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A fast independent component analysis algorithm (FICAA) is introduced to process geochemical data for anomaly detection. In
geochemical data processing, the geological significance of separated geochemical elements must be explicit. This requires that
correlation coefficients be used to overcome the limitation of indeterminacy for the sequences of decomposed signals by the FICAA,
so that the sequences of the decomposed signals can be correctly reflected. Meanwhile, the problem of indeterminacy in the scaling
of the decomposed signals by the FICAA can be solved by the cumulative frequency method (CFM). To classify surface geochemical
samples into true anomalies and false anomalies, assays of the 1: 10 000 soil geochemical data in the area of Dachaidan in the Qinghai
province of China are processed. The CFM and FICAA are used to detect the anomalies of Cu and Au. The results of this research
demonstrate that the FICAA can demultiplex the mixed signals and achieve results similar to actual mineralization when 85%, 95%,
and 98% are chosen as three levels of anomaly delineation. However, the traditional CFM failed to produce realistic results and has
no significant use for prospecting indication. It is shown that application of the FICAA to geochemical data processing is effective.

1. Introduction

An ore-forming system in the crust of the Earth is a highly
nonlinear system, which commonly involves coupled pro-
cesses between material deformation, pore-fluid flow, heat
transfer, mass transport, and chemical reactions [1-9].
Because these processes can be described mathematically by
a set of partial differential equations [1-3, 10-13], it is import-
ant to obtain theoretical and numerical solutions using both
mathematical and computational methods in the field of
applied mathematics so that the distributions of mineral
resources in the upper crust of the Earth can be better pre-
dicted. For this reason, an emerging discipline known as com-
putational geoscience [14, 15] has been established in recent
years.

For quantitative prediction of mineral resources, geo-
chemical data are an important information source.
Researchers need the data to understand and simulate the
dynamic mechanisms of ore-forming systems. Extracting

prospecting information from geochemical element data is
a central purpose of metallogenic prediction [16]. The geo-
chemical element data are obtained from the field by sampl-
ing and analysis. During this process, the corresponding
interferences are produced, so collecting hidden anomaly
information that may reflect the spatial distribution charact-
eristics of geochemical elements is the key to suppressing
interference between geochemical elements [17-19]. Com-
mon data analysis methods are usually based on low-order
statistical properties without considering the higher-order
statistical characteristics of the data [20, 21]. Most research-
ers believe that, because samples disobey the normal distri-
bution, the existing methods cannot be directly applied to raw
data analysis [22]. Moreover, due to the complexity of geo-
logical information, traditional data mining cannot reflect
the spatial distribution characteristics of mineral resources
because the dynamic mechanisms that control the formation
of these mineral resources are completely neglected [16-22].
To better understand the geological information associated
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with geochemical data, many researchers study the spatial
distribution characteristics of the elements and the physical
and chemical properties of the bare geologic body [23]. As
a result, several quantitative geochemical methods, such as
spatial statistics, the fractal technique, discriminant analysis,
and fuzzy clustering [24-28], have been developed over
the past few decades. These methods are associated with
the density frequency of the element and are based on
the perceptions of mineralization, which may lead to false
anomalies that have nothing to do with mineralization [29].
In fact, geochemical exploration data processing methods
should only consider data cardinalities [30]. For example,
in the independent component analysis (ICA) method,
higher-order statistical features of data are taken into
account [31]. The method isolates the independent source
signals that are implicit in the mixed signal under “blind”
conditions. In previous studies, the ICA method was mainly
used for mineral predictions and is still at a fledging stage in
geochemical applications [32].

Although the mathematical analysis and computational
simulation methods associated with applied mathematics
have been widely used to produce analytical solutions [1-3,
33-36] and numerical results for understanding the dynamic
mechanisms and processes of ore-forming systems [4-9], this
study attempts to utilize the FICAA for detecting anomalies
in geochemical data. For example, Zhao and his coworkers
have successfully solved a set of partial differential equations
for the convective pore-fluid problems that are closely related
to hydrothermal ore-forming systems [1-3, 33, 34]. They
also solved a different set of partial differential equations
for the chemical dissolution front instability problems that
are present in many ore-forming systems within the upper
crust of the Earth [37-45]. According to the FICAA and
the characteristics of the geochemical data, processing raw
geochemical data with the FICAA can solve the sequence
indeterminacy problem of separated results caused by the
FICAA by calculating the correlation coefficient matrix of
raw data and separating the independent components. In
addition, the cumulative frequency method is used to solve
the indeterminacy problem in scaling by direct comparison to
the resultant anomalies. When a late prospecting trench vali-
dation is conducted, the data (after FICAA processing) can be
used to better reflect the spatial distribution characteristics of
the elements. This can provide useful geological information
for understanding and simulating the dynamic mechanisms
of ore-forming systems [14, 15].

