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Synchronization is the strongest form of collective phenomena in complex systems of interacting components. In this paper, the
problem of cluster projective synchronization of complex networks with fractional-order nodes based on the fractional-order
differential equation stability theory is investigated. Only the nodes in one community which have direct connections to the
nodes in other communities are controlled. Some sufficient synchronization conditions are derived via pinning control. Numerical
simulations are provided to show the effectiveness of the theoretical results.

1. Introduction

In the past few decades, complex networks behaviors have
attracted a great deal of attention in a variety of fields due
to their wide and potential applications. Typical complex
networks include the Internet, the World Wide Web, neural
networks, and so on [1–5]. Synchronization, as a typical
collective dynamical behavior of coupled dynamical sys-
tems, has been widely studied. Until now, several types of
synchronization have been investigated, such as complete
synchronization [6], phase synchronization [7], and general-
ized synchronization [8]. Projective synchronization (PS) [9],
which was first proposed by Mainieri and Rehacek that the
drive state vector and the response state vectors synchronize
up to a constant scaling factor. The proportional feature
of PS can be employed to extend binary digital to M-nary
communication for achieving fast communication. Recently,
Li and Chen [10] discussed projective synchronization of
the random networks. After that, the authors studied the
projective synchronization of time-delayed chaotic systems
in a driven-response complex network. In [11], they investi-
gated the projective and lag synchronization between general
complex networks via impulsive control.

In particular, in many social and biological networks,
which can be divided naturally into communities, nodes in
the same community often have the same type of function.

Cluster synchronization is an exact phrase that describes
this important phenomenon [12]. Cluster synchronization is
achieved when the dynamical nodes reach complete synchro-
nization in each subgroup called cluster but no synchroniza-
tion among the different clusters. Many results have been
available for cluster synchronization of complex networks.
For example, Ayati and Khaki-Sedigh studied cluster syn-
chronization of a connected chaotic network and a star-like
complex network in [13]. Wang and Song [14] investigated
the cluster synchronization problem for linearly coupled
networks. More recently, Hu et al. [15] studied the cluster
synchronization for directed complex dynamical networks
via pinning control. In [16, 17], cluster synchronization in
community networks is studied with integer-order system
nodes, and several sufficient conditions for synchronization
are obtained analytically.

On the other hand, as we know, the well-studied in-
teger-order complex networks are the special cases of the
fractional-order ones. It has been revealed that, in inter-
disciplinary fields, various systems have been found to
exhibit fractional dynamics. For example, viscoelasticity,
dielectric polarization, quantum evolution of complex sys-
tem, fractional kinetics, and anomalous attenuation can be
described by fractional differential equations. To the best of
our knowledge, most studies to date have been concerned
with integer-order complex networks, and the corresponding
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research on fractional-order complex networks has received
very little attention despite its practical significance [18–23].
Therefore, it is of great interest to investigate the synchroniza-
tion in complex colored networks consisting of nodes with
fractional-order dynamics.

Motivated by the above discussions, the cluster projec-
tive synchronization in complex dynamical networks with
fractional-order dynamical nodes by pinning control is inves-
tigated in this paper. This method decreases the control cost
to some extent by reducing the number of nodes.The pinning
controllers are designed according to the nodes property,
respectively. We derive some simple and useful criteria for
cluster synchronization for any initial values through an
effective control scheme.

This paper is organized as follows. In Section 2, the
network model of fractional-order network and mathemat-
ical preliminaries is introduced. Section 3 is devoted to
investigating the cluster projective synchronization of the
complex coupled networks. In Section 4, illustrative examples
are shown to support the theory results. Conclusions are
drawn in Section 5.

2. Mathematical Preliminaries and Model for
Community Networks

2.1. Fractional-Order Derivative. Fractional calculus is a gen-
eralization of integration and differentiation to a noninteger-
order integrodifferential operator

𝑎
𝐷
𝑞

𝑡
which is defined by

𝑎
𝐷
𝑞

𝑡
=

{{{{{

{{{{{

{

𝑑
𝑞

𝑑𝑡𝑞
𝑅 (𝑞) > 0

1 𝑅 (𝑞) = 0

∫

𝑡

𝑎

(𝑑𝜏)
−𝑞

𝑅 (𝑞) < 0,

(1)

where 𝑞 is the fractional order which can be a complex
number and 𝑅(𝑞) is the real part of 𝑞. The numbers 𝑎 and
𝑡 are the limits of the operator.There are many definitions for
fractional differential equations. Three most frequently used
definitions for general fractional differential equations are
the Grunwald-Letnikov definition, the Riemann-Liouville
definition, and the Caputo definitions.

