
Research Article
𝐶
𝑛-Almost Periodic Functions and an Application to

a Lasota-Wazewska Model on Time Scales

Li Yang,1 Yongkun Li,1 and Wanqin Wu2

1 Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
2 School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, Yunnan 650091, China

Correspondence should be addressed to Yongkun Li; yklie@ynu.edu.cn

Received 10 February 2014; Accepted 4 May 2014; Published 19 May 2014

Academic Editor: Shiping Lu

Copyright © 2014 Li Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We first give the definition and some properties of 𝐶𝑛-almost periodic functions on time scales. Then, as an application, we are
concerned with a class of Lasota-Wazewska models on time scales. By means of the fixed point theory and differential inequality
techniques on time scales, we obtain some sufficient conditions ensuring the existence and global exponential stability of𝐶1-almost
periodic solutions for the considered model. Our results are essentially new when T = R or T = Z. Finally, we present a numerical
example to show the feasibility of obtained results.

1. Introduction

Between the years 1923 and 1926, Harald Bohr found a theory
of almost periodic real (and complex) functions. Several
generalizations and classes of almost periodic functions have
been introduced in the literature, including pseudo-almost
periodic functions and almost automorphic functions [1, 2].

The author of [3] initiated the study on 𝐶
𝑛-almost

periodic functions, which turns out to be one of the most
important generalizations of the concept of almost periodic
functions in the sense of Bohr. This generalization relies on
the requirement that a given function and its derivatives up
to the 𝑛th order inclusively are almost periodic in the sense
of Bohr. Many properties of such functions with real values
are given in [3, 4]. Recently, 𝐶𝑛-almost periodic functions
have attracted more and more attention. For example, the
authors of [5] extended the study on 𝐶

𝑛-almost periodicity
to functions R → X, where X is a Banach space; in
[6], the authors proved the existence of 𝐶𝑛-almost periodic
solutions for some ordinary differential equations by using
the exponential dichotomy approach. For more results on
𝐶
𝑛-almost periodic functions, we refer readers to [7–9] and

references therein.
On the other hand, the theory of time scales, which was

introduced by Hilger [10] in his Ph.D. thesis in order to

unify continuous and discrete analysis, has recently received
lots of attention. The study of dynamic equations on time
scales helps avoid proving results twice, once for differential
equations and once for difference equations. Many authors
obtained a lot of good results on the study on dynamic
equations on time scales (see [11–17] and reference therein).
In [18], the authors proposed the concept of almost periodic
time scales and the definition of almost periodic functions.
They extended the study on almost periodicity to functions
T → R, where T is an almost periodic time scale. However,
to the best of our knowledge, there is no paper published
on the existence of 𝐶𝑛-almost periodic solutions of dynamic
equations on time scales.

Motivated by the above discussion, in this paper, we first
give the definition and some properties of𝐶𝑛-almost periodic
functions on time scales. As an application, we are concerned
with the existence and global exponential stability of 𝐶1-
almost periodic solutions for the following Lasota-Wazewska
model on time scales:

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) exp {−𝑐

𝑖
(𝑡) 𝑥

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))} ,

𝑖 = 1, 2, . . . , 𝑚,

(1)
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where 𝑡 ∈ T , T is an almost periodic time scale, 𝑥
𝑖
(𝑡) denotes

the number of red blood cells at time 𝑡, 𝑎
𝑖
is the rate of the red

blood cells, 𝑏
𝑖𝑗
and 𝑐

𝑖
describe the production of red blood

cells per unite time, and 𝜏
𝑖𝑗

> 0 is the time required to
produce a red blood cell and satisfies 𝑡 − 𝜏

𝑖𝑗
(𝑡) ∈ T for 𝑡 ∈ T ,

𝑖, 𝑗 = 1, 2, . . . , 𝑚. There is extensive literature concerning
oscillation, global attractivity, periodicity, almost periodicity,
and Hopf bifurcation of Lasota-Wazewska model, which was
proposed to describe the survival of red blood cells in animals
[19]. We refer readers to [20–25] and references therein for
results on Lasota-Wazewska models.

Due to the biological meaning of (1), we just consider the
following initial conditions:

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , 𝑠 ∈ [𝑡

0
− 𝜃, 𝑡

0
]
T
, 𝑡

0
∈ T , (2)

where 𝜑
𝑖

∈ 𝐶
1

([𝑡
0
− 𝜃, 𝑡

0
]T ,R

+

) is bounded, 𝜃 =

max
(𝑖,𝑗)

sup
𝑡∈T {𝜏𝑖𝑗(𝑡)}. Throughout this paper, we denote

[𝑎, 𝑏]T = {𝑡 | 𝑡 ∈ [𝑎, 𝑏] ∩ T}.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition 1 (see [10]). Let T be a nonempty closed subset
(time scale) ofR. The forward and backward jump operators
𝜎, 𝜌 : T → T and the graininess 𝜇 : T → [0,∞) are defined,
respectively, by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(3)

Definition 2 (see [10]). A point 𝑡 ∈ T is called left-dense if
𝑡 > inf T and 𝜌(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) < 𝑡, right-dense if
𝑡 < sup T and 𝜎(𝑡) = 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. If T has
a left-scattered maximum 𝑚, then T𝑘 = T \ {𝑚}; otherwise
T𝑘 = T . If T has a right-scattered minimum 𝑚, then T𝑘 =

T \ {𝑚}; otherwise T𝑘 = T .

Definition 3 ([26]). A function 𝑓 : T → R is rd-continuous
provided it is continuous at each right-dense point in T and
has a left-sided limit at each left-dense point in T . The set
of rd-continuous functions 𝑓 : T → R will be denoted by
𝐶rd(T) = 𝐶rd(T ,R).

Definition 4 ([26]). A function 𝑟 : T → R is called regressive
if 1+𝜇(𝑡)𝑟(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘. If 𝑟 is regressive function, then
the generalized exponential function 𝑒

𝑟
is defined by

𝑒
𝑟
(𝑡, 𝑠) = exp{∫

𝑡

𝑠

𝜉
𝜇(𝜏)

(𝑟 (𝜏)) Δ𝜏} , for 𝑠, 𝑡 ∈ T , (4)

with the cylinder transformation

𝜉
ℎ
(𝑧) =

{

{

{

Log (1 + ℎ𝑧)

ℎ

if ℎ ̸= 0,

𝑧 if ℎ = 0.

