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We use the method of coincidence degree and construct suitable Lyapunov functional to investigate the existence and global
exponential stability of antiperiodic solutions of impulsiveCohen-Grossberg neural networkswith delays on time scales. Our results
are new even if the time scale T = R or Z. An example is given to illustrate our feasible results.

1. Introduction

It is well known that Cohen-Grossberg neural networks
(CGNNs) includemanymodels fromdifferent research fields,
such as neurobiology, population biology, and evolution-
ary theory, as well as Hopfield neural networks and other
recurrent neural network models. Over the past few years,
a large number of scholars have extensively studied the
dynamical behaviors, in particular, the existence and stability
of the equilibrium point and periodic and almost-periodic
solutions of Cohen-Grossberg neural networks. There have
been considerable results on CGNNs (e.g., see [1–16]). In
contrast, however, very few results are available on the
existence and exponential stability of antiperiodic solutions
for neural networks, while the existence of antiperiodic
solutions plays a key role in characterizing the behavior of
nonlinear differential equations (see [17–22]).

In [17], the authors studied the existence and exponential
stability of antiperiodic solutions for the following Cohen-
Grossberg neural networks with bounded and unbounded
delays:
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where 𝑛 corresponds to the number of units in the neural
networks, 𝑥

𝑖
denotes the potential (or voltage) of cell 𝑖

at time 𝑡, 𝑎
𝑖
represents an amplification function, 𝑏
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is an

appropriately behaved function, 𝑐
𝑖𝑗
, 𝑑
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, and 𝑒
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denote the

strengths of connectivity between cells 𝑖 and 𝑗 at time 𝑡,
respectively.The activation functions𝑓
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, 𝑔

𝑗
, and ℎ

𝑗
showhow

the 𝑗th neuron reacts to the input, 𝜏
𝑖𝑗
corresponds to the

time delay required in processing and transmitting a signal
from the 𝑗th cell to the 𝑖th cell at time 𝑡, 𝐾

𝑖𝑗
is the kernel,

and 𝐼
𝑖
denotes the 𝑖th component of an external input source

introduced from outside the network to cell 𝑖 at time 𝑡, 𝑖, 𝑗 =
1, 2, . . . , 𝑛.
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In fact, both continuous and discrete systems are very
important in implementation and application. Therefore, the
study of dynamic equations on time scales has receivedmuch
attention (see [18, 19, 23–28]) which displays a combination
of characteristics of both continuous-time and discrete-time
system. For example, in [23], the authors extended the
almost-periodic theory on time scales with the delta deriva-
tive to that with the nabla derivative and then derived some
sufficient conditions ensuring the existence, uniqueness, and
exponential stability of almost-periodic solutions for a class of
cellular neural networks with time-varying delays in leakage
terms on time scales.

Also, differential equations with impulses provide an ade-
quate mathematical model of many evolutionary processes
that suddenly change their states at certain moments. For
example, [18] applied the method of coincidence degree
to investigate the existence of antiperiodic solutions to the
following impulsive shunting inhibitory cellular neural net-
works on time scales:
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Motivated by the abovementioned works, in this paper,
wewill apply themethod of coincidence degree and construct
suitable Lyapunov functional to investigate the existence and
global exponential stability of antiperiodic solutions to the
following impulsive CGNNmodel with delays on time scales:
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where T is an (𝜔/2)-periodic time scale which has the
subspace topology inherited from the standard topology on
R, T+ = {𝑡 ∈ T : 𝑡 ≥ 0}, 𝑥
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The initial conditions associatedwith system (3) are of the
form
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where 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
The organization of the rest of this paper is as follows.

In Section 2, we introduce some definitions and make some
preparations for later sections. In Sections 3 and 4, we
establish our main results for the existence and exponential
stability of antiperiodic solutions of (3). Finally, we present
an example to illustrate the feasibility and effectiveness of our
results obtained in previous sections.

2. Preliminaries

In this section, we recall some basic definitions and lemmas
which are used in what follows.

Definition 1 (see [24, 26]). A time scale T is an arbitrary
nonempty closed subset of the real set R with the topology
and ordering inherited from R. The forward and backward
jump operators𝜎, 𝜌 : T → T and the graininess𝜇 : T → R+

are defined, respectively, by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡.
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Thepoint 𝑡 ∈ T is called left-dense, left-scattered, right-dense,
or right-scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡, or 𝜎(𝑡) > 𝑡,
respectively. Points that are right-dense and left-dense at the
same time are called dense. If T has a left-scatteredmaximum
𝑚, define T𝑘 = T \ {𝑚}; otherwise, T𝑘 = T .

Definition 2 (see [24, 26]). A vector function 𝑓 : T → R𝑛 is
rd-continuous provided it is continuous at each right-dense
point in T and has a left-sided limit at each left-dense point
in T . The set of rd-continuous functions 𝑓 : T → R𝑛 will be
denoted by 𝐶rd(T) = 𝐶rd(T ,R

𝑛
).
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one says that the improper integral diverges.

Definition 6 (see [24, 26]). A function 𝑝 : T → R is called
regressive if 1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘, where 𝜇(𝑡) =

𝜎(𝑡) − 𝑡 is the graininess function. The set of all regressive
rd-continuous functions 𝑓 : T → R is denoted byR, while
the setR+ is given by {𝑓 ∈ R : 1+𝜇(𝑡)𝑓(𝑡) > 0} for all 𝑡 ∈ T .
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𝑢

Δ
(𝑡) to mean that, given

𝜀 > 0, there exists a right neighborhood𝑁(𝜀) ⊂ 𝑁 of 𝜖 such
that

𝑢 (𝜎 (𝑡)) − 𝑢 (𝑠)

𝜎 (𝑡) − 𝑠

< 𝐷

+
𝑢

Δ
(𝑡) + 𝜖 (13)

for each 𝑠 ∈ 𝑁(𝜖), 𝑠 > 𝑡.
In case 𝑡 is right-scattered and 𝑢(𝑡) is continuous at 𝑡, this

reduces to

𝐷

+
𝑢

Δ
(𝑡) =

𝑢 (𝜎 (𝑡)) − 𝑢 (𝑡)