The Grunwald-Letnikov definition (GL) derivative with
fractional-order 𝑞 is described by

GL
𝑎
𝐷
𝑞

𝑡
𝑓 (𝑡) = lim

ℎ→0

𝑓
(𝑞)

ℎ

[(𝑡−𝑎)/ℎ]

∑

𝑗=0

(−1)
𝑗

[
𝑞

𝑗
]𝑓 (𝑡 − 𝑗ℎ) , (2)

where the symbol [⋅]means the integer part.
The Riemann-Liouville (RL) definition of fractional de-

rivatives is given by

GL
𝑎
𝐷
𝑞

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑞)

× ∫

𝑡

𝑎

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝑞−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝑞 < 𝑛,

(3)

where Γ(⋅) is the gamma function.

The Caputo (𝐶) fractional derivative is defined as follows:

𝐶

𝑎
𝐷
𝑎

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

𝑎

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝑞−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝑞 < 𝑛.

(4)

It is well known that the initial conditions for the fractional
differential equations with Caputo derivatives take on the
same form as those for the integer-order ones, which is very
suitable for practical problems. Therefore, we will use the
Caputo definition for the fractional derivatives in this paper.

2.2. Model Description for Community Networks. Consider
that the complex networks considered in this paper consist
of 𝑁 nodes and 𝑚 communities, where 2 ≤ 𝑚 ≤ 𝑁. Let
{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
} denote𝑚 communities of complex networks

and ∪
𝑚

𝑖=1
𝐶
𝑖
= {1, 2, . . . , 𝑁}. Without loss of generality, let

𝐶
1
= {1, 2, . . . , 𝑟

1
},𝐶
1
= {𝑟
1
+1, . . . , 𝑟

1
+𝑟
2
}, . . . , 𝐶

𝑚
= {𝑟
1
+⋅ ⋅ ⋅+

𝑟
𝑚−1

+1, . . . , 𝑟
1
+⋅ ⋅ ⋅+𝑟

𝑚−1
+𝑟
𝑚
}with 𝑟+⋅ ⋅ ⋅+𝑟

𝑚−1
+𝑟
𝑚
= 𝑁. If

node 𝑖 belongs to the 𝑗th community then let 𝛿
𝑖
= 𝑗. Denote

by 𝑈
𝛿𝑖
the set of all nodes in the 𝛿

𝑖
th cluster. �̃�

𝛿𝑖
represents

all the nodes in the 𝛿
𝑖
cluster, which have direct connections

with the nodes in other communities.
A complex network consisting of 𝑁 coupled identical

nodes, with each node being a 𝑛-dimensional fractional-
order dynamical system, can be described by

𝐷
𝑞

∗
𝑥
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑖=1

𝑐
𝑖𝑗
Γ𝑥
𝑗
(𝑡) 𝑖 = 1, 2, . . . , 𝑁, (5)

where 0 < 𝑞 < 1 and 𝑥
𝑖
= (𝑥
𝑖1,
𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
)
𝑇

∈ 𝑅
𝑛 is the state

variable of the node 𝑖.𝑓 : 𝑅
𝑛

→ 𝑅
𝑛 describes the dynamics of

nodes and is differential and capable of performing abundant
dynamical behaviors. 𝜀 > 0 is the coupling strength and Γ =

diag(𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
) is the inner-coupling matrix. The matrix

𝐶 = (𝑐
𝑖𝑗
)
𝑁×𝑁

is the coupling configuration diffusive matrix,
which is defined as follows: if there is a connection between
nodes 𝑖 and 𝑗 is connected, then 𝑐

𝑖𝑗
= 𝑐
𝑗𝑖
> 0 (𝑖 ̸= 𝑗); otherwise

𝑐
𝑖𝑗
= 𝑐
𝑗𝑖
= 0 (𝑖 ̸= 𝑗); let 𝑐

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
𝑐
𝑖𝑗
. Further, assume that

there are no isolated clusters in the network and the network
is connected, so the coupling configuration 𝐶 is symmetrical
and irreducible. 𝑢

𝑖
∈ 𝑅
𝑛 are controllers to be designed later.