This paper is organized as follows. The principles of
the FICAA and the correlation coefficient algorithm are
introduced in Section 2. A brief introduction of the geological
background of the area around Dachaidan in the Qinghai
province of China is given in Section 3. The FICAA is applied
to the 1:10 000 soil geochemical data of this area in Section
4. The results are discussed and conclusions are stated in Sec-
tions 5 and 6, respectively.

2. Algorithm Principle

2.1. The Problem Description of Independent Component Anal-
ysis. Independent component analysis (ICA) is a data mining
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FIGURE I: Signal mixing process.

technique that, based on the hypothesis of statistical inde-
pendence, analyzes data from a perspective of higher-order
statistical correlation [46]. A set of random initial vectors
approximates the independent signal source implicated in the
mixed signal by “decomposing” the mixed signal. Each mixed
signal is a linear combination of original signals (Figure 1).
The basic mathematical model of the ICA is as follows:

x = As, 1)

where x denotes some observed mixed signals, matrix A
represents the mixing matrix of the system, and vector s
represents unknown source signals that are assumed to be
statistically independent.

When the source signals s and the mixed matrix A are
both unknown, only x can be obtained. The ICA algorithm is
designed to determine a matrix W such that

y=Wx, (2)

where y is an optimal estimate of the source signals s. The
linear solution of the ICA model can be obtained with (1) and
(2). Consider

y = WAs = Gs, (3)

where G = WA is an n x n identity matrix.

In the late 1980s, Jutten and Herault proposed the concept
of the ICA [47]. In 1994, Comon extended the principal
component analysis, based on data processing and com-
pression, as an independent component analysis algorithm
and proposed independent component analysis based on the
minimum of mutual information [48]. In 2001, Hyvérinen et
al. proposed an algorithm for extracting the fixed-point from
ablind signal, also called the fast ICA (FICA). In 2012, Yu et al.
applied the FICA to mineral prediction [32]. However, both
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the dynamic mechanisms and the processes of ore-forming
systems were completely neglected in their studies [32, 47,
48]. This is the main shortcoming of the existing method used
to treat geochemical data with statistical mathematics rather
than simulating the dynamic mechanisms and the processes
of ore-forming systems using applied mathematics [49, 50].

2.2. The Data Requirements of the ICA Algorithm. First, the
ICA requires that each source signal be a random signal
with a zero mean value, which is statistically independent at
any moment, although geochemical data are usually spatially
correlated. Thus, we should obtain various results due to the
spatial correlation when the ICA is used. Second, it requires
an equal number of source signals and mixed signals (namely,
it requires that the relationship among geochemical elements
is a linear combination). Third, it requires that, at most, one
source signal obey the Gaussian distribution. In practice, the
influence of the “noise” is usually not considered.

2.3. The FICAA. The rationale of the FICAA is to determine
a target function by maximizing negentropy and to obtain
the optimal value of the target function by using Newton’s
iterative method.

Negentropy can be used to measure the non-Gaussianity.
The negentropy of a random variable y is given by

]()/) :H(ygauss)_H(y)’ (4)

where H(:) is the entropy function and y,, and y are
the Gaussian variable and the random variable, respectively,
with the same mean and normalized variance. If negentropy
is zero, then y obeys the Gaussian distribution. If y is a
non-Gaussian distribution, negentropy must exceed zero.
A non-Gaussian measurement reaches its maximum when
negentropy is maximized. Meanwhile, the optimal estimation
of source signals is accomplished. The approximate formula
of negentropy can be written as follows:

] () o< [E{G (0} - E{G (3} 5)

where G(-) is an arbitrary non-quadratic function. After
iterative trials, it was discovered that the rate of convergence is
faster and the convergence effect is better when G(y) = y4 /4.