𝜎 (𝑡) − 𝑡

, (14)

where the upper right Dini derivative is defined as

𝐷

+
𝑢 (𝑡) = lim

ℎ→0
+
sup 𝑢 (𝑡 + ℎ) − 𝑢 (𝑡)

ℎ

. (15)
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Definition 8 (see [18]). One says that a time scale T is periodic
if there exists 𝑝 > 0 such that if 𝑡 ∈ T , then 𝑡 ± 𝑝 ∈ T . For
T ̸=R, the smallest positive 𝑝 is called the period of the time
scale. Let T ̸=R be a periodic time scale with period 𝑝. We
say that the function 𝑓 : T → R is (𝜔/2)-antiperiodic if
there exists a natural number 𝑛 such that 𝜔/2 = 𝑛𝑝, 𝑓(𝑡 +
𝜔/2) = −𝑓(𝑡) for all 𝑡 ∈ T and 𝜔/2 is the smallest number
such that 𝑓(𝑡 + 𝜔/2) = −𝑓(𝑡). If T = R, one says that 𝑓 is
(𝜔/2)-antiperiodic if𝜔/2 is the smallest positive number such
that 𝑓(𝑡 + 𝜔/2) = −𝑓(𝑡) for all 𝑡 ∈ T .

Lemma 9 (see [23, 24, 26]). Assume that 𝑝, 𝑞 ∈ R. Then

(a) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(b) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒

𝑝
(𝑡, 𝑠);

(c) 1/𝑒
𝑝
(𝑡, 𝑠) = 𝑒

⊝𝑝
(𝑡, 𝑠), where ⊝𝑝(𝑡) := −𝑝(𝑡)/(1 +

𝜇(𝑡)𝑝(𝑡));
(d) 𝑒

𝑝
(𝑡, 𝑠)𝑒

𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(e) 𝑒Δ
𝑝
(⋅, 𝑠) = 𝑝𝑒

𝑝
(⋅, 𝑠).

Lemma 10 (see [28]). If 𝑝 ∈ R+, then

0 < 𝑒
𝑝 (
𝑡, 𝑠) ≤ exp(∫

𝑡

𝑠

(𝑝 (𝑢)) Δ𝑢) . (16)

Lemma 11 (see [23, 24, 26]). Assume that 𝑓, 𝑔 : T → R are
delta differentiable at 𝑡 ∈ 𝑇𝑘. Then

(𝑓𝑔)

Δ
(𝑡) = 𝑓

Δ
(𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔

Δ
(𝑡)

= 𝑓 (𝑡) 𝑔

Δ
(𝑡) + 𝑓

Δ
(𝑡) 𝑔 (𝜎 (𝑡)) .

(17)

Lemma 12 (see [18, 24, 27]). Let 𝑡
1
, 𝑡
2
∈ [0, 𝜔]T . If 𝑥 : T → R

is 𝜔-periodic, then

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + ∫

𝜔

0







𝑥

Δ
(𝑠)







Δ𝑠,

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) − ∫

𝜔

0







𝑥

Δ
(𝑠)







Δ𝑠.

(18)

Definition 13 (see [18]). The antiperiodic solution 𝑥

∗
(𝑡) =

(𝑥

∗

1
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡)) of system (3) with initial value 𝜑

∗
(𝑡) =

(𝜑

∗

1
(𝑡), . . . , 𝜑

∗

𝑛
(𝑡)) is said to be globally exponentially stable

if there exist positive constants 𝜆 and 𝑀 = 𝑀(𝜆) ≥ 1, for
any solution 𝑥(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 of system (3) with the
initial value 𝜑(𝑡) = (𝜑

1
(𝑡), . . . , 𝜑

𝑛
(𝑡))

𝑇, such that





𝑥
𝑖 (
𝑡) − 𝑥

∗

𝑖
(𝑡)






≤ 𝑀 (𝜆) 𝑒⊝𝜆 (
𝑡, 𝛼)






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ (0,∞)T , 𝑖 = 1, 2, . . . , 𝑛,

(19)

where





𝜑 − 𝜑

∗


∞

= sup
−∞<𝑠<0

max
1≤𝑖≤𝑛






𝜑
𝑖 (
𝑠) − 𝜑

∗

𝑖
(𝑠)






,

𝛼 ∈ (−∞, 0]T .

(20)

The following fixed point theorem of coincidence degree is
crucial in the arguments of our main results.

Lemma 14 (see [18, 29]). Let X,Y be two Banach spaces and
let Ω ⊂ X be open bounded and symmetric with 0 ∈ Ω.
Suppose that 𝐿 : 𝐷(𝐿) ⊂ X → Y is a linear Fredholm operator
of index zero with𝐷(𝐿)∩Ω ̸= 0 and𝑁 : Ω → Y is L-compact.
Further, one also assumes that

(H) 𝐿𝑥−𝑁𝑥 ̸= 𝜆(−𝐿𝑥−𝑁(−𝑥)) for all 𝑥 ∈ 𝐷(𝐿) ∩ 𝜕Ω, 𝜆 ∈

(0, 1].

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution on𝐷(𝐿) ∩ Ω.

Lemma 15 (mean value theorem, [6, 30]). Let𝑓 be a continu-
ous function on [𝑎, 𝑏]T which isΔ-differentiable on [𝑎, 𝑏)T , and
then there exist 𝜉, 𝜏 ∈ [𝑎, 𝑏)T such that

𝑓

Δ
(𝜉) (𝑏 − 𝑎) ≤ 𝑓 (𝑏) − 𝑓 (𝑎) ≤ 𝑓

Δ
(𝜏) (𝑏 − 𝑎) . (21)

3. Existence of Antiperiodic Solutions

In this section, by using fixed point theorem of coincidence
degree, we will study the existence of at least one antiperiodic
solution for system (3).

Theorem 16. Assume that (H
1
)–(H

7
) hold. Suppose further

that 𝐸
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. Then system (3) has at least one

(𝜔/2)-antiperiodic solution.