For simplicity of further discussion, decompose the function
𝑓(𝑥
𝑖
(𝑡)) into two parts, 𝐴(𝑥

𝑖
(𝑡)) + 𝐹(𝑥

𝑖
(𝑡)), where 𝐴 is an 𝑛 ×

𝑛 constant matrix and 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 are nonlinear vector-

valued functions.
Then the controlled network can be rewritten as

𝐷
𝑞

∗
𝑥
𝑖
(𝑡) = 𝐴 (𝑥

𝑖
(𝑡)) + 𝐹 (𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥
𝑗
(𝑡) + 𝑢

𝑖

𝑖 = 1, 2, . . . , 𝑁.

(6)

Definition 1. Let {1, 2, . . . , 𝑁} be the𝑁 nodes of the networks
and let {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
} be the 𝑚 communities, respectively.
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A network with 𝑚 communities is said to realize cluster
projective synchronization if

lim
𝑡→∞


𝑥
𝑖
−𝑀𝑥

𝑗


= 0, ∀𝑖, 𝑗 ∈ 𝐶

𝑛
, 𝑛 = 1, 2, . . . , 𝑚,

lim
𝑡→∞


𝑥
𝑖
−𝑀𝑥
𝑗


̸= 0, 𝑖 ∈ 𝐶

𝑛1
, 𝑗 ∈ 𝐶

𝑛2
, 𝑛
1

̸= 𝑛
2
= 1, 2, . . . , 𝑚.

(7)

Define the error variables

𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑀𝑆

𝛿𝑖
(𝑖 = 1, 2, . . . , 𝑁) , (8)

where 𝑀 = diag(𝜆, 𝜆, . . . , 𝜆) is the scaling matrix and 𝑆
𝛿𝑖
(𝑡)

is a solution of an isolated node in the 𝛿
𝑖
th community; we

assume that the smooth goal dynamics can be described by

𝐷
𝑞

∗
𝑆
𝛿𝑖
(𝑡) = 𝐵𝑆

𝛿𝑖
(𝑡) + 𝑔 (𝑆

𝛿𝑖
(𝑡)) , (9)

where 𝑆
𝛿𝑖
(𝑡)may be an equilibrium point, a periodic orbit, or

even a chaotic orbit. Where 𝐵 ∈ 𝑅
𝑛×𝑛 is a constant matrix,

𝑔(𝑠(𝑡)) is the nonlinear part of the isolated reference node
dynamics, respectively.

Remark 2. It is easy to see that the definition of the cluster
projective synchronization encompasses the cluster synchro-
nization and cluster antisynchronization when the scaling
matrix is selected to take the corresponding specific values,
respectively.

Throughout this paper, the following assumption and
lemma are needed to prove our main results.

Lemma 3 (see [22]). For a given autonomous fractional-order
linear system

𝐷
𝑞

∗
𝑥 = 𝐴𝑥, 𝑤𝑖𝑡ℎ 𝑥 (0) = 𝑥

0
, (10)

where 𝑥 ∈ 𝑅
𝑛 is the state vector, 𝐴 ∈ 𝑅

𝑛×𝑛 is a constant matrix
with eigenvalues 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
, the fractional order 𝑞 ∈ (0, 1),

and system (9) is asymptotically stable if and only if | arg(𝜆
𝑖
)| >

𝑞𝜋/2, 𝑖 = 1, 2, . . . , 𝑛.

Lemma 4 (see [24]). Assume𝐴 ∈ 𝑅
𝑁×𝑁 satisfies the following

conditions:

(1) 𝑎
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗), 𝑎

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
, 𝑖, 𝑗, . . . , 𝑁,

(2) 𝐴 is irreducible.

Then (i) real parts of the eigenvalues of 𝐴 are all negatives
except an eigenvalue 0 with multiplicity 1; (ii) 𝐴 has the
right eigenvector (1, 1, . . . , 1)𝑇corresponding to the eigenvalue
0; (iii) let 𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑁
)
𝑇 be the left eigenvector of 𝐴

corresponding to the eigenvalue 0; then we can let 𝜉
𝑖
> 0 hold

for all 𝑖 = 1, 2, . . . , 𝑁.

Lemma 5 (see [24]). If the matrix 𝐶 is defined as in Lemma 4
and diagonal matrix 𝐾 = diag(𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
) with 𝑘

𝑖
≥ 0 (𝑖 =

1, 2, . . . , 𝑁), then all eigenvalues of the matrix 𝐶 − 𝐾 are
negative.

