𝑔 is rather challenging.
However, based on the behavior analysis presented in [29],
one can find a suboptimal solution to this problem.

Denote 𝐽(𝑔) = ∑
𝑁

𝑖=1
𝐽
𝑖
(𝑔) where

𝐽
𝑖
(𝑔) = lim

𝑇→∞

1

𝑇
∫

𝑇

0

(𝑠
𝑖 (𝑡) + 𝜆

𝑖
𝜎
𝑖 (𝑡)) 𝑑𝑡 (26)

is the average cost of agent 𝑖. Let 𝑡
𝑝
and 𝑡
𝑞
be two event instants

of agent 𝑖 with 𝑡
𝑞
> 𝑡
𝑝
, and let

𝑇 = 𝑡
𝑞
− 𝑡
𝑝
. (27)

We consider this cost over a sufficiently long time period
[0, 𝑇]. From (25) one notices that the finite time form of agent
𝑖’s average cost over the time interval [𝑡

𝑝
, 𝑡
𝑞
] is

𝐽
𝑖
[𝑡
𝑝
, 𝑡
𝑞
] =

1

𝑇
∫

𝑡𝑞

𝑡𝑝

(𝑠
𝑖 (𝑡) + 𝜆

𝑖
𝜎
𝑖 (𝑡)) 𝑑𝑡

=
1

𝑇

𝑞−1

∑

𝑘=𝑝

∫

𝑡
𝑖

𝑘

𝑡
𝑖

𝑘−1

(𝑠
𝑖 (𝑡) + 𝜆

𝑖
𝜎
𝑖 (𝑡)) 𝑑𝑡

=
1

𝑇

𝑞−1

∑

𝑘=𝑝

∫

𝑡
𝑖

𝑘

𝑡
𝑖

𝑘−1

𝑠
𝑖 (𝑡) 𝑑𝑡 +

𝜆
𝑖

𝑇

𝑞−1

∑

𝑘=𝑝

∫

𝑡
𝑖

𝑘

𝑡
𝑖

𝑘−1

𝜎
𝑖 (𝑡) 𝑑𝑡.

(28)

From (17) one has 𝑠
𝑖
(𝑡) ≤ 𝛽

𝑖
, and they are equal only when

𝑡 = 𝑡
𝑖

𝑘
. Then from (23) one has

𝐽
𝑖
[𝑡
𝑝
, 𝑡
𝑞
] <

𝛽
𝑖

𝑇

𝑞−1

∑

𝑘=𝑝

(𝑡
𝑖

𝑘
− 𝑡
𝑖

𝑘−1
) +

𝜆
𝑖

𝑇

𝑞−1

∑

𝑘=𝑝

1

= 𝛽
𝑖
+

𝜆
𝑖
𝑀

𝑇
,

(29)

with 𝑀 being the number of event time intervals on [𝑡
𝑝
, 𝑡
𝑞
].

Thus, when 𝑡
𝑞
→ ∞, the average cost of agent 𝑖 can be upper

bounded by

𝐽
𝑖
[𝑡
𝑝
, 𝑡
𝑞
] < 𝛽
𝑖
+

𝜆
𝑖

𝜏
𝑖

, (30)

where 𝜏
𝑖

= 𝑇/𝑀 is the average length of triggering time
interval of agent 𝑖. It is difficult to obtain an estimation of 𝜏

𝑖
.

However, one may consider the average cost of agent 𝑖 on the
time interval [𝑡

𝑝
, 𝑡
𝑞
] when 𝑡

𝑝
is sufficiently large. In this case,

𝜏
𝑖
will be lower bounded by 𝜏𝑖

𝑘
’s limit defined in [29]. Consider

lim
𝑘→∞

𝜏
𝑖

𝑘
=

𝛽
𝑖

2𝜁
𝑖
(1 + 𝛽

𝑖
)
, (31)

where 𝜁
𝑖
= max

𝑙
{𝜉
𝑙
| 𝑙 ∈ 𝑁

𝑖
∪ {𝑖}}. Thus one has

𝐽
𝑖
[𝑡
𝑝
, 𝑡
𝑞
] < 𝛽
𝑖
+

𝜆
𝑖

𝛽
𝑖
/ (2𝜁
𝑖
(1 + 𝛽

𝑖
))

= 2𝜆
𝑖
𝜁
𝑖
+ 𝛽
𝑖
+

2𝜆
𝑖
𝜁
𝑖

𝛽
𝑖

.