Proof. Let 𝐶𝑘([0, 𝜔; 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
, 𝑡
𝑞+1

, . . . , 𝑡
2𝑞
]T ,R

𝑛
) = {𝑥 :

[0, 𝜔]T → R𝑛
|𝑥

(𝑘)
(𝑡) be a piecewise continuous map with

first-class discontinuous points in [0, 𝜔]T ∩ {𝑡
𝑘
: 𝑘 ∈ N} and

at each discontinuous point it is continuous on the left}, 𝑘 =

0, 1. Let

X = {𝑥 ∈ 𝐶 ([0, 𝜔; 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
, 𝑡
𝑞+1

, . . . , 𝑡
2𝑞
]

T
,R

𝑛
)

: 𝑥 (𝑡 +

𝜔

2

) = −𝑥 (𝑡) ∀𝑡 ∈ [0,

𝜔

2

]

T
} ,

Y = X ×R
𝑛×𝑞

(22)

be two Banach spaces equipped with the norms

‖𝑥‖X=

𝑛

∑

𝑖=1






𝑥
𝑖




0
,






𝑦




Y
=‖𝑥‖X +‖𝑧‖ ∀𝑥∈ X, 𝑧 ∈ R

𝑛×𝑞
,

(23)

in which |𝑥
𝑖
|
0
= max

𝑡∈[0,𝜔]T
|𝑥
𝑖
(𝑡)|, 𝑖 = 1, 2, . . . , 𝑛 and ‖ ⋅ ‖ is

any norm of R𝑛×𝑞. Set

𝐿 : Dom𝐿 ∩X → Y ,

𝑥 → (𝑥

Δ
, Δ𝑥 (𝑡

1
) , Δ𝑥 (𝑡

2
) , . . . , Δ𝑥 (𝑡

𝑞
)) ,

(24)

where

Dom𝐿 = {𝑥 ∈ 𝐶

1
([0, 𝜔; 𝑡

1
, 𝑡
2
, . . . , 𝑡

2𝑞
]

T
,R

𝑛
)

: 𝑥 (𝑡 +

𝜔

2

) = −𝑥 (𝑡) ∀𝑡 ∈ [0,

𝜔

2

]

T
} ,

(25)
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and𝑁 : X → Y and

𝑁𝑥

= ((

𝐴
1 (
𝑡)

𝐴
2 (
𝑡)

...
𝐴
𝑛 (
𝑡)

) , (

𝐼
11
(𝑥

1
(𝑡
1
))

𝐼
21
(𝑥

2
(𝑡
1
))

...
𝐼
𝑛1
(𝑥

𝑛
(𝑡
1
))

) ,

(

𝐼
12
(𝑥

1
(𝑡
2
))

𝐼
22
(𝑥

2
(𝑡
2
))

...
𝐼
𝑛2
(𝑥

𝑛
(𝑡
2
))

) , . . . ,(

𝐼
1𝑞
(𝑥

1
(𝑡
𝑞
))

𝐼
2𝑞
(𝑥

2
(𝑡
𝑞
))

...
𝐼
𝑛𝑞
(𝑥

𝑛
(𝑡
𝑞
))

)),

(26)

where

𝐴
𝑖 (
𝑡) = −𝛼

𝑖
(𝑥

𝑖 (
𝑡))

×
[

[

𝛽
𝑖
(𝑥

𝑖 (
𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠

+ 𝐽
𝑖 (
𝑡)
]

]

,

(27)

for 𝑖 = 1, 2, . . . , 𝑛. It is easy to see that

Ker 𝐿 = {0} ,

Im 𝐿 = {𝑦 = (𝑔, 𝑐
1
, . . . , 𝑐

𝑞
) ∈ Y : ∫

𝜔

0

𝑔 (𝑠) Δ𝑠 = 0} ≡ Y .

(28)

Thus, dimKer𝐿 = 0 = codimIm𝐿, and 𝐿 is a linear Fredholm
operator of index zero.

Define the continuous projector 𝑃 : X → Ker 𝐿 and the
averaging projector 𝑄 : Y → Y by

𝑃𝑥 = ∫

𝜔

0

𝑥 (𝑠) Δ𝑠 = 0,

𝑄𝑦 = 𝑄 (𝑔, 𝑐
1
, . . . , 𝑐

𝑞
) = (

1

𝜔

∫

𝜔

0

𝑔 (𝑠) Δ𝑠, 0, . . . , 0) .

(29)

Hence, Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄).
Denoting by 𝐿−1

𝑝
: Im 𝐿 → Dom(𝐿) ∩ Ker𝑃 the inverse of

𝐿|Dom(𝐿)∩Ker𝑃, we have

𝐿

−1

𝑝
𝑦 = ∫

𝑡

0

𝑔 (𝑠) Δ𝑠 + ∑

𝑡>𝑡𝑘

𝑐
𝑘
−

1

2

∫

𝜔/2

0

𝑔 (𝑠) Δ𝑠 −

1

2

𝑞

∑

𝑘=1

𝑐
𝑘
, (30)

in which 𝑐
𝑞+𝑖

= −𝑐
𝑖
for all 1 ≤ 𝑖 ≤ 𝑞.

Similar to [24], it is not difficult to show that 𝑄𝑁(Ω),
𝐿

−1

𝑝
(𝐼 − 𝑄)(Ω) are relatively compact for any open bounded

set Ω ⊂ X. Therefore, 𝑁 is 𝐿-compact on Ω for any open
bounded set Ω ⊂ X.

In order to apply Lemma 14, we need to find an appro-
priate open bounded subset Ω in X. Corresponding to the
operator equation 𝐿𝑥 −𝑁𝑥 = 𝜆(−𝐿𝑥 −𝑁(−𝑥)), 𝜆 ∈ (0, 1], we
have

𝑥

Δ

𝑖
(𝑡) =

1

1 + 𝜆

𝐺
𝑖 (
𝑡, 𝑥) −

𝜆

1 + 𝜆

𝐺
𝑖 (
𝑡, −𝑥) ,

𝑡 ∈ T
+
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N,

Δ𝑥
𝑖
(𝑡
𝑘
) =

1

1 + 𝜆

𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
)) −

𝜆

1 + 𝜆

𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
)) ,

𝑖 = 1, 2, . . . , 𝑛,

(31)

where

𝐺
𝑖 (
𝑡, 𝑥) = −𝛼

𝑖
(𝑥

𝑖 (
𝑡))

×
[

[

𝛽
𝑖
(𝑥

𝑖 (
𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠

+ 𝐽
𝑖 (
𝑡)
]

]