(5)

Definition 5 (see [26]). A function 𝑝 : T → R is called
regressive provided 1+𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘; 𝑝 : T → R

is called positively regressive provided 1 + 𝜇(𝑡)𝑝(𝑡) > 0 for all
𝑡 ∈ T𝑘. The set of all regressive and rd-continuous functions
𝑝 : T → Rwill be denoted byR = R(T ,R) and the set of all
positively regressive functions and rd-continuous functions
will be denoted byR+

= R+

(T ,R).

Lemma 6 (see [26]). Assume that 𝑝, 𝑞 : T → R are two
regressive functions; then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(ii) 𝑒
𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡) = 𝑒

⊖𝑝
(𝑠, 𝑡);

(iii) 𝑒
𝑝
(𝑡, 𝑠)𝑒

𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(iv) (𝑒
𝑝
(𝑡, 𝑠))

Δ

= 𝑝(𝑡)𝑒
𝑝
(𝑡, 𝑠).

Lemma 7 (see [26]). Let 𝑓, 𝑔 be Δ-differentiable functions on
T ; then

(i) (]
1
𝑓 + ]

2
𝑔)

Δ

= ]
1
𝑓
Δ

+ ]
2
𝑔
Δ for any constants ]

1
, ]

2
;

(ii) (𝑓𝑔)Δ(𝑡) = 𝑓
Δ

(𝑡)𝑔(𝑡) + 𝑓(𝜎(𝑡))𝑔
Δ

(𝑡) = 𝑓(𝑡)𝑔
Δ

(𝑡) +

𝑓
Δ

(𝑡)𝑔(𝜎(𝑡)).

Lemma 8 (see [26] (Leibniz formula)). Let 𝑆(𝑛)
𝑘

be the set
consisting of all possible strings of length 𝑛, containing exactly
𝑘 times 𝜎 and 𝑛 − 𝑘 times Δ. If 𝑓∧ exists for all ∧ ∈ 𝑆

(𝑛)

𝑘
, then

(𝑓𝑔)
Δ
𝑛

=

𝑛

∑

𝑘=0

( ∑

∧∈𝑆
(𝑛)

𝑘

𝑓
∧

)𝑔
Δ
𝑘

. (6)

Lemma 9 (see [26]). Suppose that 𝑝 ∈ R+; then

(i) 𝑒
𝑝
(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ T ;

(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒
𝑝
(𝑡, 𝑠) ≤

𝑒
𝑞
(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Lemma 10 (see [26]). If 𝑝 ∈ R and 𝑎, 𝑏, 𝑐 ∈ T , then

[𝑒
𝑝
(𝑐, ⋅)]

Δ

= − 𝑝[𝑒
𝑝
(𝑐, ⋅)]

𝜎

,

∫

𝑏

𝑎

𝑝 (𝑡) 𝑒
𝑝
(𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒

𝑝
(𝑐, 𝑎) − 𝑒

𝑝
(𝑐, 𝑏) .

(7)

Lemma 11 (see [26]). Let 𝑟 : T → R be right-dense
continuous and regressive, 𝑎 ∈ T and 𝑦

𝑎
∈ R. Then the unique

solution of the initial value problem

𝑦
Δ

(𝑡) = 𝑟 (𝑡) 𝑦 (𝑡) + ℎ (𝑡) ,

𝑦 (𝑎) = 𝑦
𝑎

(8)

is given by

𝑦 (𝑡) = 𝑒
𝑟
(𝑡, 𝑎) 𝑦

𝑎
+ ∫

𝑡

𝑎

𝑒
𝑟
(𝑡, 𝜎 (𝑠)) ℎ (𝑠) Δ𝑠. (9)

Definition 12 (see [18]). A time scale T is called an almost
periodic time scale if

Π := {𝜏 ∈ R : 𝑡 + 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (10)
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Throughout this paper, we restrict our results on almost
periodic time scales. We first recall some definitions and
lemmas on almost periodic functions on almost periodic time
scales, which can be found in [18].

Definition 13 (see [18]). Let T be an almost periodic time
scale. A function 𝑓 ∈ 𝐶(T ,R) is said to be almost periodic
on T , if, for any 𝜀 > 0, the set

𝐸 (𝜀, 𝑓) = {𝜏 ∈ Π :
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝜀, ∀𝑡 ∈ T} (11)

is relatively dense in T ; that is, for any 𝜀 > 0, there exists
a constant 𝑙(𝜀) > 0 such that each interval of length 𝑙(𝜀)

contains at least one 𝜏 ∈ 𝐸(𝜀, 𝑓) such that
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝜀, ∀𝑡 ∈ T . (12)

The set 𝐸(𝜀, 𝑓) is called the 𝜀-translation set of 𝑓(𝑡), and 𝜏 is
called the 𝜀-translation number of 𝑓(𝑡).

Lemma 14 (see [18]). If 𝑓 ∈ 𝐶(T ,R) is an almost periodic
function, then 𝑓 is bounded on T .

Lemma 15 (see [18]). If 𝑓, 𝑔 ∈ 𝐶(T ,R) are almost periodic
functions, then 𝑓 + 𝑔, 𝑓𝑔 are also almost periodic.

Lemma 16 (see [18]). If 𝑓 ∈ 𝐶(T ,R) is almost periodic, then
𝐹(𝑡) = ∫

𝑡

0

𝑓(𝑠)Δ𝑠 is almost periodic if and only if 𝐹(𝑡) is
bounded.

Lemma 17 (see [18]). If 𝑓 ∈ 𝐶(T ,R) is almost periodic and
𝐹(⋅) is uniformly continuous on the value field of𝑓(𝑡), then𝐹∘𝑓
is almost periodic.

Definition 18 (see [27]). Let𝑋 ∈ R𝑚 and𝐴(𝑡) be an𝑚×𝑚 rd-
continuous matrix on T ; the linear system

𝑋
Δ

(𝑡) = 𝐴 (𝑡)𝑋 (𝑡) , 𝑡 ∈ T , (13)

is said to admit an exponential dichotomy on T if there exist
positive constants 𝑘, 𝛼, projection 𝑃, and the fundamental
solution matrix𝑋(𝑡) of (13) satisfying

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑡) 𝑃𝑋

−1

(𝜎 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨0
≤ 𝑘𝑒

⊖𝛼
(𝑡, 𝜎 (𝑠)) , 𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑡) (𝐼 − 𝑃)𝑋

−1

(𝜎 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨0
≤ 𝑘𝑒

⊖𝛼
(𝜎 (𝑠) , 𝑡) , 𝑠, 𝑡 ∈ T , 𝑡 ≤ 𝑠,

(14)

where | ⋅ |
0
is a matrix norm on T ; that is, if𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

, then
we can take |𝐴|

0
= (∑

𝑚

𝑖=1
∑
𝑚

𝑗=1
|𝑎
𝑖𝑗
|
2

)
1/2.