To maximize negentropy, the optimal E {G(w" x)} must be
achieved. According to the Kuhn-Tucker conditions, under
the constraint E{G(wa)z} = Jwl* = 1, the optima are
obtained at points where the gradient of the Lagrangian is
zero:

E {xg (wa)} -px=0, (6)

where f3 is a constant that can be easily evaluated as § =
E{ngg(ng)}, wy, is the value of w at an optimum, and g(-) is
the first order derivative function of G(:). Assuming the data

are bounded, E{xx} = I, the left part of (6), can be written
as F and we can obtain the Jacobian matrix JF(w) as

JF (w)=E {xng' (wa)} - BL (7)

To simplify the matrix inversion, we can reasonably
approximate the first item of (7) as

E {xng' (wa)} =E {xxT} E {g' (wa)}
~elg (wo)}
If w, is approximated as w in f3, then JF(w) is transformed

into a diagonal matrix. Thus, we can obtain the approximate
Newrton iterative formula as

o_,_ |Elxg(w'x)} - pu]

w =w

(8)

[E{g ()]~ Al o
w:ﬁw

where w” is the new value of w and 8 = E{wag(wa)}.
After simplification, we can derive the iterative formula of the
FICAA:

w'=E {xg (wa)} -E {g' (wa)} w,
w* (10)

w = o
llw™

2.4. The Correlation Coefficient Matrix. The FICAA islimited
in the fact that separated signal sequences do not correspond
one-to-one with the order of the source signals. In the absence
of any other prior knowledge, this problem cannot be solved.
In this paper, we use the correlation coefficient matrix to solve
it.

Let (X,,X,,X;,...,X,) be one-dimensional random
variables. If arbitrary X; and X; have the correlation coef-
ficient p; (i,j = 1,2,...,n), then an n x n matrix with
elements pij is the correlation coefficient matrix (R) of

(X1, X5, X5,..., X,,) [51-53]. Consider
P11 P12 " Pin
Pa1 P22 " Pon
=1 . . . .1 (11)
Pl Pn2 " Pmn

where pij = COV(X,-,X]»)/\/DX“’DXJ-, cov(Xi,Xj) = E{[X; -
E{X,}] x [X; - E(X})

To restore the source signals of independent components,
mixed signals and separated independent components are
taken as new observed data to calculate the correlation
coefficient matrix. The two variables of maximum absolute
values with the same correlation coeflicient are deemed to
have a corresponding relation to each other.

3. Geology of the Research Area

The research area is situated in the Qinghai province of
China, 700 km east of Xining and 35 km west of Dachaidan.
The 1:10000 geographical coordinates cover the eastern
longitude range from 95°47'51" to 95°58'18" and the north-
ern latitude range from 37°42'44" to 37°45'14". The study
area is approximately 6 km?. The strata known in the area
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TABLE 1: Parameters of soil geochemical elements in the given area of Qinghai.
Element Sample number Min Max Mean StDev Skew Kurtosis
Au 3307 0.2 410.0 7.508 18.6540 9.530 130.097
Pb 3307 2.3 1331.0 17.398 33.5077 24.929 813.833
Zn 3307 20.0 184 66.86 18.615 1.137 2.324
Cu 3307 43 89.6 24.959 9.8264 1.481 4.340
As 3307 2.0 1623.0 40.898 65.6605 8.318 130.047
Sb 3307 0.2 134.00 2.0290 3.26852 22.701 826.105
TABLE 2: Results of the Kolmogorov-Smirnov test on the variables.
Element Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) Distribution
Pb 20.782 <0.01 Nonnormal
Au 20.251 <0.01 Nonnormal
Cu 6.078 <0.01 Nonnormal
Zn 5.923 <0.01 Nonnormal
As 16.895 <0.01 Nonnormal
Sb 17.893 <0.01 Nonnormal
are the Silurian (S), Permian (P), and Quaternary (Q,). TaBLE 3: Correlation coefficient results.
Rock types are cgnglomerate, altered .conglomerate, sar}d- Variable  Au Ca b 7n As sh
stone, quartz schist, altered quartz schist, arkose quartzite,
lithic sandstone, slate, and phyllite. The mineralizations are y1 0213 -0.124 - ~0.9820.019  ~0.067 0.002
silicification, ferritization, pyritization, malachitization, and y2 0.001  -0.018 -0.006 -0.021 0.009  -0.985
chalcopyritization. The study area mainly consists of an Au y3 0040 008 0020 0135 0549  0.081
mineralization belt and a Cu mineralization belt. The Au belt y4 -0.967 0.050  0.099  0.046 -0.169 —0.092
is mainly distributed in the Permian stratus and the Cu belt is ¥5 0.047 -0.546 —-0.092 0.097  0.031 -0.082
primarily found in the Silurian stratus (Figure 2). The major 6 0128 -0.822 -0.30 -0.985 0.256 —0.087

minerals in this area are galena, malachite, and azurite.

