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The problem of finite-time 𝐿
2
-𝐿
∞
control for Markovian jump systems (MJS) is investigated.The systems considered time-varying

delays, actuator saturation, and polytopic uncertain transition description. The purpose of this paper is to design a state feedback
controller such that the system is finite-time bounded (FTB) and a prescribed𝐿

2
-𝐿
∞
disturbance attenuation level during a specified

time interval is guaranteed. Based on the Lyapunov method, a linear matrix inequality (LMI) optimization problem is formulated
to design the delayed feedback controller which satisfies the given attenuation level. Finally, illustrative examples show that the
proposed conditions are effective for the design of robust state feedback controller.

1. Introduction

In the aspect of modeling practical systems with abrupt
random changes, such as manufacturing system, telecom-
munication, and economic systems, MJS have powerful
ability. MJS have been extensively studied during the past
decades and many systematic results have been obtained
[1–3]. The peak-to-peak filtering problem was studied for a
class of Markov jump systems with uncertain parameters in
[4]. A robust 𝐻

2
state feedback controller for continuous-

time Markov jump linear systems subject to polytopic-type
parameter uncertainty was designed in [5]. In [6], the authors
address the stabilization problem for single-input Markov
jump linear systems via mode-dependent quantized state
feedback for control.

Actuator saturation which can lead to poor performance
of the closed-loop system is another active research area. In
practical situations, it may be encountered sometimes. How
to preserve the closed-loop system performance in the case
of actuator saturation would be more meaningful. In [7], the
𝐻
∞
control problem for discrete-time singular Markov jump

systems with actuator saturation was considered. In [8] the
stochastic stabilization problem for a class of Markov jump
linear systems subject to actuator saturation was considered.

In some practical applications, the behavior of the system
over a finite-time interval is mainly considered. Finite-time
stable (FTS) and Lyapunov asymptotic stability are indepen-
dent concepts. The concept of FTS was first introduced in
[9]. A system is said to be finite-time stable if, given a bound
on the initial condition, its state does not exceed a certain
threshold during a specified time interval. FTS of linear time-
varying systems was considered in [10]. Sufficient conditions
for the solvability of both the state and the output feedback
problems are stated. Amato [11] provided a necessary and
sufficient condition for the FTS of linear-varying systems
with jumps. Recently, robust finite-time𝐻

∞
control of jump

systems was dealt with in [12–14]. In [15], the problems
of finite-time stability analysis were investigated for a class
of Markovian switching stochastic systems. To the best of
authors’ knowledge, however, the problem of finite-time
𝐿
2
-𝐿
∞

performance for discrete-time MJS with imprecise
transition probabilities and time-varying delays has not been
well addressed, which motivates our work.

This paper deals with this problem. More specifically,
the actuator is saturation. By using the Lyapunov-Krasovskii
functional, a new sufficient condition for stochastic asymp-
totic stability with finite-time 𝐿

2
-𝐿
∞
performance is derived

in terms of LMI. Based on this, the existence condition of
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the desired performance which guarantees finite-time stabil-
ity and an 𝐿

2
-𝐿
∞

performance of the MJS is presented. A
numerical example is provided to show the effectiveness of
the proposed results.

Throughout the paper, if not explicitly stated,matrices are
assumed to have compatible dimensions. The notation𝑊 >

(≥, <, ≤)0 is used to denote a symmetric positive definite (pos-
itive semidefinite, negative, negative semidefinite) matrix.
𝜆min(⋅) and 𝜆max(⋅) represent the minimum and maximum
eigenvalues of the corresponding matrix, respectively. 𝐼 is
the identity matrix with compatible dimensions. ‖ ⋅ ‖ refers
to the Euclidean norm of vectors and 𝐸[⋅] stands for the
mathematical expectation. For a symmetric block matrix,
“∗” is used as an ellipsis for the terms that are obtained by
symmetry.