Lemma 19 (see [18]). If the linear system (13) admits an
exponential dichotomy, then the following system

𝑋
Δ

(t) = 𝐴 (𝑡)𝑋 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ T , (15)

has a solution as follows:

𝑋 (𝑡) = ∫

𝑡

−∞

𝑋 (𝑡) 𝑃𝑋
−1

(𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠

− ∫

+∞

𝑡

𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝜎 (𝑠)) 𝑓 (𝑠) Δ𝑠,

(16)

where𝑋(𝑡) is the fundamental solution matrix of (13).

Lemma20 (see [18]). Let 𝑐
𝑖
(𝑡) be a function onT , where 𝑐

𝑖
(𝑡) >

0, −𝑐
𝑖
(𝑡) ∈ R+, for all 𝑡 ∈ T and min

1≤𝑖≤𝑚
inf

𝑡∈T {𝑐𝑖(𝑡)} > 0.
Then the linear system

𝑋
Δ

(𝑡) = diag (−𝑐
1
(𝑡) , −𝑐

2
(𝑡) , . . . , −𝑐

𝑚
(𝑡))𝑋 (𝑡) (17)

admits an exponential dichotomy on T .

3. 𝐶𝑛-Almost Periodic Functions on
Time Scales

In this section, we will state the definition and prove some
properties of 𝐶𝑛-almost periodic functions on time scales.

We denote by 𝐶
𝑛

(T ,R) the space of all functions T →

R which have a continuous 𝑛th Δ-derivative on T and
by 𝐶

𝑛

𝐵
(T ,R) the subspace of 𝐶

𝑛

(T ,R) consisting of such
functions satisfying ∑

𝑛

𝑖=0
sup

𝑡∈T |𝑓
Δ
𝑖

(𝑡)| < ∞, where 𝑓
Δ
𝑖

(𝑡)

denotes the 𝑖th Δ-derivative of 𝑓 and 𝑓
Δ
0

= 𝑓. It is not
difficult to verify that 𝐶𝑛

𝐵
(T ,R) is a Banach space with the

norm ‖𝑓‖
2
= ∑

𝑛

𝑖=0
sup

𝑡∈T |𝑓
Δ
𝑖

(𝑡)|.

Definition 21. Let T be an almost periodic time scale. A
function 𝑓 ∈ 𝐶

𝑛

𝐵
(T ,R) is said to be 𝐶𝑛-almost periodic on

T , if, for any 𝜀 > 0, the set

𝑇 (𝜀, 𝑓) = {𝜏 ∈ Π :
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄩
󵄩
󵄩
󵄩𝑛

< 𝜀, ∀𝑡 ∈ T} (18)

is relatively dense in T ; that is, for any 𝜀 > 0, there exists
a constant 𝑙(𝜀) > 0 such that each interval of length 𝑙(𝜀)

contains at least one 𝜏 ∈ 𝑇(𝜀, 𝑓) such that
󵄩
󵄩
󵄩
󵄩
𝑓(𝑡 + 𝜏) − 𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩𝑛

< 𝜀, ∀𝑡 ∈ T . (19)

Remark 22. We denote by 𝐴𝑃𝑛(T ,R) the set of all 𝐶𝑛-almost
periodic functions from T to R. In particular, we denote
𝐴𝑃

0

(T ,R) by𝐴𝑃(T ,R), which is the set of all almost periodic
functions from T to R.

Theorem23. 𝑓 ∈ 𝐴𝑃
𝑛

(T ,R) if and only if𝑓Δ
𝑖

(𝑡) ∈ 𝐴𝑃(T ,R),
𝑖 = 0, 1, . . . , 𝑛.

Proof. Assume that 𝑓 ∈ 𝐴𝑃
𝑛

(T ,R); then, for any 𝜀 > 0, there
exists a constant 𝑙 such that in any interval of length 𝑙 there
exists 𝜏 ∈ 𝑇(𝜀, 𝑓) such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡 + 𝜏) − 𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩𝑛

= sup
𝑡∈T

𝑛

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
Δ
𝑖

(𝑡 + 𝜏) − 𝑓
Δ
𝑖

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀,

∀𝑡 ∈ T .

(20)

Hence, for 𝑖 = 0, 1, . . . , 𝑛, we have that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
Δ
𝑖

(𝑡 + 𝜏) − 𝑓
Δ
𝑖

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀, ∀𝑡 ∈ T , (21)

which means that 𝑓Δ
𝑖

(𝑡) ∈ 𝐴𝑃(T ,R), 𝑖 = 0, 1, . . . , 𝑛. On the
other hand, if 𝑓Δ

𝑖

(𝑡) ∈ 𝐴𝑃(T ,R), 𝑖 = 0, 1, . . . , 𝑛, then, for any
𝜀
𝑖
> 0, there exists a constant 𝑙 such that, in any interval of

length 𝑙, there exists 𝜏 ∈ 𝐸(𝜀
𝑖
, 𝑓) such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
Δ
𝑖

(𝑡 + 𝜏) − 𝑓
Δ
𝑖

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀
𝑖
, ∀𝑡 ∈ T , 𝑖 = 0, 1, . . . , 𝑛. (22)
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Therefore, for any 𝜀 = ∑
𝑛

𝑖=0
𝜀
𝑖
, there exists a constant 𝑙 such

that in any interval of length 𝑙 there exists 𝜏 ∈ 𝑇(𝜀, 𝑓) such
that

󵄩
󵄩
󵄩
󵄩
𝑓(𝑡 + 𝜏) − 𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩𝑛

=

𝑛

∑

𝑖=0

sup
𝑡∈T

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
Δ
𝑖

(𝑡 + 𝜏) − 𝑓
Δ
𝑖

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀,

∀𝑡 ∈ T ;

(23)

that is, 𝑓 ∈ 𝐶
𝑛

(T ,R). This completes the proof.

Theorem 24. If 𝑓 ∈ 𝐴𝑃
𝑛

(T ,R), then 𝑓 is bounded on T .