4. Application

The project involved setting up 34 soil geochemical profile
lines and completing 6 km” of soil geochemical surveys. The
sampling network is 100 m x 20 m. Soil geochemical samples
included 3307 samples that were analyzed for six elements:
Au, Cu, Pb, As, Sb, and Zn. In this study area, ten pros-
pecting trenches were dug and 200 samples were collected
and notched. Based on descriptive statistics analysis of soil
geochemical data, characteristics indexes were determined
and are shown in Table1 (Au is reported in ppb and the
remaining metals are reported in ppm).

The existing geochemical data processing methods fre-
quently rely on the assumption that geochemical data obey
a normal distribution. However, the spatial distribution of
geochemical element content is very complex, so existing
methods have limitations. Because the FICAA requires that
only the contents of one element obey the normal distri-
bution, the first analysis of this framework examines the
probability plots reported in Figure 3. The purpose is to verify
whether the raw data obey a normal distribution. Figure 3
shows that Au, Pb, As, and Sb obviously disobey the normal
distribution. Meanwhile, Cu and Zn approximately obey a
normal distribution.

Graphical tools can support hypothesis tests for normal-
ity. The results of the tests for Cu and Zn are controversial, as

expected (Figure 3). Furthermore, the Kolmogorov-Smirnov
(K-S) normal distribution test is conducted on the soil sample
data. Table 2 shows that the normality hypothesis cannot be
accepted (P < 0.05) because the contents of the six elements
disobey the normal distribution. Thus, these data meet the
basic requirement of the FICAA.

Based on the FICAA and the statistical independence of
the raw geochemical data, we consider the six element content
values as the mixed signals (the raw data). The oscillogram
of the raw data is shown in Figure 4 and the oscillogram of
the source signals after separation by the FICAA is shown in
Figure 5. Because the FICAA is a copy or estimation of the
source signals, the sequences and scaling of the source signals
have changed. The changes are displayed in the oscillogram of
the separated results. We introduce the correlation coefficient
to solve this problem.

As clearly demonstrated in Figure 5, the waveforms of the
six elements after separation correspond to the waveforms
of the raw data. Treating the survey data and indepen-
dent components as new observation variables, we calculate
the correlation coefficient between them. The correlation
coeflicient results in Table 3 show that the maximum absolute
values of each column are 0.967, 0.546, 0.982, 0.985, 0.949,
and 0.985, respectively. Thus, it can be concluded that y1, y2,
y3, ¥4, y5, and y6 correspond to Pb, Sb, As, Au, Cu, and Zn.
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FICAA processing is only a copy or estimation of the
raw data and only reflects the general trend of the data.
The cumulative frequency method is employed to determine
the distribution characteristics of the elements and to solve
the problem of sequence indeterminacy. Selecting 85%, 95%,
and 98% as the intrazone, mesozone, and external zone of
the anomaly, the isograms of the raw data and separated
data are depicted using the cumulative frequency method.
Their three-level cumulative frequencies are given in Table 4.
Because this study mainly analyzes the metallogenic elements
Au and Cu, Figures 6 through 9 show the Auand Cu isograms
of the raw data and data separated by the FICAA, respectively.

5. Discussion

The anomaly analysis of Au and Cu and the prospecting
trench work are carried out based on the anomaly isograms.
The anomaly isograms show that Au is mainly distributed in
the Permian while Cu mostly spreads over the Silurian. There
are obvious differences between the isograms of Au and Cu
that are delineated by the raw data and the FICAA processed
data. Test and analysis results are shown in Table 5. In trench
TC04, the element content of Au is 0.1, where the raw data of
Au has an obvious anomaly, but the FICAA processed data
does not. The FICAA processed result is consistent with the
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TABLE 4: Zoning sequences delineated by the cumulative frequency.
Zoning Au Cu Pb Zn As Sb yl y2 y3 y4 ¥5 6
Exozone 9.8 34 19.5 85.4 59.2 2.75 0.2379 0.4269 1.6729 0.8691 —-0.151 4.4311