(32)

The right-hand side will reach its minimum if and only if 𝛽
𝑖
=

√2𝜆
𝑖
𝜁
𝑖
. If all agents take the same 𝜉

𝑖
, this condition will be

𝛽
𝑖
= √2𝜆

𝑖
𝜉
𝑖
. (33)

Thus a suboptimal triggering condition is given by

𝑔
𝑖
(
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡) , 𝑞𝑖 (𝑡)

󵄩󵄩󵄩󵄩) =
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 −
√2𝜆
𝑖
𝜉
𝑖

󵄩󵄩󵄩󵄩𝑞𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0 (34)

if√2𝜆
𝑖
𝜉
𝑖
< 1.

Remark 4. Equation (33) shows the relationship between the
triggering execution and the importance of the measurement
and triggering cost. For example, a larger 𝜆

𝑖
means reducing

the triggering cost is more important. Then one will obtain a
larger 𝛽

𝑖
, which may lengthen the time in between consecu-

tive triggering executions and reduce the triggering cost.

4. Simulations

In this section some simulations will be provided to illustrate
the proposed event-triggered control strategy. Consider a
group of 𝑁 = 6 agents in the working space R3. Each agent
has dynamic (1) and the controller (4). The parameters in the
control input (4) and the triggering function (19) are given by
𝜉
𝑖
= 0.4 and 𝛽

𝑖
= 0.9 for all agents. The initial states of agents

are randomly selected which are as follows:

𝑥
1 (0) = (0.1725, 0.4469, 0.8357)

𝑇
,

𝑥
2 (0) = (6.1630, −1.8492, 4.1066)

𝑇
,

𝑥
3 (0) = (−4.0025, 2.9335, 5.9033)

𝑇
,

𝑥
4 (0) = (−3.7577, 4.8591, 9.9656)

𝑇
,

𝑥
5 (0) = (−1.9829, 3.3818, 8.4150)

𝑇
,

𝑥
6 (0) = (−1.8028, 3.6658, 9.5204)

𝑇
.

(35)

The communication graph 𝐺 is also shown in the first
subfigure of Figure 2. In the simulation, when the sum of the
distances from agents to the group average is shorter than
Δ = 0.01; that is,∑𝑁

𝑖=1
‖𝑥
𝑖
(𝑡)−(1/𝑁)∑

𝑁

𝑖=1
𝑥
𝑖
(𝑡)‖ ≤ Δ, the group

is considered to have achieved consensus.
The trajectories of agents in the simulation are shown

in Figure 2. The agents are represented by small circles and
the trajectories are represented by solid lines. Notice that
the agent group eventually achieve consensus at 𝑡 = 54.63 s
under the proposed control law. One can also note from the
trajectories that the control inputs of all the agents, which
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are shown in Figure 3, are fixed during each interevent time
interval.

Figure 4 shows the evolution of the error norms of all the
agents. From (20) one concludes that the curve of these error
norms stays below the threshold𝛽

𝑖
‖𝑞
𝑖
(𝑡)‖.The error increases

in each triggering time interval and then is automatically reset
to 0 when an event occurs.

The event time instants of all the agents are shown in
Figure 5. From this figure one can observe that all agents
are triggered regularly and the interevent time intervals
have strictly positive lengths. This implies there is no Zeno
behavior in the system evolution. Moreover, the input of each
agent only triggers when its own event occurs.

To verify the proposed suboptimal triggering approach,
a set of similar simulations are carried out with different
parameter selections. The initial conditions of the agents are
the same as in Figure 2. The results are listed in Table 1.
The table shows that, following the proposed strategy, the
cost can be obviously reduced compared with those under
the choices which appear appropriate. Simulations also show
that, in some cases, the suboptimal choices are very close to
the optimal ones.

5. Conclusions

In this paper, the suboptimal event-triggered consensus prob-
lem for multiagent systems is considered. The event design
is based on the measurement error which is determined by
a combined state of neighbors. As a result, each agent only
updates its controller at its own event time, which reduces the
amount of interagent communication and controller updates
in practice.Thenwe have proposed a novel definition of time-
average cost for the agent system and developed a suboptimal
triggering approach to determine the event condition. It
has been shown that the proposed approach is effective in
reducing the average cost of the system. Future work includes
extending the proposed approach to multiagent systems with
directed communication networks and developing better
optimization approach to reduce the system cost.
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