Proof. Since 𝑓 ∈ 𝐴𝑃
𝑛

(T ,R), it follows fromTheorem 23 that
𝑓
Δ
𝑖

(𝑡) ∈ 𝐴𝑃(T ,R), 𝑖 = 0, 1, . . . , 𝑛. By Lemma 14, there exist
positive constants 𝑀

𝑖
such that sup

𝑡∈T |𝑓
Δ
𝑖

(𝑡)| ≤ 𝑀
𝑖
. Hence,

‖𝑓‖
𝑛
≤ ∑

𝑛

𝑖=0
𝑀

𝑖
, which implies that 𝑓 is bounded on T . This

completes the proof.

Theorem 25. If 𝑓, 𝑔 ∈ 𝐴𝑃
𝑛

(T ,R), 𝛼 ∈ R, then 𝑓 + 𝑔, 𝛼𝑓, 𝑓𝑔

are all𝐶𝑛-almost periodic on T . Moreover, if inf
𝑡∈T |𝑔

Δ
𝑖

(𝑡)| > 0,
𝑖 = 0, 1, . . . , 𝑛, then 𝑓/𝑔 ∈ 𝐴𝑃

𝑛

(T ,R).

Proof. Since the proofs of 𝛼𝑓, 𝑓𝑔, 𝑓/𝑔 are similar to that of
𝑓 + 𝑔, we only prove that 𝑓 + 𝑔 ∈ 𝐴𝑃

𝑛

(T ,R). Since 𝑓, 𝑔 ∈

𝐴𝑃
𝑛

(T ,R), it follows from Theorem 23 that 𝑓Δ
𝑖

(𝑡), 𝑔
Δ
𝑗

(𝑡) ∈

𝐴𝑃(T ,R), 𝑖, 𝑗 = 0, 1, . . . , 𝑛. By Lemma 15, 𝑓Δ
𝑖

(𝑡)𝑔
Δ
𝑗

(𝑡) ∈

𝐴𝑃(T ,R), 𝑖, 𝑗 = 0, 1, . . . , 𝑛. Hence, (𝑓𝑔)Δ
𝑖

∈ 𝐴𝑃(T ,R), 𝑖 =

0, 1, . . . , 𝑛, which means 𝑓𝑔 ∈ 𝐴𝑃
𝑛

(T ,R).

Theorem 26. If 𝑓 ∈ 𝐴𝑃
𝑛

(T ,R), then 𝐹(𝑡) = ∫

𝑡

0

𝑓(𝑠)Δ𝑠 ∈

𝐴𝑃
𝑛+1

(T ,R) if and only if 𝐹(𝑡) is bounded.

Similar to the proofs ofTheorem 2.7 in [5] andTheorems
3.13 and 3.14 in [18], we have the following theorem, which is
an analogue of Bochner’s criterion for the case of 𝐶𝑛-almost
periodicity on time scales.

Theorem27. A function𝑓 ∈ 𝐴𝑃
𝑛

(T ,R) if and only if for every
sequence 𝑠

𝑛
⊂ Π there exists a subsequence 𝑠󸀠

𝑛
such that 𝑓Δ

𝑖

(𝑡 +

𝑠
󸀠

𝑛
) converges uniformly in 𝑡 ∈ T , 𝑖 = 0, 1, . . . , 𝑛.

Definition 28. Let T be an almost periodic time scale. A
functions setF ⊆ 𝐴𝑃(T ,R) is said to be equi-almost periodic
on T , if, for any 𝜀 > 0, there exists a constant 𝑙(𝜀) > 0 such
that each interval of length 𝑙(𝜀) contains at least one 𝜏 such
that for all 𝑓 ∈ F

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝜀, ∀𝑡 ∈ T . (24)

Definition 29. Let T be an almost periodic time scale. A
functions set F ⊆ 𝐴𝑃

𝑛

(T ,R) is said to be equi-𝐶𝑛-almost
periodic on T , if for any 𝜀 > 0 there exists a constant 𝑙(𝜀) > 0

such that each interval of length 𝑙(𝜀) contains at least one 𝜏
such that for all 𝑓 ∈ F

󵄩
󵄩
󵄩
󵄩
𝑓(𝑡 + 𝜏) − 𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩𝑛

< 𝜀, ∀𝑡 ∈ T . (25)

Similar to Theorem 2.2 in [7], we have the following
theorem.

Theorem 30. Let T be an almost periodic time scale. For a
functions set F ⊆ 𝐴𝑃

𝑛

(T ,R) is precompact if and only if
FΔ
𝑖

⊆ 𝐴𝑃(T ,R) is precompact, equicontinuous, and equi-
almost periodic, whereFΔ

𝑖

= {𝑓
Δ
𝑖

(𝑡) : 𝑓 ∈ F}, 𝑖 = 0, 1, . . . , 𝑛.

Definition 31. Let 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

2
(𝑡), . . . , 𝑥

∗

𝑚
(𝑡))

𝑇 be a 𝐶1-
almost periodic solution of (1) with initial value 𝜑

∗

(𝑠) =

(𝜑
∗

1
(𝑠), 𝜑

∗

2
(𝑠), . . . , 𝜑

∗

𝑚
(𝑠))

𝑇. If there exist positive constants
𝜆 with ⊖𝜆 ∈ R+ and 𝑀 > 1 such that any solution
𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇 of (1) with initial value𝜑(𝑠) =
(𝜑

1
(𝑠), 𝜑

2
(𝑠), . . . , 𝜑

𝑚
(𝑠))

𝑇 satisfies
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝜆

(𝑡, 𝑡
0
) ,

𝑡 ∈ [𝑡
0
,∞)

T
, 𝑡

0
∈ T ,

(26)

where |𝑥(𝑡) − 𝑥
∗

(𝑡)|
1
= max

1≤𝑖≤𝑚
{|𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)| + |(𝑥

𝑖
(𝑡) −

𝑥
∗

𝑖
(𝑡))

Δ

|}, ‖𝜙 − 𝜙
∗

‖ = max
1≤𝑖≤𝑚

{sup
𝑠∈[𝑡
0
−𝜃,𝑡
0
]T
|𝜑

𝑖
(𝑠) − 𝜑

∗

𝑖
(𝑠)| +

sup
𝑠∈[𝑡
0
−𝜃,𝑡
0
]T
|(𝜑

𝑖
(𝑠) − 𝜑

∗

𝑖
(𝑠))

Δ

|}, then the solution 𝑥
∗

(𝑡) is said
to be globally exponentially stable.

4. 𝐶1-Almost Periodic Solutions of (1)
In this section, we will state and prove the sufficient condi-
tions for the existence and global exponential stability of 𝐶1-
almost periodic solutions of (1).

