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We investigate the existence of solutions for a 𝑘-dimensional system of fractional finite difference equations by using the
Kranoselskii’s fixed point theorem. We present an example in order to illustrate our results.

1. Introduction

The fractional calculus revealed during the last decade its
huge potential applications in many branches of science and
engineering (see, e.g., [1–9]). A new and promising direction
within fractional calculus is the discrete fractional calculus
(see [6, 7, 10–14]). The advantages of this type of calculus
are that it treats better phenomena with memory effect (see
[10, 11, 14]). We recall that some researchers have been
investigating discrete fractional calculus for special equations
via very definite boundary conditions (see, e.g., [12, 13, 15–
24] and the references therein).Many researchers could focus
on this field by considering natural potential of fractional
finite difference equations. In this paper, we investigate the
existence of solutions for 𝑘-dimensional system of fractional
finite difference equations:
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where 𝑏 ∈ N
0
, 1 < ]

𝑖
≤ 2, and 𝑓

𝑖
: R𝑘 → R are continuous

functions for 𝑖 = 1, 2, . . . , 𝑘. One-dimensional version of
the problem has been studied by Goodrich [18]. Also, Pan
et al. studied two-dimensional version of the problem [24].
We show that the problem (1) is equivalent to a summation
equation and by using Krasnoselskii’s fixed point theorem we
investigate solutions of the problem. In this way, we present
an example to illustrate our result.
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2. Preliminaries

It is known that the finite fractional difference theory is
important in many branches of science and engineering (see,
e.g., [13, 16, 18, 19, 21, 25, 26] and the references therein). The
Gamma function is defined by Γ(𝑧) = ∫

∞

0
𝑒
−𝑡
𝑡
𝑧−1

𝑑𝑡 for the
complex numbers 𝑧 in which the real part of 𝑧 is positive
(see [8]). Note that the domain of the Gamma function is
R \ {0, −1, −2, −3, . . .} (see [8]). Now, we recall 𝑡] := Γ(𝑡 +

1)/Γ(𝑡 + 1 − ]) for all 𝑡, ] ∈ R whenever the right-hand side is
defined (see [16]). If 𝑡 + 1− ] is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡

]
= 0 (see [16]). We recall that

Δ
𝛽
𝑡
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= 𝑡 − ].

In this paper, we use the standard notations N
𝑎
= {𝑎, 𝑎 +

1, 𝑎 + 2, . . .} for all 𝑎 ∈ R and N𝑏
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= {𝑎, 𝑎 + 1, 𝑎 + 2, . . . , 𝑏} for

all real numbers 𝑎 and 𝑏 whenever 𝑏 − 𝑎 is a natural number.
Let ] > 0 with 𝑚 − 1 < ] < 𝑚 for some natural number 𝑚.
Then, the ]th fractional sum of 𝑓 based at 𝑎 is defined by
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recall the formula
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Lemma 1 (see [13]). Let ℎ : N
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→ R be a mapping and 𝑚

a natural number. Then, the general solution of the equation
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constants.

Let ℎ : N]−𝑚 × R → R be a mapping and 𝑚 a natural
number. By using a similar proof, one can check that the
general solution of the equation Δ

]
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for all 𝑡 ∈ N]−𝑚. In particular, the general solution has the
following representation:
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We are going to use this in our main results. A nonempty,
closed subset 𝑃 ̸= {0} of a topological vector space 𝐸 is called
a cone whenever 𝑃 ∩ (−𝑃) = {0} and 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for all
𝑥, 𝑦 ∈ 𝑃 and nonnegative real numbers 𝑎, 𝑏 (for more details
and examples see [27] and references therein).

Lemma 3 (see [28]). Let 𝑋 be a Banach space and 𝐾 a cone
in 𝑋. Assume that 𝐵

1
and 𝐵
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2
\ 𝐵
1
) → 𝐾 is

a completely continuous operator. If either ‖𝑇𝑦‖ ≤ ‖𝑦‖ for all
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1
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2
or ‖𝑇𝑦‖ ≥ ‖𝑦‖
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1
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2
, then

𝑇 has at least one fixed point in 𝐾 ∩ (𝐵
2
\ 𝐵
1
).

3. Main Result

In this section we provide the main results. For next result,
consider the problem (1).