,

𝐺
𝑖 (
𝑡, −𝑥) = −𝛼

𝑖
(−𝑥

𝑖 (
𝑡))

×
[

[

𝛽
𝑖
(−𝑥

𝑖 (
𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(−𝑥
𝑗 (
𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(−𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(−𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠

+ 𝐽
𝑖 (
𝑡)
]

]

,

(32)

for 𝑖 = 1, 2, . . . , 𝑛.
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Set 𝑡
0
= 𝑡

+

0
= 0, 𝑡

2𝑞+1
= 𝜔. Then, by (31), (H

2
), (H

3
), (H

5
),

(H
6
), and Lemma 15, we obtain that

∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡

=

2𝑞+1

∑

𝑘=1

∫

𝑡𝑘

𝑡
+

𝑘−1







𝑥

Δ

𝑖
(𝑡)







Δ𝑡 +

2𝑞

∑

𝑘=1






Δ𝑥
𝑖
(𝑡
𝑘
)






≤ ∫

𝜔

0










1

1 + 𝜆

𝐺
𝑖 (
𝑡, 𝑥) −

𝜆

1 + 𝜆

𝐺
𝑖 (
𝑡, −𝑥)










Δ𝑡

+

2𝑞

∑

𝑘=1










1

1 + 𝜆

𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
)) −

𝜆

1 + 𝜆

𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
))










≤ (

1

1 + 𝜆

+

𝜆

1 + 𝜆

)∫

𝜔

0

max {


𝐺
𝑖 (
𝑡, 𝑥)






,






𝐺
𝑖 (
𝑡, −𝑥)






} Δ𝑡

+

2𝑞

∑

𝑘=1

1

1 + 𝜆






𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
)) − 𝐼

𝑖𝑘 (
0)






+

2𝑞

∑

𝑘=1

𝜆

1 + 𝜆






𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
)) − 𝐼

𝑖𝑘 (
0)






+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






≤ 𝛼

𝑀

𝑖
(∫

𝜔

0






𝛽
𝑖
(𝑥

𝑖 (
𝑡))






Δ𝑡 +

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
∫

𝜔

0







𝑓
𝑗
(𝑥

𝑗 (
𝑡))







Δ𝑡

+

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
∫

𝜔

0







𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))







Δ𝑡

+

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
∫

∞

0







𝐾
𝑖𝑗 (
𝑠)







Δ𝑠

× ∫

𝜔

0







ℎ
𝑗
(𝑥

𝑗 (
𝑡 − 𝑠))







Δ𝑡 + 𝐽

𝑀

𝑖
𝜔)

+

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






≤ 𝛼

𝑀

𝑖
𝜔(𝛿

𝑖






𝑥
𝑖




0
+

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝑀

𝑗
+

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝑀

𝑗

+

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝑀

𝑗
∫

∞

0







𝐾
𝑖𝑗 (
𝑠)







Δ𝑠 + 𝐽

𝑀

𝑖
)

+

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






= 𝛼

𝑀

𝑖
𝜔 (𝛿

𝑖






𝑥
𝑖




0
+ 𝐵

𝑖
+ 𝐽

𝑀

𝑖
) +

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






,

𝑖 = 1, 2, . . . , 𝑛.

(33)

Integrating (31) from 0 to 𝜔, we have by (33)










∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝛽𝑖

(𝑥
𝑖 (
𝑡)) Δ𝑡










=













1

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡)) Δ𝑡

−

𝜆

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(−𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(−𝑥
𝑗 (
𝑡)) Δ𝑡

+

1

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) Δ𝑡

−

𝜆

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(−𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(−𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) Δ𝑡

+

𝜆

1 + 𝜆

2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
)) −

𝜆

1 + 𝜆

2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
))

+

1

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡))

×

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠Δ𝑡

−

𝜆

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(−𝑥

𝑖 (
𝑡))

×

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(−𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠Δ𝑡

−

1

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝐽𝑖 (

𝑡) Δ𝑡

+

𝜆

1 + 𝜆

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝐽𝑖 (

𝑡) Δ𝑡













≤ 𝛼

𝑀

𝑖
𝜔(

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝑀

𝑗
+

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝑀

𝑗

+

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝑀

𝑗
∫

∞

0







𝐾
𝑖𝑗 (
𝑠)







Δ𝑠 + 𝐽

𝑀

𝑖
)

+ (

1

1 + 𝜆

+

𝜆

1 + 𝜆

)

×max{











2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
))












,












2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
))












}

≤ 𝛼

𝑀

𝑖
𝜔(

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝑀

𝑗
+

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝑀

𝑗
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+

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝑀

𝑗
∫

∞

0







𝐾
𝑖𝑗 (
𝑠)







Δ𝑠 + 𝐽

𝑀

𝑖
)

+max{











2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
)) − 𝐼

𝑖𝑘 (
0)












,












2𝑞

∑

𝑘=1

𝐼
𝑖𝑘
(−𝑥

𝑖
(𝑡
𝑘
)) − 𝐼

𝑖𝑘 (
0)












} +

2𝑞

∑

𝑘=1

𝐼
𝑖𝑘 (

0)

≤ 𝛼

𝑀

𝑖
𝜔 (𝐵

𝑖
+ 𝐽

𝑀

𝑖
) +

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖0






+

2𝑞

∑

𝑘=1

𝐼
𝑖𝑘 (

0) ,

𝑖 = 1, 2, . . . , 𝑛.

(34)

In view of (34), (H
3
), and Lemma 15, we get










∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡










≤

1

𝜌
𝑖










∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝛽𝑖

(𝑥
𝑖 (
𝑡)) Δ𝑡










≤

1

𝜌
𝑖

𝛼

𝑀

𝑖
𝜔 (𝐵

𝑖
+ 𝐽

𝑀

𝑖
)

+

1

𝜌
𝑖

(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖0






+

2𝑞

∑

𝑘=1

𝐼
𝑖𝑘 (

0)) ,

(35)

for 𝑖 = 1, 2, . . . , 𝑛. In addition, fromLemma 12, for any 𝜉
𝑖
, 𝜂

𝑖
∈

[0, 𝜔]T , we have

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡 ≤ ∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖

(𝜉
𝑖
) Δ𝑡

+ ∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) (∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡)Δ𝑡,

(36)

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡 ≥ ∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖

(𝜂
𝑖
) Δ𝑡

− ∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) (∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡)Δ𝑡,

(37)

where 𝑖 = 1, 2, . . . , 𝑛. Dividing by ∫𝜔
0
𝛼
𝑖
(𝑥

𝑖
(𝑡))Δ𝑡 on the two

sides of (36) and (37), respectively, we obtain that

𝑥
𝑖
(𝜉
𝑖
) ≥

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡

− ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡,

(38)

𝑥
𝑖
(𝜂
𝑖
) ≤

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡

+ ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡,

(39)

where 𝑖 = 1, 2, . . . , 𝑛.