Set X = {𝜙 = (𝜙
1
, 𝜙

2
, . . . , 𝜙

𝑚
)
𝑇

| 𝜙
𝑖
∈ 𝐴𝑃

1

(T ,R), 𝑖 =

1, 2, . . . , 𝑚} with the norm ‖𝜙‖X = max
1≤𝑖≤𝑚

‖𝜙
𝑖
‖
2

=

max
1≤𝑖≤𝑚

{sup
𝑡∈T |𝜙𝑖(𝑡)| + sup

𝑡∈T |𝜙
Δ

𝑖
(𝑡)|}; then X is a Banach

space. For convenience, for a 𝐶
1-almost periodic function

𝑓 : T → R, we denote 𝑓+

= sup
𝑡∈T |𝑓(𝑡)|, 𝑓

−

= inf
𝑡∈T |𝑓(𝑡)|.

Lemma 32. Assume that

𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝑐
𝑖
∈ 𝐴𝑃

1

(T ,R
+

) ,

𝜏
𝑖𝑗
∈ 𝐴𝑃

1

(T , T) ,

−𝑎
𝑖
∈ R

+

,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(𝐻
1
)

Then, for every solution 𝑥(𝑡, 𝑡
0
, 𝜑) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇

of (1) and (2), we have that for 𝑖 = 1, 2, . . . , 𝑚, 𝑥
𝑖
(𝑡) are positive

and bounded on [𝑡
0
, +∞)T .

Proof. By Lemma 11, we have

𝑥
𝑖
(𝑡) = 𝑒

−𝑎
𝑖

(𝑡, 𝑡
0
) 𝑥

𝑖
(𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) exp {−𝑐

𝑖
(𝑠) 𝑥

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))} Δ𝑠,

(27)

where 𝑡 ∈ [𝑡
0
, +∞)T , 𝑖 = 1, 2, . . . , 𝑚. First, we prove

𝑥
𝑖
(𝑡) > 0, ∀𝑡 ∈ [𝑡

0
, +∞)

T
, 𝑖 = 1, 2, . . . , 𝑚. (28)
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By way of contradiction, assume that (28) does not hold.
Then, there exists 𝑖

0
∈ {1, 2, . . . , 𝑚} and the first time 𝑡

1
∈

[𝑡
0
, +∞)T such that

𝑥
𝑖
0

(𝑡
1
) ≤ 0, 𝑥

𝑖
0

(𝑡) > 0, 𝑡 ∈ [−𝜃, 𝑡
1
)
T
,

𝑥
𝑘
(𝑡) > 0, for 𝑘 ̸= 𝑖

0
, 𝑡 ∈ [−𝜃, 𝑡

1
]
T
, 𝑘 = 1, 2, . . . , 𝑚.

(29)

Then, we can obtain

𝑥
𝑖
0

(𝑡
1
) = 𝑒

−𝑎
𝑖
0

(𝑡
1
, 𝑡
0
) 𝑥

𝑖
0

(𝑡
0
)

+ ∫

𝑡
1

𝑡
0

𝑒
−𝑎
𝑖
0

(𝑡, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖
0
𝑗
(𝑠) exp {−𝑐

𝑖
(𝑠) 𝑥

𝑖
0

(𝑠 − 𝜏
𝑖
0
𝑗
(𝑠)) exp} Δ𝑠

> 0,

(30)

which is a contradiction and hence (28) holds. On the other
hand, for 𝑖 = 1, 2, . . . , 𝑚, we have that

𝑥
𝑖
(𝑡) = 𝑒

−𝑎
𝑖

(𝑡, 𝑡
0
) 𝑥

𝑖
(𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) exp {−𝑐

𝑖
(𝑠) 𝑥

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))} Δ𝑠

≤ 𝑒
−𝑎
−

𝑖

(𝑡, 𝑡
0
) 𝑥

𝑖
(𝑡
0
)

+

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
∫

𝑡

𝑡
0

𝑒
−𝑎
−

𝑖

(𝑡, 𝜎 (𝑠)) Δ𝑠

≤ 𝑒
−𝑎
−

𝑖

(𝑡, 𝑡
0
) 𝜑

𝑖
(𝑡
0
) +

∑
𝑚

𝑗=1
𝑏
+

𝑖𝑗

𝑎
−

𝑖

,

(31)

which implies that 𝑥
𝑖
(𝑡) is bounded on [𝑡

0
, +∞)T . This

completes the proof.

Theorem 33. Let (𝐻
1
) hold. Suppose further that

(1 +

𝑐
+

𝑖

𝑎
−

𝑖

+

𝑎
+

𝑖

𝑎
−

𝑖

)

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
< 1, 𝑖 = 1, 2, . . . , 𝑚; (𝐻

2
)

then there is a unique 𝐶
1-almost periodic solution of (1) in

X∗

= {𝜙 ∈ X | ‖𝜙‖X ≤ 𝐿}, where 𝐿 is a constant satisfying
𝐿/2 ≥ max

1≤𝑖≤𝑚
{(∑

𝑚

𝑗=1
𝑏
+

𝑖𝑗
)/𝑎

−

𝑖
, (1 + (𝑎

+

𝑖
/𝑎

−

𝑖
)) ∑

𝑚

𝑗=1
𝑏
+

𝑖𝑗
}.

Proof. For any 𝜙 ∈ X∗, we consider the following 𝐶1-almost
periodic system:

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) exp {−𝑐

𝑖
(𝑡) 𝜙

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))} ,

(32)

where 𝑖 = 1, 2, . . . , 𝑚. Since min
1≤𝑖≤𝑚

inf
𝑡∈T {𝑎𝑖(𝑡)} > 0 and

−𝑎
𝑖
∈ R+, it follows from Lemma 19 that the linear system

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚 (33)

admits an exponential dichotomy on T . Thus, (32) has a 𝐶1-
almost periodic solution 𝑥

𝜙

(𝑡) = (𝑥
𝜙

1
(𝑡), 𝑥

𝜙

2
(𝑡), . . . , 𝑥

𝜙

𝑚
(𝑡))

𝑇,
where

𝑥
𝜙

𝑖
(𝑡) = ∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

× (

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) exp {−𝑐

𝑖
(𝑠) 𝜙

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))})Δ𝑠,

𝑖 = 1, 2, . . . , 𝑚.