Lemma 4. The fractional finite difference equation
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via the boundary conditions 𝑦
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𝑖Δ
−]
𝑖ℎ
𝑖
(𝑠+]
𝑖
−1) = ℎ

𝑖
(𝑠+]
𝑖
−1),

we get

Δ
]
𝑖𝑦
𝑖0
(𝑡) + 𝑓

𝑖
(𝑦
1
(𝑡 + ]
1
− 1) , 𝑦

2
(𝑡 + ]
2
− 1) , . . . ,

𝑦
𝑘
(𝑡 + ]
𝑘
− 1)) = 0.

(14)

This completes the proof.

Hereafter, for simplicity we use the notations 𝐼
𝑖
:= N

]
𝑖
+𝑏+1

]
𝑖
−1

and 𝐽
𝑖
:= [((]

𝑖
+ 𝑏)/4), ((3(]

𝑖
+ 𝑏))/4)] for all 𝑖 = 1, 2, . . . , 𝑘.
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Lemma 5 (see [18]). TheGreen function (7) satisfies𝐺
𝑖
(𝑡, 𝑠) ≥

0 for all 𝑡 ∈ 𝐼
𝑖
and 𝑠 ∈ N𝑏+1

0
andmax

𝑡∈𝐼
𝑖

𝐺
𝑖
(𝑡, 𝑠) = 𝐺

𝑖
(𝑠+]
𝑖
−1, 𝑠)

for all 𝑠 ∈ N𝑏
0
and there exist 𝜆

𝑖
∈ (0, 1) such that

min
𝑡∈𝐽
𝑖

𝐺
𝑖
(𝑡, 𝑠) ≥ 𝜆

𝑖
max
𝑡∈𝐼
𝑖

𝐺
𝑖
(𝑡, 𝑠) = 𝜆

𝑖
𝐺
𝑖
(𝑠 + ]

𝑖
− 1, 𝑠) (15)

for all 𝑠 ∈ N𝑏+1
0

.

Goodrich showed that 𝜆
𝑖
= min{𝛾𝑖

1
, 𝛾
𝑖

2
} (see [18]), where

𝛾
𝑖

1
= ((𝑏 + ]

𝑖
)/4)

]
𝑖
−1
/(𝑏 + ]

𝑖
)
]
𝑖
−1 and

𝛾
𝑖

2
=

1

(3 (𝑏 + ]
𝑖
) /4)

]
𝑖
−1

× [(
3 (𝑏 + ]

𝑖
)

4
)

]
𝑖
−1

−
(𝑏 + 1) (3 (𝑏 + ]

𝑖
) /4 − 1)

]
𝑖
−1

Γ (]
𝑖
+ 𝑏 + 1)

Γ (𝑏 + 3) (]
𝑖
+ 𝑏 − 1)

]
𝑖
−1

] .

(16)

Note that 𝛾𝑖
2
can be written in the simple form 𝛾

𝑖

2
= (]
𝑖
+

2)/3(𝑏 + 2), because

𝛾
𝑖

2
=

1

(3 (𝑏 + ]
𝑖
) /4)

]
𝑖
−1

× [(
3 (𝑏 + ]

𝑖
)

4
)

]
𝑖
−1

−
(𝑏 + 1) (3 (𝑏 + ]

𝑖
) /4 − 1)

]
𝑖
−1

Γ (]
𝑖
+ 𝑏 + 1)

Γ (𝑏 + 3) (]
𝑖
+ 𝑏 − 1)

]
𝑖
−1

]

= 1 −
(𝑏 + 1) (3 (𝑏 + ]

𝑖
) /4 − 1)

]
𝑖
−1

Γ (]
𝑖
+ 𝑏 + 1)

(3 (𝑏 + ]
𝑖
) /4)

]
𝑖
−1

Γ (𝑏 + 3) (]
𝑖
+ 𝑏 − 1)

]
𝑖
−1

= 1 −
(𝑏 + 1) (3 (𝑏 + ]

𝑖
) /4 − ]

𝑖
+ 1) Γ (]

𝑖
+ 𝑏 + 1)

(3 (𝑏 + ]
𝑖
) /4) Γ (𝑏 + 3) (Γ (]

𝑖
+ 𝑏) /Γ (𝑏 + 1))

= 1 −
(𝑏 + 1) (3 (𝑏 + ]

𝑖
) /4 − ]

𝑖
+ 1) (]

𝑖
+ 𝑏) Γ (]

𝑖
+ 𝑏)

(3 (𝑏 + ]
𝑖
) /4) (𝑏 + 1) (𝑏 + 2) Γ (𝑏 + 1) (Γ (]

𝑖
+ 𝑏) /Γ (𝑏 + 1))

=
]
𝑖
+ 2

3 (𝑏 + 2)
.