2. Problem Statement and Preliminaries

Consider a discrete-time MJS with actuator saturation and
delay in the state. Let the system dynamics be described by
the following:

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑)

+ 𝐵
𝜃1
(𝑟
𝑘
) 𝜎 (𝑢
𝑘
) + 𝐵
𝜃2
(𝑟
𝑘
) 𝑤
𝑘
,

𝑧 (𝑘) = 𝐶
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐶

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐷

𝜃1
(𝑟
𝑘
) 𝑤
𝑘
,

(1)

where 𝑥
𝑘

∈ 𝑅
𝑛 is the system state, 𝑧

𝑘
∈ 𝑅

𝑛 is
the system output, 𝑢

𝑘
∈ 𝑅

𝑚 is the control input,
𝑤
𝑘

∈ 𝑅
𝑞 is the disturbance input which belongs to

𝐿
2
[0,∞) and ∑∞

𝑘=0
𝑤
𝑇

𝑘
𝑤
𝑘
< 𝜅
2, and 𝜅 is a given positive

scalar.𝐴
𝜃1
(𝑟
𝑘
), 𝐴
𝜃2
(𝑟
𝑘
), 𝐵
𝜃1
(𝑟
𝑘
), 𝐵
𝜃2
(𝑟
𝑘
), 𝐶
𝜃1
(𝑟
𝑘
), 𝐷
𝜃1
(𝑟
𝑘
), and

𝐷
𝜃2
(𝑟
𝑘
) are appropriately dimensioned real-valued matrices,

which belong to the part of convex polyhedronΦ(𝑟
𝑘
):

Φ(𝑟
𝑘
)

= {

𝐿

∑

𝑙=1

𝜃
𝑙
[𝐴
𝑙1
(𝑟
𝑘
) , 𝐴
𝑙2
(𝑟
𝑘
) , 𝐵
𝑙1
(𝑟
𝑘
) ,

𝐵
𝑙2
(𝑟
𝑘
) , 𝐶
𝑙1
(𝑟
𝑘
) , 𝐶
𝑙2
(𝑟
𝑘
) ,

𝐷
𝑙1
(𝑟
𝑘
) , 𝐷
𝑙2
(𝑟
𝑘
)] ,

𝐿

∑

𝑙=1

𝜃
𝑙
= 1, 𝜃
𝑙
≥ 0} ,

(2)

where 𝐴
𝑙1
(𝑟
𝑘
), 𝐴
𝑙2
(𝑟
𝑘
), 𝐵
𝑙1
(𝑟
𝑘
), 𝐵
𝑙2
(𝑟
𝑘
), 𝐶
𝑙1
(𝑟
𝑘
), 𝐶
𝑙2
(𝑟
𝑘
), and

𝐷
𝑙1
(𝑟
𝑘
) are matrix functions of the random jumping process

{𝑟
𝑘
} (Figure 1), which is a discrete-time Markov chain

taking values in a finite set Ω = {1, 2, . . . , 𝑆} with transition
probabilities:

𝑃 {𝑟
𝑘+1
= 𝑗 | 𝑟

𝑘
= 𝑖} = 𝜋

𝑖𝑗
. (3)
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Figure 1: Jumping mode.

Here 𝜋
𝑖𝑗
≥ 0 and for any 𝑖, 𝑗 ∈ Ω, ∑𝑠

𝑗=1
𝜋
𝑖𝑗
= 1. Assuming that

the transition probability 𝜋
𝑖𝑗
is not exactly known, a certain

range can only be given

[𝜋V (𝑖, 1) , 𝜋V (𝑖, 2) , . . . , 𝜋V (𝑖, 𝑆)]

=

𝑀

∑

𝑚=1

V
𝑚
[𝜋
𝑚
(𝑖, 1) , 𝜋

𝑚
(𝑖, 2) , . . . , 𝜋

𝑚
(𝑖, 𝑆)] ,

(4)

where V = [V
1
⋅ ⋅ ⋅ V
𝑀
]
𝑇
∈ 𝑅
𝑀 and ∑𝑀

𝑚=1
V
𝑚
= 1, and

the transition probability belongs to the following convex
polyhedron:

ℵ(𝑟
𝑘
= 𝑖) = Co{ [𝜋

1
(𝑖, 1) , 𝜋

1
(𝑖, 2) , . . . , 𝜋

1
(𝑖, 𝑁)]

[𝜋
𝑀
(𝑖, 1) , 𝜋

𝑀
(𝑖, 2) , . . . , 𝜋

𝑀
(𝑖, 𝑁)]

} . (5)

When the system operates in the 𝑖th mode (𝑟
𝑘
= 𝑖), for sim-

plicity, thematrices𝐴
𝜃1
(𝑟
𝑘
),𝐴
𝜃2
(𝑟
𝑘
), 𝐵
𝜃1
(𝑟
𝑘
), 𝐵
𝜃2
(𝑟
𝑘
), 𝐶
𝜃1
(𝑟
𝑘
),

and 𝐷
𝜃1
(𝑟
𝑘
) are denoted as 𝐴

𝜃1𝑖
, 𝐴
𝜃2𝑖
, 𝐵
𝜃1𝑖
, 𝐵
𝜃2𝑖
, 𝐶
𝜃1𝑖
, and

𝐷
𝜃1𝑖
, respectively. 𝑑 is a positive integer denoting the constant

delay of the system state (Figures 2 and 3).
In system (1), 𝜎(⋅) : 𝑅𝑚 → 𝑅

𝑚 is the vector-valued
standard saturation function defined as follows:

𝜎 (𝑢) = [𝜎 (𝑢
1
) , 𝜎 (𝑢

2
) , . . . , 𝜎 (𝑢

𝑚
)]
𝑇

, (6)

where𝜎(𝑢
𝜃
) = sign(𝑢

𝜃
)min{1, |𝑢

𝜃
|}. It is assumed that system

(1) is completely controllable. A mode-dependent controller
is considered here with the following form:

𝜎 (𝑢 (𝑘)) = 𝜎 (𝐾
𝑖
𝑥 (𝑘)) , (7)

where 𝐾
𝑖
∈ 𝑅
𝑚×𝑛

(∀𝑟
𝑘
= 𝑖 ∈ Ω) is the controller gain to be

determined.
Let 𝑀 be the set of 𝑚 × 𝑚 diagonal matrices whose

diagonal elements are either 1 or 0. Suppose each element of
𝑀 is𝑀

𝑗
, 𝑗 = 1, . . . , 2𝑚, and denote𝑀−

𝑗
= 𝐼 − 𝑀

𝑗
. Note that

𝑀
−

𝑗
is also an element of 𝑀 if 𝑀

𝑗
∈ 𝑀. Let ℎ

𝑖𝑗
be the 𝑗th

row of the matrix 𝐻
𝑖
, and define the symmetric polyhedron

by 𝜑(𝐻
𝑖
) = {𝑥(𝑡) ∈ 𝑅

𝑛
: |𝑓
𝑖𝑗
𝑥(𝑡)| ≤ 1, 𝑖 = 1, 2, . . . , 𝑚}.
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Figure 2: Response of the system state 𝑥
1
.
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Figure 3: Response of the system state 𝑥
2
.

Lemma 1 (see [8]). Let 𝐾
𝑖
, 𝐻
𝑖
∈ 𝑅
𝑚×𝑛 be given matrix. For

𝑥(𝑡) ∈ 𝑅
𝑛, if 𝑥(𝑡) ∈ 𝜑(𝐻

𝑖
), then

𝜎 (𝐾
𝑖
𝑥 (𝑡)) =

2
𝑚

∑

𝑟=1

𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
) 𝑥 (𝑡) , (8)

where 0 ≤ 𝜁
𝑟
≤ 1, ∑2

𝑚

𝑟=1
𝜁
𝑟
= 1.