(34)

Define a mapΦ onX∗ by

(Φ𝜙) (𝑡) = ((Φ𝜙)
1
(𝑡), . . . , (Φ𝜙)

𝑚
(𝑡))

𝑇

, (35)

where (Φ𝜙)
𝑖
(𝑡) = 𝑥

𝜙

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑚. It is obvious that X∗

is a Banach space with the norm ‖ ⋅ ‖X. At first, we show that
Φ is a self-mapping fromX∗ toX∗. For any 𝜙 ∈ X∗, we have

󵄨
󵄨
󵄨
󵄨
(Φ𝜙)

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝑎
−

𝑖

(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) exp {−𝑐

𝑖
(𝑠) 𝜙

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))})Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝑎
−

𝑖

(𝑡, 𝜎 (𝑠)) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

∑
𝑚

𝑗=1
𝑏
+

𝑖𝑗

𝑎
−

𝑖

≤

𝐿

2

, 𝑖 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(Φ𝜙)
Δ

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) exp {−𝑐

𝑖
(𝑡) 𝜙

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))} − 𝑎

𝑖
(𝑡)

× ∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)

× exp {−𝑐
𝑖
(𝑠) 𝜙

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))})Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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≤

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
+ 𝑎

+

𝑖

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝑎
−

𝑖

(𝑡, 𝜎 (𝑠)) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (1 +

𝑎
+

𝑖

𝑎
−

𝑖

)

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗

≤

𝐿

2

, 𝑖 = 1, 2, . . . , 𝑚.

(36)

Therefore, we have that ‖Φ𝜙‖X ≤ 𝐿. Hence, the mapping Φ
is a self-mapping from X∗ to X∗. Next, we prove that the
mapping Φ is a contraction mapping on X∗. For any 𝜙 =

(𝜙
1
, 𝜙

2
, . . . , 𝜙

𝑚
)
𝑇, 𝜓 = (𝜓

1
, 𝜓

2
, . . . , 𝜓

𝑚
)
𝑇

∈ X∗, since

󵄨
󵄨
󵄨
󵄨
𝑒
−𝑥

− 𝑒
−𝑦󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, 𝑥, 𝑦 ∈ [0, +∞) , (37)

we have that

󵄨
󵄨
󵄨
󵄨
(Φ𝜙)

𝑖
(𝑡) − (Φ𝜓)

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) (exp {−𝑐

𝑖
(𝑠) 𝜙

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}

− exp {−𝑐
𝑖
(𝑠) 𝜓

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠)) − 𝜓

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑠

≤ 𝑐
+

𝑖

󵄩
󵄩
󵄩
󵄩
𝜙
𝑖
− 𝜓

𝑖

󵄩
󵄩
󵄩
󵄩X

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠)) Δ𝑠

≤

𝑐
+

𝑖
∑
𝑚

𝑗=1
𝑏
+

𝑖𝑗

𝑎
−

𝑖

󵄩
󵄩
󵄩
󵄩
𝜙
𝑖
− 𝜓

𝑖

󵄩
󵄩
󵄩
󵄩X

, 𝑖 = 1, 2, . . . , 𝑚,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

((Φ𝜙)
𝑖
(𝑡) − (Φ𝜓)

𝑖
(𝑡))

Δ
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) exp {−𝑐

𝑖
(𝑡) 𝜙

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))}

− 𝑎
𝑖
(𝑡) ∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠)) ×

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠)

× (exp {−𝑐
𝑖
(𝑠) 𝜙

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}

− exp {−𝑐
𝑖
(𝑠) 𝜓

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
+ 𝑎

+

𝑖

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
∫

𝑡

−∞

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝜙
𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠)) − 𝜓

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑠

≤ (1 +

𝑎
+

𝑖

𝑎
−

𝑖

)

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
𝜙
𝑖
− 𝜓

𝑖

󵄩
󵄩
󵄩
󵄩X

, 𝑖 = 1, 2, . . . , 𝑚.

(38)

Hence, we obtain

󵄩
󵄩
󵄩
󵄩
Φ𝜙 − Φ𝜓

󵄩
󵄩
󵄩
󵄩X

≤ (1 +

𝑐
+

𝑖

𝑎
−

𝑖

+

𝑎
+

𝑖

𝑎
−

𝑖

)

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
𝜙
𝑖
− 𝜓

𝑖

󵄩
󵄩
󵄩
󵄩X
. (39)

Noting that (1+(𝑐+
𝑖
/𝑎

−

𝑖
)+(𝑎

+

𝑖
/𝑎

−

𝑖
)) ∑

𝑚

𝑗=1
𝑏
+

𝑖𝑗
< 1, we see that

Φ is a contractionmapping onX∗. By the fixed point theorem
in Banach space, Φ has a unique fixed point in X∗, which
implies that (1) has a unique 𝐶1-almost periodic solution in
X∗. This completes the proof.

Theorem 34. Let (𝐻
1
) and (𝐻

2
) hold. Suppose further that

𝑐
+

𝑖
(𝑎

−

𝑖
+ 𝑎

+

𝑖
)

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
< 𝑎

−

𝑖
, 𝑖 = 1, 2, . . . , 𝑚; (𝐻

3
)

then the𝐶1-almost periodic solution of (1) is globally exponen-
tially stable.

Proof. According to Theorem 33, we know that (1) has a 𝐶1-
almost periodic solution 𝑥

∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥

∗

1
(𝑡), . . . , 𝑥

∗

𝑚
(𝑡))

𝑇

with initial condition 𝜑
∗

(𝑠) = (𝜑
∗

1
(𝑠), 𝜑

∗

2
(𝑠), . . . , 𝜑

∗

𝑚
(𝑠))

𝑇.
Suppose that 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑚
(𝑡))

𝑇 is an
arbitrary solution of (1) with initial condition 𝜑(𝑠) =

(𝜑
1
(𝑠), 𝜑

2
(𝑠), . . . , 𝜑

𝑚
(𝑠))

𝑇. Denote 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑚. Then, it follows from (1) that

𝑦
Δ

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡) 𝑦

𝑖
(𝑡)

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [exp {−𝑐

𝑖
(𝑡) (𝑥

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))}

− exp {−𝑐
𝑖
(𝑡) (𝑥

∗

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))}] ,

(40)
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where 𝑖 = 1, 2, . . . , 𝑚. The initial condition of (40) is

𝜓
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) − 𝜑

∗

𝑖
(𝑠) , 𝑠 ∈ [𝑡

0
− 𝜃, 𝑡

0
]
T
. (41)

By Lemma 11 and (40), for 𝑖 = 1, 2, . . . , 𝑚, we have

𝑦
𝑖
(𝑡) = 𝑒

−𝑎
𝑖

(𝑡, 𝑡
0
) 𝑦 (𝑡

0
)

+ ∫

𝑡

𝑡
0

𝑒
−𝑎
𝑖

(𝑡, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [exp {−𝑐

𝑖
(𝑠) 𝑥

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}

− exp {−𝑐
𝑖
(𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜏

𝑖𝑗
(𝑠))}] Δ𝑠.