(∗∗)

Note that (∗∗) hold because (𝑎 − 1)
𝑏
/𝑎
𝑏
= (𝑎 − 𝑏)/𝑎. Suppose

that A
𝑖
is the Banach space of the maps 𝑢 : N

]
𝑖
+𝑏

]
𝑖
−2

→ R via
the usual maximum norm ‖𝑢‖ = max{|𝑢(𝑡)| : 𝑡 ∈ N

]
𝑖
+𝑏

]
𝑖
−2
}.

Consider the space X = A
1
× A
2
× ⋅ ⋅ ⋅ × A

𝑘
via the norm

‖(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X = ‖𝑦

1
‖ + ‖𝑦

2
‖ + ⋅ ⋅ ⋅ + ‖𝑦

𝑘
‖. It is clear that

(X, ‖ ⋅ ‖X) is a Banach space (see [29]). Now, define the map
𝑇 : X → X by

𝑇 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑘
)

= (

𝑇
1
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
1
)

𝑇
2
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
2
)

...
𝑇
𝑘
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
𝑘
)

) ,

(17)

where 𝑇
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)(𝑡) = ∑

𝑏+1

𝑠=0
𝐺
𝑖
(𝑡, 𝑠)𝑓

𝑖
(𝑦
1
(𝑠 + ]

1
−

1), 𝑦
2
(𝑠 + ]

2
− 1), . . . , 𝑦

𝑘
(𝑠 + ]

𝑘
− 1)) for 𝑖 = 1, 2, . . . , 𝑘. Also,

consider the coneK defined by

K = { (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ X : 𝑦

𝑖
≥ 0,

min
(𝑡
1
,𝑡
2
,...,𝑡
𝑘
)∈𝐽
1
×𝐽
2
×⋅⋅⋅×𝐽

𝑘

[𝑦
1
(𝑡
1
) + 𝑦
2
(𝑡
2
)

+ ⋅ ⋅ ⋅ + 𝑦
𝑘
(𝑡
𝑘
)]

≥ 𝜆
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X} ,

(18)

where 𝜆 = min
1≤𝑖≤𝑘

𝜆
𝑖
. First, for the operator 𝑇 we show that

𝑇(K) ⊆ K whenever the functions 𝑓
𝑖
are nonnegative for

𝑖 = 1, 2, . . . , 𝑘. Let (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K. Then, we have

min
(𝑡1 ,𝑡2,...,𝑡𝑘)∈𝐽1×𝐽2×⋅⋅⋅×𝐽𝑘

𝑘

∑

𝑛=1

𝑇
𝑛
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
𝑛
)

≥

𝑘

∑

𝑛=1

min
𝑡
𝑛
∈𝐽
𝑛

𝑇
𝑛
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) (𝑡
𝑛
)

=

𝑘

∑

𝑛=1

min
𝑡
𝑛
∈𝐽
𝑛

𝑏+1

∑

𝑠=0

𝐺
𝑛
(𝑡
𝑛
, 𝑠) 𝑓
𝑛
(

𝑦
1
(𝑠 + ]

1
− 1)

𝑦
2
(𝑠 + ]

2
− 1)

...
𝑦
𝑘
(𝑠 + ]

𝑘
− 1)

)

≥

𝑘

∑

𝑛=1

𝜆
𝑛
max
𝑡
𝑛
∈𝐼
𝑛

𝑏+1

∑

𝑠=0

𝐺
𝑛
(𝑡
𝑛
, 𝑠) 𝑓
𝑛
(

𝑦
1
(𝑠 + ]

1
− 1)

𝑦
2
(𝑠 + ]

2
− 1)

...
𝑦
𝑘
(𝑠 + ]

𝑘
− 1)

)

=

𝑘

∑

𝑛=1

𝜆
𝑛

𝑇𝑛 (𝑦1, 𝑦2, . . . , 𝑦𝑘)


≥ 𝜆

𝑘

∑

𝑛=1

𝑇𝑛 (𝑦1, 𝑦2, . . . , 𝑦𝑘)


= 𝜆
𝑇 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)
X,

(19)

where 𝜆 = min
1≤𝑛≤𝑘

𝜆
𝑛
. Hence, 𝑇(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K and so

𝑇(K) ⊆ K. For providing our main result, we use similar
conditions which have been given by Goodrich in [18] and
Henderson et al. in [30].