3. Main Results

In this section, we present a scheme to make a complex
network achieve cluster projective synchronization. First of
all, we propose the concept of interlink and intralink nodes.
Node 𝑖 is said to be the interlink node if 𝑖 belongs to �̃�

𝛿𝑖
, while

𝑖 is said to be the intralink node if 𝑖 belongs to 𝑈
𝛿𝑖
− �̃�
𝛿𝑖
.

According to the diffusive coupling condition of matrix
𝐴, we have

𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑆
𝛿𝑖
(𝑡) = 0, 𝑈

𝛿𝑖
− �̃�
𝛿𝑖
. (11)

So the error dynamical system is described as follows:

𝐷
𝑞

∗
𝑒
𝑖
(𝑡) = 𝐴𝑒

𝑖
(𝑡) + 𝐹 (𝑥

𝑖
(𝑡)) + 𝑀 (𝐴 − 𝐵) 𝑆

𝛿𝑖
(𝑡)

− 𝑀𝑔 (𝑆
𝛿𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑒
𝑗
(𝑡) + 𝑢

𝑖
(𝑡) .

(12)

In order to make the network achieve cluster synchroniza-
tion, the control input 𝑢

𝑖
is designed as follows:

𝑢
𝑖

=

{{

{{

{

−𝐹 (𝑥
𝑖
(𝑡)) − 𝑀 (𝐴 − 𝐵) 𝑆

𝛿𝑖
+𝑀𝑔(𝑆

𝛿𝑖
(𝑡)) − 𝑘

𝑖
𝑒
𝑖
(𝑡)

𝑖 ∈ �̃�
𝛿𝑖
,

0 𝑖 ∈ 𝑈
𝛿𝑖
− �̃�
𝛿𝑖
,

(13)

where 𝑘
𝑖
> 0 is the feedback control gain, which can adjust

the synchronization speed.

Theorem 6. For a certain fractional-order 𝑞, the fractional-
order complex network (6) can achieve the cluster projective
synchronization with controller (13) if

arg (𝐴 + 𝜆
𝑖
𝜀Γ)

 >
𝑞𝜋

2
, 𝑖 = 1, 2, . . . , 𝑁. (14)

Proof. Combining (6) and (13), one has

𝐷
𝑞

∗
𝑒
𝑖
(𝑡) = (𝐴𝑒

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑖=1

𝑐
𝑖𝑗
Γ𝑒
𝑗
(𝑡) − 𝑘

𝑖
𝑒
𝑖
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁.

(15)

Denote𝐾 = diag(𝑘
1
, 𝑘
2
, , . . . , 𝑘

𝑁
) with 𝑘

𝑖
= 0 for all𝑈

𝛿𝑖
− �̃�
𝛿𝑖
,

𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)) ∈ 𝑅

𝑛×𝑁; thus one can obtain the
following equation:

𝐷
𝑞

∗
𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝜀 (𝐶 − 𝐾) 𝑒 (𝑡) Γ. (16)

Since 𝐶 is an irreducible matrix and 𝐾 = diag(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑁
)

with 𝑘
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑁), according to Lemmas 4 and 5,

there exists unitary 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
) such that

(𝐶 − 𝐾) 𝜉 = 𝜉Λ, (17)

where Λ = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
) and 𝜆

𝑖
is the eigenvalue of

matrix𝐶−𝐾 and satisfies 0 > 𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑁
= 𝜆min(𝐶−

𝐾).
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It follows from (16) and (17) that

𝐷
𝑞

∗
𝑒 (𝑡) = (𝐴𝑒 (𝑡)) 𝜉 + 𝜀Γ𝑒 (𝑡) 𝜉Λ. (18)

Denote 𝛽(𝑡) = 𝑒(𝑡)𝜉, 𝛽(𝑡) = (𝛽
1
(𝑡), 𝛽
2
(𝑡), . . . , 𝛽

𝑁
(𝑡)); thus

𝐷
𝑞

∗
𝛽 (𝑡) = 𝐴𝛽 (𝑡) + 𝜀Γ𝛽 (𝑡) Λ; (19)

that is,

𝐷
𝑞

∗
𝛽
𝑖
(𝑡) = (𝐴 + 𝜆

𝑖
𝜀Γ) 𝛽
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁. (20)

According to Lemma 3, system (19) is asymptotically stable
if and only if all the eigenvalues of 𝐴 + 𝜆

𝑖
𝜀Γ satisfy | arg(𝐴 +

𝜆
𝑖
𝜀Γ)| > 𝑞𝜋/2, which implies that system (6) can achieve the

cluster projective synchronization.

Based on Theorem 6, a corollary can be easily derived as
follows.