Mesozone 251 42.9 27.9 102 135 4.49 0.4289 0.889 2.6092 1.5673 0.6145 5.2717
Intrazone 52 50.9 415 115 227 7.98 0.871 1.935 4.0833 2.883 1.7436 5.9494
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actual situation. In trenches TCOl and TCO05, the element
contents of Cu are 0.15 and 1.99. The raw data show normal
distributions, while the FICAA processed data reveal appar-
ent anomalies that match the true conditions. Meanwhile,
other trenches reasonably show the distribution abnormal-
ities of Au and Cu. Thus, employing the FICAA to process
the geochemical data can better reflect the spatial distribution
characteristics of elements. This is because when the existing
statistical data processing method is used, we must assume
that the data obey the normal distribution or lognormal
distribution. However, the actual geochemical data may not

satisfy this assumption. Therefore, these existing methods
have limitations. The FICAA can preprocess the geochemical
data under unknown circumstances. This can eliminate the
mutual interference between elements so that the data may
provide a clearer direction for geochemical data processing.

The analysis results show that the anomaly isograms
processed by the FICAA are more in line with the actual
element distributions. Although we solve the problem of
scaling indeterminacy, the anomalies still cannot be displayed
directly by the processed data. Moreover, the FICAA should
be verified in other geological areas.
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TaBLE 5: The analysis results of chemical groove samples.

Serial number of trench Au (max) Cu (max)
TCO1 <0.10 0.15
TCO02 <0.10 1.05
TCO03 <0.10 0.19
TC04 <0.10 2.14
TCO05 <0.10 1.99
TCO06 <0.10 0.5
TCO07 0.37 <0.01
TC08 0.45 <0.01
TC09 1.69 <0.01
TCI10 1.61 <0.01

More importantly, the existing geochemical data process-
ing methods with the statistical mathematics characteristic
(such as the FICAA used in this study) cannot be used
to simulate the dynamic mechanisms and processes of ore-
forming systems, so they are invalid for predicting concealed
ore deposits within the upper crust of the Earth. To solve
this problem, applied mathematics methods have been used
to establish an emerging discipline, known as computational
geoscience, during most of the past two decades. As a result,
computational simulation methods have become important
tools not only for simulating the dynamic mechanisms and
processes of ore-forming systems but also for predicting the
potential locations of ore deposits within the upper crust of
the Earth [14, 15, 49].

6. Conclusions

This study identifies soil geochemistry anomaly areas based
on the presence or absence of mineralization in trench
samples. Use of the correlation coefficient and the cumu-
lative frequency can solve indeterminacy problems in both
sequences and scaling. Comparing FICAA processed raw
data to the results of the CFM beforehand can better reflect
the distribution characteristics of the geochemical elements.
Because geological backgrounds are different when the study
areas are different, the geochemical exploration method
should be applied on the basis of the actual situation.

The existing geochemical data processing methods with
the statistical mathematics characteristic (such as the FICAA
used in this study) cannot be used to simulate the dynamic
mechanisms and processes of ore-forming systems; therefore,
they are invalid for predicting concealed ore deposits within
the upper crust of the Earth. Because computational geo-
science methods with the applied mathematics characteristic
can effectively simulate the dynamic mechanisms and pro-
cesses of ore-forming systems, they should be used in future
research to predict potential locations of ore deposits within
the upper crust of the Earth.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Journal of Applied Mathematics

Acknowledgment

This research is supported by the National Natural Science
Foundation of China (Grant no. 41272363).

References

[1] C. Zhao, H. B. Miihlhaus, and B. E. Hobbs, “Finite element
analysis of steady-state natural convection problems in fluid-
saturated porous media heated from below;” International Jour-
nal for Numerical and Analytical Methods in Geomechanics, vol.
21, no. 12, pp. 863-881, 1997.

[2] C. Zhao, B. E. Hobbs, and H. B. Miihlhaus, “Finite element
modelling of temperature gradient driven rock alteration and
mineralization in porous rock masses,” Computer Methods in
Applied Mechanics and Engineering, vol. 165, no. 1-4, pp. 175-
187, 1998.

[3] C. Zhao, B. E. Hobbs, and H. B. Miihlhaus, “Theoretical and
numerical analyses of convective instability in porous media
with upward throughflow;” International Journal for Numerical
and Analytical Methods in Geomechanics, vol. 23, no. 7, pp. 629-
646, 1999.