By the connection of (6), (7) and (8), the following closed-
loop MJS are obtained:

𝑥 (𝑘 + 1) = (𝐴
𝜃1
(𝑟
𝑘
) + 𝐵
𝜃1
(𝑟
𝑘
)

×

2
𝑚

∑

𝑟=1

𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
))𝑥 (𝑘)

+ 𝐴
𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐵

𝜃2
(𝑟
𝑘
) 𝑤
𝑘
.

(9)

To describe themain objective of this notemore precisely,
let us now introduce the following definition for the underly-
ing system.

Definition 2 (see [13]). Given a time constant 𝑇 > 0, the MJS

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) (10)

are said to be FTSwith respect to (ℎ1 ℎ2 𝑇 𝑅
𝑖), if there exist

positive matrix 𝑅
𝑖
> 0, scalars ℎ

1
> 0 and ℎ

2
> 0, and

𝐸 {𝑥
𝑇
(𝑘
1
) 𝑅
𝑖
𝑥 (𝑘
1
)}

≤ ℎ
1
⇒ 𝐸{𝑥

𝑇
(𝑘
2
) 𝑅
𝑖
𝑥 (𝑘
2
)}

≤ ℎ
2
, 𝑘
1
∈ {−ℎ, . . . , 0} , 𝑘

2
∈ {1, 2, . . . , 𝑇} .

(11)

Definition 3 (see [13]). Given a time constant 𝑇 > 0, the MJS

𝑥 (𝑘 + 1) = 𝐴
𝜃1
(𝑟
𝑘
) 𝑥 (𝑘) + 𝐴

𝜃2
(𝑟
𝑘
) 𝑥 (𝑘 − 𝑑) + 𝐵

𝜃2
(𝑟
𝑘
) 𝑤
𝑘

(12)

are said to be finite-time bounded (FTB) with respect to
(ℎ1 ℎ2 𝑇 𝑅

𝑖), if there exist positive matrix 𝑅
𝑖
> 0 and

scalars ℎ
1
> 0 and ℎ

2
> 0, and satisfied (11).

In general, FTB and FTS are different. If there is external
disturbance in systems, the concept of FTB is used. Con-
versely, FTS is addressed.

The objective of this paper is to design a delayed feedback
controller which satisfies the given attenuation level of system
(1). The design procedure is given in the next section.

Definition 4. The time-delay MJS (1) is said to be finite-
time 𝐿

2
-𝐿
∞

control with respect to (ℎ1 ℎ2 𝑇 𝑅
𝑖) and

performance 𝛾, where 𝑅
𝑖
> 0, 𝛾 > 0, ℎ

1
> 0, and ℎ

2
> 0,

if the time-delay MJS (1) is stochastically FTB and under the
zero-initial condition the output 𝑧(𝑘) satisfies

‖𝑧 (𝑘)‖∞ < 𝛾‖𝑤 (𝑘)‖2 (13)

for all nonzero 𝑤(𝑘) ∈ 𝐿
2
[0,∞) subject to the zero-initial

condition.

3. Main Results

In this section, firstly stochastic FTB analysis of nominal
time-delay MJS (1) is provided. Then, these results will be
extended to the MJS (1) with actuator saturation and uncer-
tain transition probability. LMI conditions are established.

Lemma 5. System (1) with 𝜎(𝑢
𝑘
) ≡ 0 is stochastic FTB with

respect to (ℎ1 ℎ2 𝑑 𝑅
𝑖
𝑁); if for scalars 𝜍 ≥ 1, ℎ

1
> 0,

and ℎ
2
> 0, there exist symmetric matrices 𝑅

𝑖
> 0 (𝑖 ∈ Ω)
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and𝑄
𝑖
> 0 (𝑖 ∈ Ω), such that the following matrix inequalities

hold:

Λ =

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖
− 𝐼

]
]
]
]
]

]

< 0

(14)

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) , (15)

where 𝑃
𝑖
= ∑
𝑆

𝑗=1
𝜋V𝑖𝑗𝑃𝑗.