(42)

Take a constant 𝜆 > 0 with −𝜆 ∈ R+ such that ⊖𝜆 ≥

max
1≤𝑖≤𝑚

{−𝑎
−

𝑖
}. Let𝑀 be a constant satisfying

𝑀 > max
1≤𝑖≤𝑚

{

𝑎
+

𝑖
𝑎
−

𝑖

𝑎
−

𝑖
− (𝑎

+

𝑖
+ 𝑎

−

𝑖
) 𝑐

+

𝑖
∑
𝑚

𝑗=1
𝑏
+

𝑖𝑗

,

𝑎
−

𝑖

𝑎
−

𝑖
− 𝑐

+

𝑖
∑
𝑚

𝑗=1
𝑏
+

𝑖𝑗

} .

(43)

By (𝐻
2
) and (𝐻

3
), it is easy to verify that𝑀 > 1 and in view

of 𝑒
⊖𝜆
(𝑡, 𝑡

0
) ≥ 1 for 𝑡 ≤ 𝑡

0
, we have

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, ∀𝑡 ∈ (−∞, 𝑡

0
]
T
. (44)

We claim that

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, ∀𝑡 ∈ (𝑡

0
, +∞)

T
. (45)

To prove this claim, we show that, for any𝑝 > 1, the following
inequality holds:

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, ∀𝑡 ∈ (𝑡

0
, +∞)

T
, (46)

which implies that, for 𝑖 = 1, 2, . . . , 𝑚, we have

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, ∀𝑡 ∈ (𝑡

0
, +∞)

T
, (47)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, ∀𝑡 ∈ (𝑡

0
, +∞)

T
. (48)

By way of contradiction, assume that (46) does not hold.
Firstly, we consider the following two cases.

Case One. (47) is not true. Then there exists 𝑡
1
∈ (𝑡

0
, +∞)T

and 𝑖
0
∈ {1, 2, . . . , 𝑚} such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑝𝑀𝑒

⊖𝜆
(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

𝑡 ∈ (𝑡
0
, 𝑡
1
)
T
,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑙
(𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

for 𝑙 ̸= 𝑖
0
, 𝑡 ∈ (𝑡

0
, 𝑡
1
]
T
, 𝑙 = 1, 2, . . . , 𝑚.

(49)

Hence, there must be a constant 𝛼 ≥ 1 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝛼𝑝𝑀𝑒

⊖𝜆
(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝛼𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

𝑡 ∈ (𝑡
0
, 𝑡
1
)
T
,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑙
(𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝛼𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

for 𝑙 ̸= 𝑖
0
, 𝑡 ∈ (𝑡

0
, 𝑡
1
]
T
, 𝑙 = 1, 2, . . . , 𝑚.

(50)

In view of (42), we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑎
𝑖
0

(𝑡
1
, 𝑡
0
) 𝑦

𝑖
0

(𝑡
0
)

+ ∫

𝑡
1

𝑡
0

𝑒
−𝛼

(𝑡
1
, 𝜎 (𝑠))

×

𝑚

∑

𝑗=1

𝑏
𝑖
0
𝑗
(𝑠)

× [𝑒
−𝑐
𝑖
0

(𝑠)(𝑥
𝑖
0

(𝑠−𝜏
𝑖
0
𝑗
(𝑠)))

−𝑒
−𝑐
𝑖
0

(𝑠)(𝑥
∗

𝑖
0

(𝑠−𝜏
𝑖
0
𝑗
(𝑠)))

] Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝑡
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑡
0
)

󵄨
󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡
1

𝑡
0

𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝜎 (𝑠))

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
0
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑐
𝑖
0

(𝑠)(𝑥
𝑖
0

(𝑠−𝜏
𝑖
0
𝑗
(𝑠)))

− 𝑒
−𝑐
𝑖
0

(𝑠)(𝑥
∗

𝑖
0

(𝑠−𝜏
𝑖
0
𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑠

≤ 𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝑡
0
)
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡

0
)
󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡
1

𝑡
0

𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝜎 (𝑠))

𝑚

∑

𝑗=1

𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
0

(𝑠 − 𝜏
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑠

≤ 𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+

𝑚

∑

𝑗=1

𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

× ∫

𝑡
1

𝑡
0

𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠

= 𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+

1

−𝑎
−

𝑖
0

𝑚

∑

𝑗=1

𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
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× ∫

𝑡
1

𝑡
0

(−𝑎
−

𝑖
0

) 𝑒
−𝑎
−

𝑖
0

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠

≤ 𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+

∑
𝑚

𝑗=1
𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩󵄩
󵄩
󵄩X

𝑎
−

𝑖
0

= 𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩
(

1

𝛼𝑝𝑀

+

∑
𝑚

𝑗=1
𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

𝑎
−

𝑖
0

)

≤ 𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

(

1

𝑀

+

∑
𝑚

𝑗=1
𝑏
+

𝑖
0
𝑗
𝑐
+

𝑖
0

𝑎
−

𝑖
0

)

< 𝛼𝑝𝑀𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

(51)

which is a contradiction.

Case Two. (48) is not true. Then there exists 𝑡
2
∈ (𝑡

0
, +∞)T

and 𝑖
1
∈ {1, 2, . . . , 𝑚} such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
1

(𝑡
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑝𝑀𝑒

⊖𝜆
(𝑡
2
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
1

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

𝑡 ∈ (𝑡
0
, 𝑡
2
)
T
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑙
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

for 𝑙 ̸= 𝑖
1
, 𝑡 ∈ (𝑡

0
, 𝑡
2
]
T
, 𝑙 = 1, 2, . . . , 𝑚.