[4] B. E. Hobbs, Y. Zhang, A. Ord, and C. Zhao, “Application of
coupled deformation, fluid flow, thermal and chemical mod-
elling to predictive mineral exploration,” Journal of Geochemical
Exploration, vol. 69-70, pp. 505-509, 2000.

[5] A.Ord, B. E. Hobbs, Y. Zhang et al., “Geodynamic modelling of
the Century deposit, Mt Isa Province, Queensland,” Australian
Journal of Earth Sciences, vol. 49, no. 6, pp. 1011-1039, 2002.

[6] P. Sorjonen-Ward, Y. Zhang, and C. Zhao, “Numerical mod-
elling of orogenic processes and gold mineralisation in the
southeastern part of the Yilgarn Craton, Western Australia;’
Australian Journal of Earth Sciences, vol. 49, no. 6, pp. 935-964,
2002.

[7] P. A. Gow, P. Upton, C. Zhao, and K. C. Hill, “Copper-gold
mineralisation in New Guinea: numerical modelling of colli-
sion, fluid flow and intrusion-related hydrothermal systems,”
Australian Journal of Earth Sciences, vol. 49, no. 4, pp. 753-771,
2002.

[8] P. M. Schaubs and C. Zhao, “Numerical models of gold-deposit
formation in the Bendigo-Ballarat Zone, Victoria,” Australian
Journal of Earth Sciences, vol. 49, no. 6, pp. 1077-1096, 2002.

[9] Y. Zhang, B. E. Hobbs, A. Ord et al., “The influence of
faulting on host-rock permeability, fluid flow and ore genesis
of gold deposits: a theoretical 2D numerical model,” Journal of
Geochemical Exploration, vol. 78-79, pp. 279-284, 2003.

[10] C. Zhao, B. E. Hobbs, A. Ord, S. Peng, H. B. Miihlhaus, and
L. Liu, “Theoretical investigation of convective instability in
inclined and fluid-saturated three-dimensional fault zones,
Tectonophysics, vol. 387, no. 1-4, pp. 47-64, 2004.

[11] C. Zhao, B. E. Hobbs, A. Ord, P. Hornby, S. Peng, and L. Liu,
“Mineral precipitation associated with vertical fault zones: the
interaction of solute advection, diffusion and chemical kinetics,”
Geofluids, vol. 7, no. 1, pp. 3-18, 2007.

[12] C.Zhao,B.E.Hobbs, and A. Ord, Convective and Advective Heat

Transfer in Geological Systems, Springer, Berlin, Germany, 2008.

C. Zhao, Dynamic and Transient Infinite Elements: Theory and

Geophysical, Geotechnical and Geoenvironmental Applications,

Advances in Geophysical and Environmental Mechanics and

Mathematics, Springer, Berlin, Germany, 2009.

[14] C. Zhao, B. E. Hobbs, and A. Ord, “Investigating dynamic
mechanisms of geological phenomena using methodology of

(13



Journal of Applied Mathematics

(16]

(17]

(20]

(21]

[22]

(25]

(26]

(27]

[29

(30]

computational geosciences: an example of equal-distant min-
eralization in a fault,” Science in China D: Earth Sciences, vol. 51,
no. 7, pp. 947-954, 2008.

C. Zhao, B. E. Hobbs, and A. Ord, Fundamentals of Computa-
tional Geoscience: Numerical Methods and Algorithms, Springer,
Berlin, Germany, 2009.

S. C. Wang, Theory and Methods of Mineral Resources Prediction
Based on Synthetic Information, Science Press, Beijing, China,
2002.

Q. Cheng, E P. Agterberg, and G. E Bonham-Carter, “A spatial
analysis method for geochemical anomaly separation,” Journal
of Geochemical Exploration, vol. 56, no. 3, pp. 183-195, 1996.

Q. Cheng, “Spatial and scaling modelling for geochemical
anomaly separation,” Journal of Geochemical Exploration, vol.
65, no. 3, pp. 175-194, 1999.

Q. Cheng, Y. Xu, and E. Grunsky, “Integrated spatial and spec-
trum method for geochemical anomaly separation,” Natural
Resources Research, vol. 9, no. 1, pp. 43-52, 2000.