Proof. Choose the following Lyapunov functional:

𝑉 (𝑘) = 𝑥
𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑘−1

∑

𝑛=𝑘−𝑑

𝑥
𝑇
(𝑛) 𝑄𝑥 (𝑛) . (16)

The proof of Lemma 5 is divided into two parts. In the first
part, the following inequality is obtained:

𝐸 {𝑉 (𝑘)} < 𝜍
𝑘
𝐸 {𝑉 (0)} + 𝜍

𝑘
𝑤
𝑇
(𝑘) 𝑤 (𝑘) . (17)

Then, we compute

Δ𝑉 (𝑘) = 𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘)

=

𝑆

∑

𝑗=1

𝜋V𝑖𝑗𝑥
𝑇
(𝑘 + 1) 𝑃

𝑗
𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑆

∑

𝑗=1

𝜋V𝑖𝑗𝑥
𝑇
(𝑘) 𝑄𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑑)𝑄𝑥 (𝑘 − 𝑑)

= 𝜗
𝑇
(𝑘)

[
[
[
[
[

[

𝐴
𝑇

𝜃1𝑖
𝑃
𝑖
𝐴
𝜃1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃1𝑖

−𝑄 + 𝐴
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃2𝑖

∗

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃1𝑖

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐴
𝜃2𝑖

𝐵
𝑇

𝜃2𝑖
𝑃
𝑖
𝐵
𝜃2𝑖

]
]
]
]
]

]

𝜗 (𝑘)

= 𝜗
𝑇
(𝑘)

[
[
[
[
[

[

(

𝐿

∑

𝑙=1

𝜃
𝑙
)(

𝐿

∑

𝑙=1

𝜃
𝑙
)

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖

]
]
]
]
]

]

]
]
]
]
]

]

𝜗 (𝑘) ,

(18)

where 𝜗(𝑘) = [𝑥(𝑘) 𝑥(𝑘 − 𝑑) 𝑤(𝑘)].
Note condition (14); it follows that

𝐸 {𝑉 (𝑘 + 1)} − 𝑉 (𝑘) < (𝜍 − 1)𝑉 (𝑘)

+ 𝑤
𝑇
(𝑘) 𝑤 (𝑘) , 𝜍 ≥ 1.

(19)

Therefore, we obtain that

𝐸 {𝑉 (𝑘 + 1)} < 𝜍𝑉 (𝑘) + 𝑤
𝑇
(𝑘) 𝑤 (𝑘) . (20)

That is,

𝐸 {𝑉 (𝑥 (1) , 𝑟 (1))} < 𝜍𝑉 (𝑥 (0) , 𝑟 (0)) + 𝑤
𝑇

(𝑘) 𝑤 (𝑘)

...
...

...
𝐸 {𝑉 (𝑥 (𝑘 + 1) , 𝑟 (𝑘 + 1))} < 𝜍𝐸 {𝑉 (𝑥 (𝑘) , 𝑟 (𝑘))} + 𝑤

𝑇

(𝑘) 𝑤 (𝑘) .

(21)

By recursive,

𝐸 {𝑉 (𝑘)} < 𝜍
𝑘
𝐸 {𝑉 (0)} + 𝐸{

𝑘−1

∑

𝜏=0

𝜍
𝑘−𝜏−1

𝑤
𝑇
(𝜏) 𝑤 (𝜏)} . (22)

Then the inequality in (17) is obtained.

In the second part, stochastic FTB is established:

𝐸 {𝑉 (𝑘)} = 𝐸{𝑥
𝑇
(𝑘) 𝑃
𝑖
𝑥 (𝑘) +

𝑘−1

∑

𝑛=𝑘−𝑑

𝑥
𝑇
(𝑛) 𝑄𝑥 (𝑛)}

≥ 𝜆min (�̃�𝑖) 𝐸 {𝑥
𝑇
(𝑘) 𝑅𝑥 (𝑘)} .