(52)

Hence, there must be a constant 𝑐 ≥ 1 such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
1

(𝑡
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝑐𝑝𝑀𝑒

⊖𝜆
(𝑡
2
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
1

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑐𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

𝑡 ∈ (𝑡
0
, 𝑡
2
)
T
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑙
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑐𝑝𝑀𝑒

⊖𝜆
(𝑡, 𝑡

0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
,

(53)

for 𝑙 ̸= 𝑖
1
, 𝑡 ∈ (𝑡

0
, 𝑡
2
]
T
, 𝑙 = 1, 2, . . . , 𝑚. (54)

In view of (42), we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
Δ

𝑖
1

(𝑡
2
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 𝑎
𝑖
1

(𝑡) 𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝑡
0
) 𝑦

𝑖
1

(𝑡
0
) − 𝑎

𝑖
1

(𝑡)

× ∫

𝑡
2

𝑡
0

𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝜎 (𝑠))

𝑚

∑

𝑗=1

𝑏
𝑖
1
𝑗
(𝑠)

× [𝑒
−𝑐
𝑖
1

(𝑠)(𝑥
𝑖
1

(𝑠−𝜏
𝑖
1
𝑗
(𝑠)))

−𝑒
−𝑐
𝑖
1

(𝑠)(𝑥
∗

𝑖
1

(𝑠−𝜏
𝑖
1
𝑗
(𝑠)))

] Δ𝑠

+

𝑚

∑

𝑗=1

𝑏
𝑖
1
𝑗
(𝑡) [𝑒

−𝑐
𝑖
1

(𝑡)(𝑥
𝑖
1

(𝑡−𝜏
𝑖
1
𝑗
(𝑡)))

− 𝑒
−𝑐
𝑖
1

(𝑡)(𝑥
∗

𝑖
1

(𝑡−𝜏
𝑖
1
𝑗
(𝑡)))

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑎
+

𝑖
1

𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝑡
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
1

(𝑡
0
)

󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑎
+

𝑖
1

∫

𝑡
2

𝑡
0

𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝜎 (𝑠))

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
1
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑐
𝑖
1

(𝑠)(𝑥
𝑖
1

(𝑠−𝜏
𝑖
1
𝑗
(𝑠)))

− 𝑒
−𝑐
𝑖
1

(𝑠)(𝑥
∗

𝑖
1

(𝑠−𝜏
𝑖
1
𝑗
(𝑠)))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Δ𝑠

+

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖
1
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝑐
𝑖
1

(𝑡)(𝑥
𝑖
1

(𝑡−𝜏
𝑖
1
𝑗
(𝑡)))

− 𝑒
−𝑐
𝑖
1

(𝑡)(𝑥
∗

𝑖
1

(𝑡−𝜏
𝑖
1
𝑗
(𝑡)))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑎
+

𝑖
1

𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+ 𝑐
+

𝑖
1

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
1

(𝑡 − 𝜏
𝑖
1
𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑎
+

𝑖
1

𝑐
+

𝑖
1

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
∫

𝑡
2

𝑡
0

𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝜎 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
1

(𝑠 − 𝜏
𝑖
1
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
Δs

≤ 𝑎
+

𝑖
1

𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+ 𝑐
+

𝑖
1

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
𝑐𝑝𝑀

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+ 𝑎
+

𝑖
1

𝑐
+

𝑖
1

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
𝑐𝑝𝑀

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

∫

𝑡
2

𝑡
0

𝑒
−𝑎
𝑖
1

(𝑡
2
, 𝜎 (𝑠)) Δ𝑠

≤ 𝑎
+

𝑖
1

𝑒
⊖𝜆

(𝑡
1
, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

+ 𝑐
+

𝑖
1

(1 +

𝑎
+

𝑖
1

𝑎
−

𝑖
1

)

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
𝑐𝑝𝑀

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

= 𝑐𝑝𝑀
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

(

𝑎
+

𝑖
1

𝑐𝑝𝑀

+ 𝑐
+

𝑖
1

(1 +

𝑎
+

𝑖
1

𝑎
−

𝑖
1

)

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
)

< 𝑐𝑝𝑀
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X

(

𝑎
+

𝑖
1

𝑀

+ 𝑐
+

𝑖
1

(1 +

𝑎
+

𝑖
1

𝑎
−

𝑖
1

)

𝑚

∑

𝑗=1

𝑏
+

𝑖
1
𝑗
)

< 𝑐𝑝𝑀
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
, (55)

which is a contradiction. Therefore, (46) holds. Let 𝑝 → 1;
then (45) holds. Hence, we have that

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

∗󵄩
󵄩
󵄩
󵄩X
𝑒
⊖𝜆

(𝑡, 𝑡
0
) , 𝑡 ∈ [𝑡

0
, +∞)

T
;

(56)

that is, the𝐶1-almost periodic solution 𝑥∗(𝑡) of (1) is globally
exponentially stable. This completes the proof.

5. An Example

In this section, we present an example to illustrate the
feasibility of our results obtained in previous sections.
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Example 1. Let 𝑚 = 2. Consider the following Lasota-
Wazewska model on an almost periodic time scale T :

𝑥
Δ

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡) 𝑥

𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) exp {−𝑐

𝑖
(𝑡) 𝑥

𝑖
(𝑡 − 𝜏

𝑖𝑗
(𝑡))} ,

𝑖 = 1, 2,

(57)
in which we take coefficients as follows:

𝑎
1
(𝑡) = 0.4 + 0.1 sin(1

2

𝑡) ,

𝑎
2
(𝑡) = 0.5 + 0.2 sin(3

4

𝑡) ,

𝑏
11
(𝑡) = 0.07 + 0.01 cos𝜋𝑡,

𝑏
12
(𝑡) = 0.03 + 0.01 sin√3𝑡,

𝑏
21
(𝑡) (𝑡) = 0.05 + 0.01 sin𝜋𝑡,

𝑏
22
(𝑡) = 0.02 + 0.01 cos√2𝑡,

𝑐
1
(𝑡) = 0.03 + 0.01 cos√3𝑡,

𝑐
2
(𝑡) = 0.05 + 0.01 sin(4

3

𝑡) .

(58)

By calculating, we have

𝑎
+

1
= 0.5,

𝑎
+

2
= 0.7,

𝑎
−

1
= 0.3,

𝑎
−

2
= 0.3,

𝑏
+

11
= 0.08,

𝑏
+

12
= 0.04,

𝑏
+

21
= 0.06,

𝑏
+

22
= 0.03,

𝑐
+

1
= 0.04,

𝑐
+

2
= 0.06.

(59)

It can be verified that all conditions ofTheorems 33 and 34 are
satisfied. Therefore, (57) has a 𝐶

1-almost periodic solution,
which is globally exponentially stable.
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and uniqueness of 𝐶

(𝑛)-almost periodic solutions to some
ordinary differential equations,” Nonlinear Analysis: Theory,
Methods and Applications, vol. 66, no. 9, pp. 1899–1910, 2007.

[7] H. S. Ding, Y. Y. Chen, and G. M. N’Guérékata, “𝐶(𝑛)-almost
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