Abstract and Applied Analysis 5

Theorem 6. Suppose that 𝑓
𝑖

∈ 𝐶([0,∞)
𝑘
) for all 𝑖 =

1, 2, . . . , 𝑘:

lim
(𝑦1 ,𝑦2,...,𝑦𝑘)→ (0

+
,0
+
,...,0
+)

𝑓
𝑖
(𝑦
1
, 𝑦
2
, , . . . , 𝑦

𝑘
)

𝑦
1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘

= 𝑓
∗

𝑖
,

lim
(𝑦1 ,𝑦2,...,𝑦𝑘)→(+∞,+∞,...,+∞)

𝑓
𝑖
(𝑦
1
, 𝑦
2
, , . . . , 𝑦

𝑘
)

𝑦
1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘

= 𝑓
∗∗

𝑖

(20)

such that∑𝑏+1
𝑠=0

𝐺
𝑖
(𝑠 + ]
𝑖
−1, 𝑠)(𝑓

∗

𝑖
+𝜖) ≤ 1/𝑘 and∑𝑏+1

𝑠=0
𝜆𝐺
𝑖
(𝑠 +

]
𝑖
− 1, 𝑠)(𝑓

∗∗

𝑖
− 𝜖) ≥ 1/𝑘 for some

0 < 𝜖 < min {𝑓∗∗
𝑖

: 1 ≤ 𝑖 ≤ 𝑘} , (21)

where 𝐺
𝑖
is the Green function (7) and 𝜆 = min

1≤𝑖≤𝑘
𝜆
𝑖
.

Then the 𝑘-dimensional system of fractional finite difference
equations (1) has at least one solution.

Proof. Consider the operator 𝑇 : K → K defined by (17)
and the cone K. It is clear that 𝑇 is completely continuous
because it is a summation operator on a finite set. Choose𝛿

1
>

0 such that

𝑓
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ≤ (𝑓

∗

𝑖
+ 𝜖) (𝑦

1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘
) (22)

for all ‖(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X < 𝛿

1
. Put B

1
= {(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈

X : ‖(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X < 𝛿

1
}. Then, 0 ∈ B

1
and

‖(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X = 𝛿

1
for all (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K ∩ 𝜕B

1
.

Also, we have
𝑇𝑖 (𝑦1, 𝑦2, . . . , 𝑦𝑘)



= max
𝑡
𝑖
∈𝐼
𝑖

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑡
𝑖
, 𝑠) 𝑓
𝑖
(𝑦
1
(𝑠 + ]

1
− 1) ,

𝑦
2
(𝑠 + ]

2
− 1) , . . . , 𝑦

𝑘
(𝑠 + ]

𝑘
− 1))

≤

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑠 + ] − 1, 𝑠) (𝑓

∗

𝑖
+ 𝜖) (𝑦

1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘
)

≤
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑠 + ] − 1, 𝑠) (𝑓

∗

𝑖
+ 𝜖)

≤
1

𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘)
X

(23)

for all (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K ∩ 𝜕B

1
. Hence,

𝑇 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)
X =

𝑘

∑

𝑖=1

𝑇𝑖 (𝑦1, 𝑦2, . . . , 𝑦𝑘)


≤ 𝑘 ×
1

𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘)
X

=
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X

(24)

for all (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K ∩ 𝜕B

1
. Now, choose 𝛽 ∈ R such

that 𝛽 > 𝛿
1
and

𝑓
𝑖
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ≥ (𝑓

∗∗

𝑖
− 𝜖) (𝑦

1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘
) (25)

for all ‖(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X ≥ 𝛽. Also, choose 𝛿

2
such that

(1/𝑘)𝛽 ≤ 𝛿
2
≤ 𝜆𝛽min

1≤𝑖≤𝑘
∑
𝑏+1

𝑠=0
𝐺
𝑖
(𝑠+]−1, 𝑠)(𝑓∗∗

𝑖
−𝜖). Now,

put B
2
= {(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ X : ‖(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
)‖X < 𝑘𝛿

2
}.