(23)

On the other hand,

𝜍
𝑘
𝐸 {𝑉 (0)} ≤ 𝜍

𝑘
[𝜆max (�̃�𝑟(0)) 𝐸 {𝑥

𝑇
(0) 𝑅𝑥 (0)}

+𝜆max (𝑄) 𝐸{
−1

∑

𝑛=−𝑑

𝑥
𝑇
(𝑛) 𝑅𝑥 (𝑛)}] .

(24)

From Definition 2, we have

𝜍
𝑘
𝐸 {𝑉 (0)} ≤ 𝜍

𝑘
{[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑]} ℎ1 + 𝜍

𝑘
.

(25)
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By (23) and (25), we know

𝐸 {𝑥
𝑇
(𝑘) 𝑅𝑥 (𝑘)}

≤

𝜍
𝑘
{[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] + 1} ℎ1

𝜆min (�̃�𝑖)

≤ ℎ
2
.

(26)

This completes the proof.

Theorem 6. System (1) is finite-time 𝐿
2
-𝐿
∞

control and
satisfies the given lever 𝛾 with respect to (ℎ1 ℎ2 𝑑 𝑅

𝑖
𝑁); if

for scalars 𝜍 ≥ 1, ℎ
1
> 0, and ℎ

2
> 0, there exist symmetric

matrices 𝑅
𝑖
> 0 (𝑖 ∈ Ω) and 𝑄 > 0, such that the following

matrix inequalities hold:

Θ
1

=

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖
𝑃
𝑖
𝐴
𝑙1𝑖
− 𝑃
𝑖
+ 𝑄 ∗ ∗

𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

−𝑄 + 𝐴
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

∗

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙1𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐴
𝑙2𝑖

𝐵
𝑇

𝑙2𝑖
𝑃
𝑖
𝐵
𝑙2𝑖
− 𝐼

]
]
]
]
]

]

< 0,

(27)

Θ
2
=

[
[
[

[

−𝑃
𝑖
∗ ∗ ∗

0 −𝑄 ∗ ∗

0 0 −𝐼 ∗

𝐶
𝑙1𝑘

𝐶
𝑙2𝑘

𝐷
𝑙2𝑘

−𝛾
2
𝐼

]
]
]

]

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) .

(28)

Proof. System (1) with 𝜎(𝑢
𝑘
) ≡ 0 is FTB according to

Lemma 5 and inequality (27).
Subsequently, to establish the energy-to-peak perfor-

mance for the system (1), assume that the initial values for
the plant are zeros and consider the following function:

ℵ := 𝐸 {𝑉 (𝑘)} −

𝑘−1

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
. (29)

For any nonzero𝑤
𝑘
∈ 𝑙
2
[0,∞) and 𝑘 > 0, it follows from (18)

that

ℵ := 𝐸{

𝑘−1

∑

𝑖=0

Δ𝑉 (𝑖) −

𝑘−1

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
}

= 𝜗
𝑇
(𝑘)Θ
1
𝜗 (𝑘) .

(30)

It follows from (27) that 𝐸{𝑉(𝑘)} < ∑𝑘−1
𝑖=0
𝑤
𝑇

𝑖
𝑤
𝑖
.

For all the time instants 𝑘 > 0, the expectation of the
output can be evaluated as

𝐸 {𝑧
𝑇

𝑘
𝑧
𝑘
} = 𝐸 {𝜗

𝑇
(𝑘) [𝐶𝜃1𝑘 𝐶𝜃2𝑘 𝐷𝜃1𝑘]

𝑇

× [𝐶𝜃1𝑘 𝐶𝜃2𝑘 𝐷𝜃1𝑘] 𝜗 (𝐾)}

< 𝐸

{

{

{

𝛾
2
𝜗
𝑇
(𝑘) [

[

𝑃
𝑖
0 0

∗ 𝑄
𝑖
0

∗ ∗ 𝐼

]

]

𝜗 (𝑘)

}

}

}

< 𝛾
2
𝐸{

𝑘

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
} < 𝛾

2
𝐸{

∞

∑

𝑖=0

𝑤
𝑇

𝑖
𝑤
𝑖
}

= 𝛾
2
‖𝑤‖
2

2
.