Let 𝑡
𝑖
, 𝑡

𝑖
∈ [0, 𝜔]T such that 𝑥

𝑖
(𝑡
𝑖
) = max

𝑡∈[0,𝜔]T
𝑥
𝑖
(𝑡),

𝑥
𝑖
(𝑡

𝑖
) = min

𝑡∈[0,𝜔]T
𝑥
𝑖
(𝑡), by the arbitrariness of 𝜉

𝑖
, 𝜂

𝑖
; we get

from (33)–(39) that

𝑥
𝑖
(𝑡

𝑖
) ≥

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡

− ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡

≥ −

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡










∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡










− ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡

≥ −

1

𝜌
𝑖
𝛼

𝑚

𝑖

𝛼

𝑀

𝑖
(𝐵

𝑖
+ 𝐽

𝑀

𝑖
)

− 𝛼

𝑀

𝑖
𝜔 (𝛿

𝑖






𝑥
𝑖




0
+ 𝐵

𝑖
+ 𝐽

𝑀

𝑖
)

− (

1

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔

+ 1)(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






)

= −(

𝛼

𝑀

𝑖

𝜌
𝑖
𝛼

𝑚

𝑖

+ 𝛼

𝑀

𝑖
𝜔) (𝐵

𝑖
+ 𝐽

𝑀

𝑖
) − 𝛼

𝑀

𝑖
𝛿
𝑖
𝜔






𝑥
𝑖




0

− (

1

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔

+ 1)(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






) ,

𝑖 = 1, 2, . . . , 𝑛,

𝑥
𝑖
(𝑡
𝑖
) ≤

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡

∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡

+ ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡

≤

1

∫

𝜔

0
𝛼
𝑖
(𝑥

𝑖 (
𝑡)) Δ𝑡










∫

𝜔

0

𝛼
𝑖
(𝑥

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) Δ𝑡










+ ∫

𝜔

0







𝑥

Δ

𝑖
(𝑡)







Δ𝑡

≤

1

𝜌
𝑖
𝛼

𝑚

𝑖

𝛼

𝑀

𝑖
(𝐵

𝑖
+ 𝐽

𝑀

𝑖
) + 𝛼

𝑀

𝑖
𝜔 (𝛿

𝑖






𝑥
𝑖




0
+ 𝐵

𝑖
+ 𝐽

𝑀

𝑖
)

+ (

1

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔

+ 1)(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






)

= (

𝛼

𝑀

𝑖

𝜌
𝑖
𝛼

𝑚

𝑖

+ 𝛼

𝑀

𝑖
𝜔) (𝐵

𝑖
+ 𝐽

𝑀

𝑖
) + 𝛼

𝑀

𝑖
𝛿
𝑖
𝜔






𝑥
𝑖




0

+ (

1

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔

+ 1)(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






) ,

𝑖 = 1, 2, . . . , 𝑛.

(40)
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Thus, we have from (40) that





𝑥
𝑖




0
= max

𝑡∈[0,𝜔]T






𝑥
𝑖 (
𝑡)






≤ (

𝛼

𝑀

𝑖

𝜌
𝑖
𝛼

𝑚

𝑖

+ 𝛼

𝑀

𝑖
𝜔) (𝐵

𝑖
+ 𝐽

𝑀

𝑖
) + 𝛼

𝑀

𝑖
𝛿
𝑖
𝜔






𝑥
𝑖




0

+ (

1

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔

+ 1)(

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






) ,

𝑖 = 1, 2, . . . , 𝑛.

(41)

From (41), we have

𝜌
𝑖
𝛼

𝑚

𝑖
𝜔






𝑥
𝑖




0
≤ 𝛼

𝑀

𝑖
𝜔 (1 + 𝜌

𝑖
𝛼

𝑚

𝑖
𝜔) (𝐵

𝑖
+ 𝐽

𝑀

𝑖
)

+ 𝜌
𝑖
𝛼

𝑀

𝑖
𝛼

𝑚

𝑖
𝛿
𝑖
𝜔

2




𝑥
𝑖




0
+ (1 + 𝜌

𝑖
𝛼

𝑚

𝑖
𝜔)

× (

2𝑞

∑

𝑘=1

𝜌
𝑖𝑘






𝑥
𝑖




0
+

2𝑞

∑

𝑘=1






𝐼
𝑖𝑘 (

0)






) ,

𝑖 = 1, 2, . . . , 𝑛.

(42)

Then, by the assumption of Theorem 16 and (42), we have






𝑥
𝑖




0
≤

𝐷
𝑖

𝐸
𝑖

:= 𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (43)

Let

𝑀 =

𝑛

∑

𝑖=1

𝑀
𝑖
+ 1. (44)

Clearly,𝑀 is independent of 𝜆. Then take
Ω = {𝑥 ∈ X : ‖𝑥‖X < 𝑀} . (45)

It is clear that Ω satisfies all the requirements in Lemma 14
and condition (H) is satisfied. In view of all the discussions
above, we conclude from Lemma 14 that system (3) has at
least one (𝜔/2)-antiperiodic solution. This completes the
proof.

4. Global Exponential Stability of
Antiperiodic Solutions

In this section, we will construct some suitable Lyapunov
functions to study the global exponential stability of antiperi-
odic solutions of system (3).

Theorem 17. Assume that (H
1
)–(H

7
) hold. Suppose further

the following.
(H

8
) The impulsive operators 𝐼

𝑖𝑘
(𝑥

𝑖
(𝑡)) satisfy

𝐼
𝑖𝑘
(𝑥

𝑖 (
𝑡)) = −𝛾

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) ,

0 ≤ 𝛾
𝑖𝑘
≤ 2, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ N.