Then,B
1
⊆ B
2
and

𝑦
1
(𝑡
1
) + 𝑦
2
(𝑡
2
) + ⋅ ⋅ ⋅ + 𝑦

𝑘
(𝑡
𝑘
)

≥ min
(𝑡1 ,𝑡2,⋅⋅⋅ ,𝑡𝑘)∈𝐽1×𝐽2×⋅⋅⋅×𝐽𝑘

[𝑦
1
(𝑡
1
) + 𝑦
2
(𝑡
2
)

+ ⋅ ⋅ ⋅ + 𝑦
𝑘
(𝑡
𝑘
)]

≥ 𝜆
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X

(26)

for all (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K ∩ 𝜕B

2
. Thus, by using (25) we get

𝑇𝑖 (𝑦1, 𝑦2, . . . , 𝑦𝑘)


= max
𝑡
𝑖
∈𝐼
𝑖

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑡
𝑖
, 𝑠) 𝑓
𝑖
(𝑦
1
(𝑠 + ]

1
− 1) , 𝑦

2
(𝑠 + ]

2
− 1) , . . . ,

𝑦
𝑘
(𝑠 + ]

𝑘
− 1))

≥

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑠 + ] − 1, 𝑠) (𝑓

∗∗

𝑖
− 𝜖) (𝑦

1
+ 𝑦
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑘
)

≥ 𝜆
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X

𝑏+1

∑

𝑠=0

𝐺
𝑖
(𝑠 + ] − 1, 𝑠) (𝑓

∗∗

𝑖
− 𝜖)

≥
1

𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘)
X

(27)

for all (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K ∩ 𝜕B

2
. Hence,

𝑇 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
)
X =

𝑘

∑

𝑖=1

𝑇𝑖 (𝑦1, 𝑦2, . . . , 𝑦𝑘)


≥ 𝑘 ×
1

𝑘

(𝑦1, 𝑦2, . . . , 𝑦𝑘)
X

=
(𝑦1, 𝑦2, . . . , 𝑦𝑘)

X

(28)

for all (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) ∈ K∩𝜕B

2
. By using Lemma 3,𝑇 has at

least one fixed point (𝑦
10
, 𝑦
20
, . . . , 𝑦

𝑘0
) inK ∩ (B

2
\B
1
) and

so by using Lemma 4, the 𝑘-dimensional system of fractional
finite difference equations (1) has at least one solution.
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4. Example

Here, we provide an example to illustrate our last result.

Example 1. Consider the 5-dimensional fractional finite dif-
ference equation system:

Δ
1.2
𝑦
1
(𝑡) + 𝑓

1
(𝑦
1
(𝑡 + 0.2) , 𝑦

2
(𝑡 + 0.4) , 𝑦

3
(𝑡 + 0.5) ,

𝑦
4
(𝑡 + 0.6) , 𝑦

5
(𝑡 + 0.8)) = 0,

Δ
1.4
𝑦
2
(𝑡) + 𝑓

2
(𝑦
1
(𝑡 + 0.2) , 𝑦

2
(𝑡 + 0.4) , 𝑦

3
(𝑡 + 0.5) ,

𝑦
4
(𝑡 + 0.6) , 𝑦

5
(𝑡 + 0.8)) = 0,

Δ
1.5
𝑦
2
(𝑡) + 𝑓

3
(𝑦
1
(𝑡 + 0.2) , 𝑦

2
(𝑡 + 0.4) , 𝑦

3
(𝑡 + 0.5) ,

𝑦
4
(𝑡 + 0.6) , 𝑦

5
(𝑡 + 0.8)) = 0,

Δ
1.6
𝑦
2
(𝑡) + 𝑓

4
(𝑦
1
(𝑡 + 0.2) , 𝑦

2
(𝑡 + 0.4) , 𝑦

3
(𝑡 + 0.5) ,

𝑦
4
(𝑡 + 0.6) , 𝑦

5
(𝑡 + 0.8)) = 0,

Δ
1.8
𝑦
2
(𝑡) + 𝑓

5
(𝑦
1
(𝑡 + 0.2) , 𝑦

2
(𝑡 + 0.4) , 𝑦

3
(𝑡 + 0.5) ,

𝑦
4
(𝑡 + 0.6) , 𝑦

5
(𝑡 + 0.8)) = 0,

𝑦
1
(−0.8) = Δ𝑦

1
(9.2) = 0,

𝑦
2
(−0.6) = Δ𝑦

2
(9.4) = 0,

𝑦
3
(−0.5) = Δ𝑦

3
(9.5) = 0,

𝑦
4
(−0.4) = Δ𝑦

4
(9.6) = 0,

𝑦
5
(−0.2) = Δ𝑦

5
(9.8) = 0.