(31)

Applying Definition 4, the statement of Theorem 6 is true.

Theorem 7. Consider the uncertain time-delay system (1);
there exists a state feedback controller 𝜎(𝐾

𝑖
𝑥(𝑡)) such that the

uncertain time-delay system (1) is finite-time 𝐿
2
-𝐿
∞

control
with respect to (ℎ1 ℎ2 𝑑 𝑅

𝑖
𝑁), if the following LMIs hold:

Λ
1
=

[
[
[
[
[
[
[
[
[

[

−𝑋
𝑖
0 0 𝜀

14
⋅ ⋅ ⋅ 𝜀
16
𝑋
𝑖

∗ −𝑅 0 𝜀
24
⋅ ⋅ ⋅ 𝜀
26

0

∗ ∗ −𝐼 𝜀
34
⋅ ⋅ ⋅ 𝜀
36

0

∗ ∗ ∗ 𝜀
44
⋅ ⋅ ⋅ 0 0

∗ ∗ ∗ ∗ d 0 0

∗ ∗ ∗ ∗ ∗ 𝜀
66

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅

]
]
]
]
]
]
]
]
]

]

< 0, (32)

Λ
2
=

[
[
[

[

−𝑃
𝑖
∗ ∗ ∗

0 −𝑄 ∗ ∗

0 0 −𝐼 ∗

𝐶
𝑙1𝑘

𝐶
𝑙2𝑘

𝐷
𝑙2𝑘

−𝛾
2
𝐼

]
]
]

]

< 0,

𝜍
𝑘
[𝜆max (�̃�𝑟(0)) + 𝜆max (𝑄) ⋅ 𝑑] 𝑐1 ≤ 𝑐2 ⋅ 𝜆min (�̃�𝑖) ,

(33)

where 𝜀
14
= √𝜋𝑖1(𝐴 𝑙1𝑖 +𝐵𝑙1𝑖(𝑀𝑟𝑌𝑖 +𝑀

−

𝑟
𝑍
𝑖
), 𝜀
24
= √𝜋𝑖1𝑅𝐴 𝑙2𝑖,

𝜀
34
= √𝜋𝑖1𝑅𝐵𝑙2𝑖, 𝜀44 = −𝑋1, 𝜀16 = √𝜋𝑖𝑆(𝐴 𝑙1𝑖 + 𝐵𝑙1𝑖(𝑀𝑟𝑌𝑖 +

𝑀
−

𝑟
𝑍
𝑖
)
𝑖
), 𝜀
26
= √𝜋𝑖𝑆𝑅𝐴 𝑙2𝑖, 𝜀36 = √𝜋𝑖𝑆𝑅𝐵𝑙2𝑖, and 𝜀66 = −𝑋𝑆.

The state feedback controller is designed as 𝜎(𝐾
𝑖
𝑥(𝑡)) =

∑
2
𝑚

𝑟=1
𝜁
𝑟
(𝑀
𝑟
𝐾
𝑖
+𝑀
−

𝑟
𝐻
𝑖
)𝑥(𝑡).