Corollary 7. If matrix 𝐶 − 𝐾 is irreducible, for a certain
fractional-order 𝑞, the fractional-order complex network (6)
can achieve cluster projective synchronization via controller
(13) if


arg (𝜆

𝑖𝑘
(𝐴 + 𝜆

𝑖
𝜀Γ))


>
𝑞𝜋

2
, 𝑘 = 1, 2, . . . , 𝑛,

𝑖 = 1, 2, . . . , 𝑁,

(21)

where 𝜆
𝑖𝑘
(⋅) is the eigenvalue of the 𝑖𝑡ℎ node matrix 𝐴 + 𝜆

𝑖
𝜀Γ.

4. Numerical Example

In what follows, we take a representative example to demon-
strate the effectiveness of the proposed approach for cluster
projective synchronization.

Example 1. We arbitrarily set the network size as 𝑁 = 16.
Suppose this network consists of three communities.The size
of three communities is 𝑁

1
= 5, 𝑁

2
= 5, and 𝑁

3
= 6. The

local dynamics of nodes are described by Lorenz system.The
fractional-order Lorenz system is given by

𝐷
𝑞

∗
𝑥
1
= 𝑎 (𝑥

2
− 𝑥
1
) ,

𝐷
𝑞

∗
𝑥
2
= 𝑏𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3
,

𝐷
𝑞

∗
𝑥
3
= 𝑥
1
𝑥
2
− 𝑐𝑥
3
,

(22)

where 𝑎 = 10, 𝑏 = 28, 𝑐 = 8/3, parameters for which
the system exhibits chaotic behavior. The chaotic attractor is
depicted by Figure 1.

Without loss of generality, we suppose that 𝐶
1
= {1, 2,

3, 4, 5}, 𝐶
2
= {6, 7, 8, 9, 10}, and 𝐶

3
= {11, 12, 13, 14, 15, 16}.
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3

Figure 1: The chaotic orbit of the Lorenz system.

0 1 2 3 4 5

1.4

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

t

E
(t
)

Figure 2: Time evolution of synchronization error 𝐸(𝑡).

In the following simulations, inner-coupling matrix Γ is
chosen as identitymatrix.The following quantities are used to
investigate the process of cluster projective synchronization:

𝐸 (𝑡) =

𝑁

∑

𝑖=1


𝑥
𝑖
(𝑡) − 𝑀𝑆

𝛿𝑖
(𝑡)

,

𝐸
12
(𝑡) =

𝑁

∑

𝑖=1

𝑥𝑢 (𝑡) − 𝑥V (𝑡)
 , 𝑢 ∈ 𝐶

1
, V ∈ 𝐶

2
,

𝐸
13
(𝑡) =

𝑥𝑢 (𝑡) − 𝑥V (𝑡)
 , 𝑢 ∈ 𝐶

1
, V ∈ 𝐶

3
,

𝐸
23
(𝑡) =

𝑥𝑢 (𝑡) − 𝑥V (𝑡)
 , 𝑢 ∈ 𝐶

2
, V ∈ 𝐶

3
,

(23)

where 𝐸(𝑡) is the total error of cluster projective synchro-
nization for all communities and𝐸

12
(𝑡), 𝐸
13
(𝑡), 𝐸
23
(𝑡) are the

errors between two different communities. 𝑆 is the states of
Lorenz system. All the initial conditions are chosen randomly
in [0, 2].The results of simulation can be seen in Figures 2 and
3.

As can be seen from Figure 2, the synchronization errors
𝐸(𝑡) converge to zero. Figure 3 shows that the synchroniza-
tion errors 𝐸

12
(𝑡), 𝐸
13
(𝑡), 𝐸
23
(𝑡) do not converge to zero as
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Figure 3: Time evolution of synchronization error 𝐸(𝑡).

𝑡 → ∞.That is to say that the nodes in the same cluster reach
synchronization and there is no synchronization among
the different clusters, which implies that the desired cluster
projective synchronization is achieved.

5. Conclusions

In this paper, we have investigated the cluster projective
synchronization of complex networkswith community struc-
ture. Based on the stability theory of the fractional-order
differential system, the controllers are designed differently for
the nodes in one community, which have direct connections
to the nodes in the other communities and the nodes without
direct connections to the nodes in the other communities.
Several sufficient conditions for the network to achieve
cluster projective synchronization are derived. Finally, a
representative numerical example is provided to illustrate the
effectiveness of the derived theoretical results.
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