Q. Cheng, “Mapping singularities with stream sediment geo-
chemical data for prediction of undiscovered mineral deposits
in Gejiu, Yunnan Province, China,” Ore Geology Reviews, vol.
32, no. 1-2, pp. 314-324, 2007,

Q. M. Cheng, C. Lu, and C. Ko, “GIS spatial: temporal modeling
of water systems in greater, Earth Science: Journal of China
University of Geosciences, vol. 15, no. 13, pp. 1-8, 2004.

P. Filzmoser, K. Hron, and C. Reimann, “Interpretation of
multivariate outliers for compositional data,” Computers and
Geosciences, vol. 39, pp. 77-85, 2012.

W. Wang, J. Zhao, and Q. Cheng, “Analysis and integration of
geo-information to identify granitic intrusions as exploration
targets in southeastern Yunnan District, China,” Computers &
Geosciences, vol. 37, no. 12, pp. 1946-1957, 2011.

Q. Cheng, E P. Agterberg, and S. B. Ballantyne, “The separation
of geochemical anomalies from background by fractal meth-
ods,” Journal of Geochemical Exploration, vol. 51, no. 2, pp. 109-
130, 1994.

R. Ghavami-Riabi, M. M. Seyedrahimi-Niaraq, R. Khalokakaie,
and M. R. Hazareh, “U-spatial statistic data modeled on a prob-
ability diagram for investigation of mineralization phases and
exploration of shear zone gold deposits,” Journal of Geochemical
Exploration, vol. 104, no. 1-2, pp. 27-33, 2010.

M. A. Gongalves, A. Mateus, and V. Oliveira, “Geochemical
anomaly separation by multifractal modelling,” Journal of Geo-
chemical Exploration, vol. 72, no. 2, pp. 91-114, 2001.

U. Kramar, “Application of limited fuzzy clusters to anomaly
recognition in complex geological environments,” Journal of
Geochemical Exploration, vol. 55, no. 1-3, pp. 81-92, 1995.

C.Li, T. Ma, and J. Shi, “Application of a fractal method relating
concentrations and distances for separation of geochemical
anomalies from background,” Journal of Geochemical Explo-
ration, vol. 77, no. 2-3, pp. 167-175, 2003.

P. Roshani, A. R. Mokhtari, and S. H. Tabatabaei, “Objective
based geochemical anomaly detection—application of discrim-
inant function analysis in anomaly delineation in the Kuh Panj
porphyry Cu mineralization (Iran),” Journal of Geochemical
Exploration, vol. 130, pp. 65-73, 2013.

P. Lenca, P. Meyer, B. Vaillant, and S. Lallich, “On selecting
interestingness measures for association rules: user oriented

description and multiple criteria decision aid,” European Journal
of Operational Research, vol. 184, no. 2, pp. 610-626, 2008.

(31]

(33]

(34]

(37]

(38]

(41]

(42]

(43]

[44]

1

T. Lee, M. Girolami, A. J. Bell, and T. Sejnowski, “A unifying
information-theoretic framework for independent component
analysis,” Computers & Mathematics with Applications, vol. 39,
no. 11, pp. 1-21, 2000.

X. C. Yu, L. W. Liu, D. Hu, and Z. N. Wang, “Robust ordinal
independent component analysis (ROICA) applied to mineral
resources prediction,” Journal of Jilin University (Earth Science
Edition), vol. 42, no. 3, pp. 872-880, 2012.

C. Zhao, B. E. Hobbs, H. B. Miihlhaus, A. Ord, and G. Lin,
“Convective instability of 3-D fluid-saturated geological fault
zones heated from below,” Geophysical Journal International,
vol. 155, no. 1, pp. 213-220, 2003.

C. Zhao, B. E. Hobbs, A. Ord, S. Peng, H. B. Miihlhaus, and
L. Liu, “Double diffusion-driven convective instability of three-
dimensional fluid-saturated geological fault zones heated from
below;” Mathematical Geology, vol. 37, no. 4, pp. 373-391, 2005.
C. Zhao, B. E. Hobbs, and A. Ord, “Theoretical analyses of
nonaqueous phase liquid dissolution-induced instability in
two-dimensional fluid-saturated porous media,” International
Journal for Numerical and Analytical Methods in Geomechanics,
vol. 34, no. 17, pp. 1767-1796, 2010.

C. Zhao, B. E. Hobbs, A. Ord, P. Hornby, and S. Peng, “Mor-
phological evolution of three-dimensional chemical dissolution
front in fluid-saturated porous media: a numerical simulation
approach,” Geofluids, vol. 8, no. 2, pp. 113-127, 2008.