Proof. Noting condition (27) and 𝑃
𝑖
= Γ
𝑖
𝜅Γ
𝑇

𝑖
, where 𝜅 =

diag{𝑃
1
, . . . , 𝑃

𝑆
}, Γ
𝑖
= [√𝑝𝑖1𝐼, . . . , √𝑝𝑖𝑆𝐼] thus Θ1 can be

rewritten as

Θ
1
= [

[

−𝑃
𝑖
+ 𝑄 ∗ ∗

0 −𝑄 ∗

0 0 −𝐼

]

]

+

[
[
[
[
[

[

𝐴
𝑇

𝑙1𝑖

𝐴
𝑇

𝑙2𝑖

𝐵
𝑇

𝑙2𝑖

]
]
]
]
]

]

𝜅 [𝐴 𝑙1𝑖 𝐴 𝑙2𝑖 𝐵𝑙2𝑖] < 0.

(34)
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Using Schur complement, it can be obtained

[
[
[
[
[
[
[
[

[

−𝑃 + 𝑄 0 0 𝐴
𝑇

𝑙1𝑖
Γ
𝑖

∗ −𝑄 0 𝐴
𝑇

𝑙2𝑖
Γ
𝑖

∗ ∗ −𝐼 𝐵
𝑇

𝑙2𝑖
Γ
𝑖

∗ ∗ ∗ −𝜅
−1

]
]
]
]
]
]
]
]

]

< 0. (35)

Let 𝑋
𝑖
= 𝑃
−1

𝑖
, 𝑅 = 𝑄−1, 𝑌

𝑖
= 𝐾
𝑖
𝑋
𝑖
, and 𝑍

𝑖
= 𝐻
𝑖
𝑋
𝑖
. Pre-

and postmultiplying (35) by diag{𝑋
𝑖
, 𝑅, 𝐼, 𝐼} and then using

Schur complement, then inequality (32) is obtained. Implying
Theorem 6, we can conclude that the corresponding closed-
loop system is finite-time 𝐿

2
-𝐿
∞

control. This completes the
proof.

4. Numeral Example

To illustrate the proposed results, a numerical example is
considered for finite-time 𝐿

2
-𝐿
∞

control. The system is
described by (1) and assumed to have two modes; Ω = {1, 2}.
The mode switching is governed by a Markov chain that has
the following transition probability matrix:

𝑃 = [
0.2 0.8

0.4 0.6
] . (36)

The system matrices are as follows:

𝐴
111
= 𝐴
211
= [

0.3 0.102

−0.663 0.3
] ,

𝐴
112
= 𝐴
212
= [

0.8 0.0539

−0.8655 0.8
] ,

𝐴
121
= 𝐴
221
= [

0.5 0.06

−0.843 0.5
] ,

𝐴
122
= 𝐴
222
= [

0.9 0.0766

−0.7661 0.9
] ,

𝐵
111
= 𝐵
211
= [
0.0005

0.0539
] ,

𝐵
212
= 𝐵
112
= [

0.005

0.1078
] ,

𝐵
121
= 𝐵
221
= [
0.0045

0.0539
] ,

𝐵
122
= 𝐵
222
= [
0.0045

0.1078
] ,

𝐶
111
= 𝐶
211
= 𝐶
112
= 𝐶
212
= [0 0.2] ,

𝐶
121
= 𝐶
221
= 𝐶
122
= 𝐶
222
= [0.3 0] ,

𝐷
111
= 𝐷
211
= 𝐷
112
= 𝐷
212
= 0.3.

(37)

Assume 𝐿
2
-𝐿
∞
performance of level 𝛾 = 0.3; by applying

Theorem 7, we can explicitly compute the optimally achiev-
able closed-loop 𝐿

2
-𝐿
∞

performance 𝛾 from Theorem 7 as

𝛾 = 0.2056. Response of the system state is depicted in Figures
2 and 3.

5. Conclusion

The problem of finite-time 𝐿
2
-𝐿
∞

control for MJS has
been studied. By using the Lyapunov functional approach,
a sufficient condition is derived such that the closed-loop
MJS are stochastic FTB and satisfy the given level. The
controller can be obtained by using the exiting LMI optimiza-
tion techniques. Finally, numerical and simulation results
demonstrate the effectiveness of the results of the paper.
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