(46)

(H
9
) For 𝑡 ∈ (0,∞)T , there exist constants 𝜖 > 0 and 𝜂 > 0

such that
𝑙
𝑖
= 𝜖 − 𝛼

𝑙

𝑖
𝜌
𝑖
+ (1 + 𝜇 (𝑡) 𝜖) (𝛼

𝐿

𝑖
𝐵
𝑖
+ 𝛼

𝑀

𝑖
𝑅
𝑖
) < −𝜂 < 0,

𝑖 = 1, 2, . . . , 𝑛.

(47)

Then the (𝜔/2)-antiperiodic solution of system (3) is globally
exponentially stable.

Proof. According to Theorem 16 and its proof, we know
that system (3) has an (𝜔/2)-antiperiodic solution 𝑥

∗
=

(𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))

𝑇 with the initial value 𝜑∗ = (𝜑

∗

1
(𝑡),

𝜑

∗

2
(𝑡), . . . , 𝜑

∗

𝑛
(𝑡))

𝑇 and |𝑥

∗

𝑖
|
0
≤ 𝑀

𝑖
, and suppose that 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is an arbitrary solution of system (3)
with the initial value 𝜑(𝑡) = (𝜑

1
(𝑡), 𝜑

2
(𝑡), . . . , 𝜑

𝑛
(𝑡))

𝑇. Set
𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑥

∗

𝑖
(𝑡).Then it follows from system (3) and (H

8
)

that

𝑦

Δ

𝑖
(𝑡) = − (𝛼

𝑖
(𝑥

𝑖 (
𝑡)) 𝛽𝑖

(𝑥
𝑖 (
𝑡)) − 𝛼

𝑖
(𝑥

∗

𝑖
(𝑡)) 𝛽𝑖

(𝑥

∗

𝑖
(𝑡)))

+ (𝛼
𝑖
(𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡))

−𝛼
𝑖
(𝑥

∗

𝑖
(𝑡))

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥

∗

𝑗
(𝑡)))

+ (𝛼
𝑖
(𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−𝛼
𝑖
(𝑥

∗

𝑖
(𝑡))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥

∗

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))))

+(𝛼
𝑖
(𝑥

𝑖 (
𝑡))

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡)∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠

− 𝛼
𝑖
(𝑥

∗

𝑖
(𝑡))

×

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡) ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥

∗

𝑗
(𝑡 − 𝑠)) Δ𝑠) ,

Δ𝑦
𝑖
(𝑡
𝑘
) = −𝛾

𝑖𝑘
𝑦
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛.

(48)

In view of the above system and (H
2
)–(H

6
), for 𝑡 ∈

T+, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N, 𝑖 = 1, 2, . . . , 𝑛, similar to [6], we have

𝐷

+ 




𝑦

Δ

𝑖
(𝑡)







≤ −𝛼

𝑙

𝑖






𝛽
𝑖
(𝑥

𝑖 (
𝑡)) − 𝛽

𝑖
(𝑥

∗

𝑖
(𝑡))






+ 𝛼

𝐿

𝑖

𝑛

∑

𝑗=1

(𝑎

𝑀

𝑖𝑗
𝑓

𝑀

𝑗
+ 𝑏

𝑀

𝑖𝑗
𝑔

𝑀

𝑗
+ 𝑐

𝑀

𝑖𝑗
ℎ

𝑀

𝑗
∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)







Δ𝑠)

×






𝑦
𝑖 (
𝑡)






+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝐿

𝑗







𝑦
𝑗 (
𝑡)







+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝐿

𝑗







𝑦
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))







+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝐿

𝑗
∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)













𝑦
𝑗 (
𝑡 − 𝑠)







Δ𝑠
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≤ −𝛼

𝑙

𝑖
𝜌
𝑖






𝑦
𝑖 (
𝑡)






+ 𝛼

𝐿

𝑖
𝐵
𝑖






𝑦
𝑖 (
𝑡)






+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝐿

𝑗







𝑦
𝑗 (
𝑡)







+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝐿

𝑗







𝑦
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))







+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝐿

𝑗
∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)













𝑦
𝑗 (
𝑡 − 𝑠)







Δ𝑠.

(49)

For any 𝑎 ∈ (−∞, 0]T , we consider the following Lyapunov
function:

𝑉
𝑖 (
𝑡) =






𝑦
𝑖 (
𝑡)






𝑒
𝜀 (
𝑡, 𝑎) , 𝑖 = 1, 2, . . . 𝑛. (50)

For 𝑡 ∈ T+, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N, calculating the upper right derivative

of 𝑉
𝑖
(𝑡) by (48)–(50), we have

𝐷

+ 




𝑉

Δ

𝑖
(𝑡)







= 𝐷

+ 




𝑦

Δ

𝑖
(𝑡)







𝑒
𝜀 (
𝜎 (𝑡) , 𝑎) +






𝑦
𝑖 (
𝑡)






𝑒

Δ

𝜀
(𝑡, 𝑎)

≤ 𝜖






𝑦
𝑖 (
𝑡)






𝑒
𝜀 (
𝑡, 𝑎) + 𝑒

𝜀 (
𝜎 (𝑡) , 𝑎)

× (−𝛼

𝑙

𝑖
𝜌
𝑖






𝑦
𝑖 (
𝑡)






+ 𝛼

𝐿

𝑖
𝐵
𝑖






𝑦
𝑖 (
𝑡)






+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝐿

𝑗







𝑦
𝑗 (
𝑡)







+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝐿

𝑗







𝑦
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))







+ 𝛼

𝑀

𝑖

×

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝐿

𝑗
∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)













𝑦
𝑗 (
𝑡 − 𝑠)







Δ𝑠𝑒
𝜀 (
𝜎 (𝑡) , 𝑎))

= 𝜖𝑉
𝑖 (
𝑡) + (1 + 𝜖𝜇 (𝑡))

× ((−𝛼

𝑙

𝑖
𝜌
𝑖
+ 𝛼

𝐿

𝑖
𝐵
𝑖
)𝑉

𝑖 (
𝑡) + 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝐿

𝑗
𝑉
𝑗 (
𝑡)

+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝐿

𝑗
𝑉
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)) 𝑒𝜀

(𝑡, 𝑡 − 𝜏
𝑖𝑗 (
𝑡)) + 𝛼

𝑀

𝑖

×

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝐿

𝑗
∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)







𝑒
𝜀 (
𝑡, 𝑡 − 𝑠) 𝑉𝑗 (

𝑡 − 𝑠) Δ𝑠) ,

(51)

for 𝑖 = 1, 2, . . . , 𝑛. In addition, for 𝑡 ∈ T+, 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N, we

have from (H
8
) that

𝑥
𝑖
(𝑡

+

𝑘
) − 𝑥

∗

𝑖
(𝑡

+

𝑘
) =






1 − 𝛾
𝑖𝑘











𝑥
𝑖
(𝑡
𝑘
) − 𝑥

∗

𝑖
(𝑡
𝑘
)






≤






𝑥
𝑖
(𝑡
𝑘
) − 𝑥

∗

𝑖
(𝑡
𝑘
)






, 𝑖 = 1, 2, . . . , 𝑛.