(29)

We show that the problem has at least one solution, where

𝑓
1
(𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
)

=
(𝑦
1
+ 𝑦
2
+ cos𝑦

3
) (𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
)

𝑦
1
+ 𝑦
2
+ 1000

,

𝑓
2
(𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
)

= 3𝑒
−10/(𝑦

1
+𝑦
2
+𝑦
3
+1)

(𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
) ,

𝑓
3
(𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
)

= (𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
)

{{{

{{{

{

5𝑦
1
+

1

1000
𝑦
1
< 1,

2.001 +
3

𝑦
1

𝑦
1
≥ 1,

𝑓
4
(𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
)

= (
3𝑦
3
− sin𝑦

5

2𝑦
3
+ 1

+
1

1000
) (𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
) ,

𝑓
5
(𝑦
1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
)

= (𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
) {

𝑒
−8 sin(𝑦

2
)/𝑦
2 𝑦
2
> 0,

𝑒
−8

𝑦
2
= 0.

(30)

Let ]
1
= 1.2, ]

2
= 1.4, ]

3
= 1.5, ]

4
= 1.6, ]

5
= 1.8, 𝑏 = 8, and

𝑘 = 5. Thus, the system (29) is a special case of the system (1).
It is easy to check that 𝑓

𝑖
∈ 𝐶([0,∞)

5
) for 𝑖 = 1, 2, 3, 4, 5. Put

𝛾
𝑖

2
= (]
𝑖
+ 2)/3(8 + 2),

𝛾
𝑖

1
=
((8 + ]

𝑖
) /4)

]
𝑖
−1

(8 + ]
𝑖
)
]
𝑖
−1

=
Γ (3 + ]

𝑖
/4) × Γ (10)

Γ (4 − 3]
𝑖
/4) × Γ (9 + ]

𝑖
)
, (31)

and 𝜆
𝑖
= min{𝛾𝑖

1
, 𝛾
𝑖

2
} for 𝑖 = 1, 2, 3, 4, 5. Then, by a calculation

we get 𝜆
1
= 0.1066, 𝜆

2
= 0.1133, 𝜆

3
= 0.1166, 𝜆

4
= 0.1200,

and 𝜆
5
= 0.1266. Thus, 𝜆 = min{𝜆

𝑖
: 𝑖 = 1, 2, 3, 4, 5} =

0.1066. On the other hand by calculation of some limits, one
can get that 𝑓∗

1
= 10
−3, 𝑓∗∗
1

= 1, 𝑓∗
2
= 3𝑒
−10, 𝑓∗∗
2

= 3, 𝑓∗
3
=

10
−3, 𝑓∗∗
3

= 2.001, 𝑓∗
4

= 10
−3, 𝑓∗∗
4

= 1.501, 𝑓∗
5

= 𝑒
−8, and

𝑓
∗∗

5
= 1. Moreover, we have

𝑏+1

∑

𝑠=0

𝐺
1
(𝑠 + ]

1
− 1, 𝑠)

=

9

∑

𝑠=0

𝐺
1
(𝑠 + 0.2, 𝑠)

=

9

∑

𝑠=0

(𝑠 + 0.2)
0.2

9.2−0.8
(9.2 − 𝜎 (𝑠))

−0.8

=

9

∑

𝑠=0

Γ (𝑠 + 1.2) Γ (11) Γ (9.2 − 𝑠)

Γ (𝑠 + 1) Γ (10.2) Γ (10 − 𝑠)

≥
Γ (11)

Γ (10.2)

9

∑

𝑠=0

Γ (9.2 − 𝑠)

Γ (10 − 𝑠)
≥ 6 × 6 = 36,

𝑏+1

∑

𝑠=0

𝐺
1
(𝑠 + ]

1
− 1, 𝑠)

=

9

∑

𝑠=0

Γ (𝑠 + 1.2) Γ (11) Γ (9.2 − 𝑠)

Γ (𝑠 + 1) Γ (10.2) Γ (10 − 𝑠)

≤
Γ (11)

Γ (10.2)

9

∑

𝑠=0

Γ (𝑠 + 1.2)

Γ (𝑠 + 1)
≤ 6 × 13 = 78.