C. Zhao, B. E. Hobbs, P. Hornby, A. Ord, S. Peng, and L. Liu,
“Theoretical and numerical analyses of chemical-dissolution
front instability in fluid-saturated porous rocks,” International
Journal for Numerical and Analytical Methods in Geomechanics,
vol. 32, no. 9, pp- 1107-1130, 2008.

C. Zhao, B. E. Hobbs, A. Ord, P. Hornby, and S. Peng, “Effect of
reactive surface areas associated with different particle shapes
on chemical-dissolution front instability in fluid-saturated
porous rocks,” Transport in Porous Media, vol. 73, no. 1, pp. 75—
94, 2008.

C. Zhao, B. E. Hobbs, A. Ord, and S. Peng, “Effects of mineral
dissolution ratios on chemical-dissolution front instability in
fluid-saturated porous media,” Transport in Porous Media, vol.
82, no. 2, pp. 317-335, 2010.

C. Zhao, B. E. Hobbs, and A. Ord, “Theoretical analyses of the
effects of solute dispersion on chemical-dissolution front insta-
bility in fluid-saturated porous media,” Transport in Porous
Media, vol. 84, no. 3, pp. 629-653, 2010.

C. Zhao, B. E. Hobbs, and A. Ord, “Effects of medium and pore-
fluid compressibility on chemical-dissolution front instability in
fluid-saturated porous media,” International Journal for Num-
erical and Analytical Methods in Geomechanics, vol. 36, no. 8,
pp. 1077-1100, 2012.

C. Zhao, Physical and Chemical Dissolution Front Instability in
Porous Media: Theoretical Analyses and Computational Simula-
tions, Springer, Berlin, Germany, 2014.

C. Zhao, L. B. Reid, K. Regenauer-Lieb, and T. Poulet, “A poro-
sity-gradient replacement approach for computational simula-
tion of chemical-dissolution front propagation in fluid-satu-
rated porous media including pore-fluid compressibility,” Com-
putational Geosciences, vol. 16, no. 3, pp. 735-755, 2012.

C. Zhao, B. E. Hobbs, and A. Ord, “Theoretical analyses of
acidization dissolution front instability in fluid-saturated car-
bonate rocks,” International Journal for Numerical and Analyti-
cal Methods in Geomechanics, vol. 37, no. 13, pp. 2084-2105, 2013.
C. Zhao, B. E. Hobbs, and A. Ord, “Effects of medium perme-
ability anisotropy on chemical-dissolution front instability in



12

(47

[48

[50

[51
(52

(53

]

]

]
]
]

fluid-saturated porous media,” Transport in Porous Media, vol.
99, no. 1, pp. 119-143, 2013.

A. Hyvirinen, P. O. Hoyer, and M. Inki, “Topographic indepen-
dent component analysis,” Neural Computation, vol. 13, no. 7, pp.
1527-1558, 2001.

C. Jutten and J. Herault, “Blind separation of sources, part I: an
adaptive algorithm based on neuromimetic architecture,” Signal
Processing, vol. 24, no. 1, pp. 1-10, 1991.

P. Comon, “Independent component analysis, A new concept?”
Signal Processing, vol. 36, no. 3, pp. 287-314, 1994.

C. Zhao, L. B. Reid, and K. Regenauer-Lieb, “Some fundamental
issues in computational hydrodynamics of mineralization: a
review;” Journal of Geochemical Exploration, vol. 112, pp. 21-34,
2012.

C. Zhao, B. E. Hobbs, and A. Ord, “Theoretical and numerical
investigation into roles of geofluid flow in ore forming systems:
integrated mass conservation and generic model approach,
Journal of Geochemical Exploration, vol. 106, no. 1-3, pp. 251-
260, 2010.

T. W. Anderson, An Introduction to Multivariate Statistical Ana-
lysis, John Wiley & Sons, New York, NY, USA, 1984.

R. J. Serfling, Approximation Theorems of Mathematical Statis-
tics, John Wiley & Sons, New York, NY, USA, 1980.

E. Masry, “The estimation of the correlation coefficient of bivari-
ate data under dependence: convergence analysis,” Statistics &
Probability Letters, vol. 81, no. 8, pp. 1039-1045, 2011.

Journal of Applied Mathematics