(52)

Now, let𝑀 > 1 denote an arbitrary real number and set






𝜑 − 𝜑

∗


∞

= sup
−∞<𝑠<0

max
1≤𝑖≤𝑛






𝜑
𝑖 (
𝑠) − 𝜑

∗

𝑖
(𝑠)






> 0. (53)

It follows from (50) and Definition 13 that

𝑉
𝑖 (
𝑡) =






𝑦
𝑖 (
𝑡)






𝑒
𝜀 (
𝑡, 𝑎) < 𝑀






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ (−∞, 0]T , 𝑖 = 1, 2, . . . , 𝑛.

(54)

We claim that

𝑉
𝑖 (
𝑡) =






𝑦
𝑖 (
𝑡)






𝑒
𝜀 (
𝑡, 𝑎) < 𝑀






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ (0,∞)T , 𝑖 = 1, 2, . . . , 𝑛.

(55)

If it is not true, in view of the arbitrariness of 𝑀, there exist
𝑖 ∈ {1, 2, . . . , 𝑛} and 0 < 𝑡

𝑖
< 𝑡

1
such that

𝑉
𝑖
(𝑡
𝑖
) ≥ 𝑀






𝜑 − 𝜑

∗


∞

, (56)

and for 𝑗 ̸= 𝑖, 𝑗 = 1, 2, . . . , 𝑛, we have

𝑉
𝑗 (
𝑡) < 𝑀






𝜑 − 𝜑

∗


∞

, ∀𝑡 ∈ (−∞, 𝑡
𝑖
)

T
. (57)

Let 𝑟
𝑖
= 𝑉

𝑖
(𝑡
𝑖
)/𝑀‖𝜑 − 𝜑

∗
‖

∞
. Then it follows from (56) and

(57) that

𝑟
𝑖
≥ 1, 𝑉

𝑖
(𝑡
𝑖
) = 𝑟

𝑖
𝑀






𝜑 − 𝜑

∗


∞

,

𝑉
𝑗 (
𝑡) < 𝑟

𝑖
𝑀






𝜑 − 𝜑

∗


∞

.

(58)

Together with (48), (51), (58), and Lemma 10, we obtain

0 ≤ 𝐷

+ 




𝑉

Δ

𝑖
(𝑡
𝑖
)







= 𝐷

+ 




𝑦

Δ

𝑖
(𝑡
𝑖
)







𝑒
𝜀
(𝜎 (𝑡

𝑖
) , 𝑎) +






𝑦
𝑖
(𝑡
𝑖
)






𝑒

Δ

𝜀
(𝑡
𝑖
, 𝑎)

≤ 𝜖𝑉
𝑖
(𝑡
𝑖
) + (1 + 𝜖𝜇 (𝑡

𝑖
))

× ((−𝛼

𝑙

𝑖
𝜌
𝑖
+ 𝛼

𝐿

𝑖
𝐵
𝑖
)𝑉

𝑖
(𝑡
𝑖
) + 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑎

𝑀

𝑖𝑗
𝑓

𝐿

𝑗
𝑉
𝑗
(𝑡
𝑖
)

+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑏

𝑀

𝑖𝑗
𝑔

𝐿

𝑗
𝑉
𝑗
(𝑡
𝑖
− 𝜏

𝑖𝑗
(𝑡
𝑖
)) 𝑒

𝜀
(𝑡
𝑖
, 𝑡
𝑖
− 𝜏

𝑖𝑗
(𝑡
𝑖
))

+ 𝛼

𝑀

𝑖

𝑛

∑

𝑗=1

𝑐

𝑀

𝑖𝑗
ℎ

𝐿

𝑗

× ∫

+∞

0







𝐾
𝑖𝑗 (
𝑠)







𝑒
𝜀
(𝑡
𝑖
, 𝑡
𝑖
− 𝑠)𝑉

𝑗
(𝑡
𝑖
− 𝑠) Δ𝑠)

≤ {𝜖 − 𝛼

𝑙

𝑖
𝜌
𝑖
+ (1 + 𝜖𝜇 (𝑡

𝑖
)) (𝛼

𝐿

𝑖
𝐵
𝑖
+ 𝛼

𝑀

𝑖
𝑅
𝑖
)}

× 𝑟
𝑖
𝑀






𝜑 − 𝜑

∗


∞

.

(59)

Thus,

0 ≤ 𝜖 − 𝛼

𝑙

𝑖
𝜌
𝑖
+ (1 + 𝜖𝜇 (𝑡

𝑖
)) (𝛼

𝐿

𝑖
𝐵
𝑖
+ 𝛼

𝑀

𝑖
𝑅
𝑖
) , (60)

which contradicts (H
9
). Hence, (55) holds. It follows that






𝑥
𝑖 (
𝑡) − 𝑥

∗

𝑖
(𝑡)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ (−∞, 𝑡
1
)

T
, 𝑖 = 1, 2, . . . , 𝑛.