(32)

Similarly, we obtain

𝑏+1

∑

𝑠=0

𝐺
2
(𝑠 + ]

2
− 1, 𝑠) ≥ 6 × 6 = 36,

𝑏+1

∑

𝑠=0

𝐺
2
(𝑠 + ]

2
− 1, 𝑠) ≤ 6 × 19 = 114,
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𝑏+1

∑

𝑠=0

𝐺
3
(𝑠 + ]

3
− 1, 𝑠) ≥ 6 × 6 = 36,

𝑏+1

∑

𝑠=0

𝐺
3
(𝑠 + ]

3
− 1, 𝑠) ≤ 6 × 22 = 132,

𝑏+1

∑

𝑠=0

𝐺
4
(𝑠 + ]

4
− 1, 𝑠) ≥ 6 × 6 = 36,

𝑏+1

∑

𝑠=0

𝐺
4
(𝑠 + ]

4
− 1, 𝑠) ≤ 6 × 27 = 162,

𝑏+1

∑

𝑠=0

𝐺
5
(𝑠 + ]

5
− 1, 𝑠) ≥ 6 × 7 = 42,

𝑏+1

∑

𝑠=0

𝐺
5
(𝑠 + ]

5
− 1, 𝑠) ≤ 6 × 38 = 228.

(33)

Now, let 𝜖 = 0.0001. Then, 0 < 𝜖 < min{𝑓∗∗
𝑖

: 𝑖 = 1, 2, 3, 4, 5}

and we have

𝑏+1

∑

𝑠=0

𝜆𝐺
1
(𝑠 + ]

1
− 1, 𝑠) (𝑓

∗∗

1
− 𝜖)

≥ 0.1066 × 36 × (1 − 0.0001) = 3.8372 ≥
1

5
,

𝑏+1

∑

𝑠=0

𝐺
1
(𝑠 + ]

1
− 1, 𝑠) (𝑓

∗

1
+ 𝜖)

≤ 78 × (10
−3

+ 0.0001) = 0.0858 ≤
1

5
,

𝑏+1

∑

𝑠=0

𝜆𝐺
2
(𝑠 + ]

2
− 1, 𝑠) (𝑓

∗∗

2
− 𝜖)

≥ 0.1066 × 36 × (3 − 0.0001) = 11.5124 ≥
1

5
,

𝑏+1

∑

𝑠=0

𝐺
2
(𝑠 + ]

2
− 1, 𝑠) (𝑓

∗

2
+ 𝜖)

≤ 114 × (3𝑒
−10

+ 0.0001) = 0.02692 ≤
1

5
,

𝑏+1

∑

𝑠=0

𝜆𝐺
3
(𝑠 + ]

3
− 1, 𝑠) (𝑓

∗∗

3
− 𝜖)

≥ 0.1066 × 36 × (2.001 − 0.0001) = 7.6786 ≥
1

5
,

𝑏+1

∑

𝑠=0

𝐺
3
(𝑠 + ]

3
− 1, 𝑠) (𝑓

∗

3
+ 𝜖)

≤ 132 × (10
−3

+ 0.0001) = 0.1452 ≤
1

5
,

𝑏+1

∑

𝑠=0

𝜆𝐺
4
(𝑠 + ]

4
− 1, 𝑠) (𝑓

∗∗

4
− 𝜖)

≥ 0.1066 × 36 × (1.501 − 0.0001) = 5.7598 ≥
1

5
,

𝑏+1

∑

𝑠=0

𝐺
4
(𝑠 + ]

4
− 1, 𝑠) (𝑓

∗

4
+ 𝜖)

≤ 162 × (10
−3

+ 0.0001) = 0.1782 ≤
1

5
,

𝑏+1

∑

𝑠=0

𝜆𝐺
5
(𝑠 + ]

5
− 1, 𝑠) (𝑓

∗∗

5
− 𝜖)

≥ 0.1066 × 37 × (1 − 0.0001) = 3.9438 ≥
1

5
,

𝑏+1

∑

𝑠=0

𝐺
5
(𝑠 + ]

5
− 1, 𝑠) (𝑓

∗

5
+ 𝜖)

≤ 228 × (𝑒
−8

+ 0.0001) = 0.0992 ≤
1

5
.

(34)

Thus by using Theorem 6, the 5-dimensional system of
fractional finite difference equations (29) has at least one
solution.

5. Conclusions

In this paper, based on main idea of Goodrich we review the
existence of solutions for a 𝑘-dimensional systemof fractional
finite difference equations. In fact we are going to extend the
work of Goodrich in a sense. We give an example to illustrate
our last result.
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