(61)
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When 𝑡 = 𝑡
1
, the second expression of (48) implies






𝑦
𝑖
(𝑡

+

1
)






=






𝑦
𝑖
(𝑡

−

1
) − 𝛾

𝑖1
𝑦
𝑖
(𝑡
1
)






≤






1 − 𝛾
𝑖1











𝑦
𝑖
(𝑡
1
)






≤ lim
𝑡→ 𝑡
−

1






𝑦
𝑖 (
𝑡)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

;

(62)

that is,





𝑥
𝑖
(𝑡

+

1
) − 𝑥

∗

𝑖
(𝑡

+

1
)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

, (63)

where 𝑖 = 1, 2, . . . , 𝑛. Similar to the step of (51)–(63), we can
also prove that






𝑥
𝑖 (
𝑡) − 𝑥

∗

𝑖
(𝑡)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ [𝑡
1
, 𝑡
2
)

T
, 𝑖 = 1, 2, . . . , 𝑛.

(64)

When 𝑡 = 𝑡
2
, again, from the second expression of (48), we

have





𝑥
𝑖
(𝑡

+

2
) − 𝑥

∗

𝑖
(𝑡

+

2
)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

, 𝑖 = 1, 2, . . . , 𝑛.

(65)

By repeating the same procedure, we obtain





𝑥
𝑖 (
𝑡) − 𝑥

∗

𝑖
(𝑡)






< 𝑀𝑒
⊝𝜖






𝜑 − 𝜑

∗


∞

,

∀𝑡 ∈ (0,∞)T , 𝑖 = 1, 2, . . . , 𝑛.

(66)

In view ofDefinition 13, the (𝜔/2)-antiperiodic solution𝑥∗(𝑡)
of system (3) is globally exponentially stable. This completes
the proof.

5. Example

In this section, we give an example to illustrate that our results
are feasible.

When T = Z, 𝜎(𝑡) = 𝑡 + 1, 𝜇(𝑡) = 1, we consider
the following Cohen-Grossberg neural networks system with
impulses:

𝑥

Δ

𝑖
(𝑡) = −𝛼

𝑖
(𝑥

𝑖 (
𝑡))

×
[

[

𝛽
𝑖
(𝑥

𝑖 (
𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (
𝑡)

× ∫

+∞

0

𝐾
𝑖𝑗 (
𝑠) ℎ𝑗

(𝑥
𝑗 (
𝑡 − 𝑠)) Δ𝑠 + 𝐽

𝑖 (
𝑡)
]

]

,

𝑡 ∈ T
+
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡

+

𝑘
) − 𝑥

𝑖
(𝑡

−

𝑘
) =

1

800

𝑥
𝑖
(𝑡
𝑘
) ,

𝑡 = 𝑡
𝑘
, 𝑖, 𝑘 = 1, 2,

(67)

where

𝛼
1
(𝑥

1 (
𝑡)) =

1

200

+

1

300

cos (𝑥
1 (
𝑡)) ,

𝛼
2
(𝑥

2 (
𝑡)) =

5

800

+

1

800

cos (𝑥
2 (
𝑡)) ,

𝛽
1
(𝑥

1 (
𝑡)) = 8𝑥

1 (
𝑡) + 2 sin (𝑥

1 (
𝑡)) ,

𝛽
2
(𝑥

2 (
𝑡)) = 9𝑥

2 (
𝑡) + 4 sin (𝑥

2 (
𝑡)) ,

𝑓
𝑗 (
𝑢) =

1

200

sin 𝑢, 𝑔
𝑗 (
𝑢) =

1

300

sin 𝑢,

ℎ
𝑗 (
𝑢) =

1

400

sin 𝑢, 𝐽
𝑖 (
𝑡) = sin(𝜋

2

𝑡) ,

𝐾
𝑖𝑗 (
𝑡) = 𝑒

−300𝑡
, 𝜏

𝑖𝑗 (
𝑡) = 2









cos(𝜋
2

𝑡)









, 𝑖, 𝑗 = 1, 2,

(𝑎
𝑖𝑗 (
𝑡))

2×2

= (

1

300

+

1

200









sin(𝜋
2

𝑡)









1

300

−

1

400









cos(𝜋
2

𝑡)









1

300









cos(𝜋
2

𝑡)









1

400









sin(𝜋
2

𝑡)









) ,

(𝑏
𝑖𝑗 (
𝑡))

2×2
= (

1

400









cos(𝜋
2

𝑡)









1

500









sin(𝜋
2

𝑡)









1

600









sin(𝜋
2

𝑡)









1

700









sin(𝜋
2

𝑡)









) ,

(𝑐
𝑖𝑗 (
𝑡))

2×2
= (

1

800









sin(𝜋
2

𝑡)









1

900









cos(𝜋
2

𝑡)









1

100









cos(𝜋
2

𝑡)









1

200









cos(𝜋
2

𝑡)









) .

(68)

By calculation, we have

𝛼

𝑀

1
=

5

600

, 𝛼

𝑚

1
= 𝛼

𝑙

1
=

1

600

, 𝛼

𝑀

2
=

3

400

,

𝛼

𝑚

2
= 𝛼

𝑙

2
=

1

200

, 𝛼

𝐿

1
=

1

300

, 𝛼

𝐿

2
=

1

800

,

𝜌
1
= 6, 𝛿

1
= 10, 𝜌

2
= 5, 𝛿

2
= 13,

𝑓

𝑀

𝑗
= 𝑓

𝐿

𝑗
=

1

200

, 𝑔

𝑀

𝑗
= 𝑔

𝐿

𝑗
=

1

300

,

ℎ

𝑀

𝑗
= ℎ

𝐿

𝑗
=

1

400

, 𝐽

𝑀

𝑖
= 1, 𝜌

𝑖𝑘
=

1

800

,

𝜔 = 4,

𝑖, 𝑗, 𝑘 = 1, 2,

(𝑎

𝑀

𝑖𝑗
)

2×2
= (

5

600

1

300

1

300

1

400

) ,
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(𝑏

𝑀

𝑖𝑗
)

2×2
= (

1

400

1

500

1

600

1

700

) ,

(𝑐

𝑀

𝑖𝑗
)

2×2
= (

1

800

1

900

1

100

1

200

) .

(69)

Therefore, 𝐸
1
= 0.02407, 𝐸

2
= 0.05825. Take 𝜖 = 10

−6 and
𝜂 = 10

−3, and then

𝑙
1
≈ −0.009998, 𝑙

2
≈ −0.024999. (70)

It is easy to see that (H
1
)–(H

9
) hold. According to Theorems

16 and 17, system (67) has a 2-antiperiodic solution which is
globally exponentially stable.
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