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Data envelopment analysis (DEA), as a useful management and decision tool, has been widely used since it was first invented
by Charnes et al. in 1978. On the one hand, the DEA models need accurate inputs and outputs data. On the other hand, in
many situations, inputs and outputs are volatile and complex so that they are difficult to measure in an accurate way. The conflict
leads to the researches of uncertain DEA models. This paper will consider DEA in uncertain environment, thus producing a new
model based on uncertain measure. Due to the complexity of the new uncertain DEA model, an equivalent deterministic model is
presented. Finally, a numerical example is presented to illustrate the effectiveness of the uncertain DEA model.

1. Introduction

Data envelopment analysis is a mathematical programming
technique that measures the relative efficiency of decision
making units with multiple inputs and outputs, which was
initialized by Charnes et al. [1]. This was followed by variety
of theory research work, including Banker et al. [2], Charnes
et al. [3], Petersen [4], and Tone [5]. More DEA papers can
refer to Seiford [6] in which 500 references are documented.

The original DEAmodels assume that inputs and outputs
are measured by exact values. However, in many situations,
such as in a manufacturing system, a production process, or
a service system, inputs and outputs are volatile and complex
so that they are difficult to measure in an accurate way. Thus
many researchers tried to model DEAwith various uncertain
theories. Probability theory is the earliest theory which was
used to establish the stochastic DEA models. Sengupta [7]
generalized the stochastic DEA model using the expected
value. Banker [8] incorporated statistical elements into DEA,
thus developing a statisticalmethod.Many papers [9–13] have
employed the chance-constrained programming to DEA in
order to accommodate stochastic variations in data. Fuzzy
theory is another theory which was used to deal with the
uncertainty in DEA. As one of the DEA initiators, Cooper et
al. [14–16] introduced how to deal with imprecise data such as

bounded data, ordinal data, and ratio bounded data in DEA.
Kao and Liu [17] developed amethod to find themembership
functions of the fuzzy efficiency scores when some inputs
or inputs are fuzzy numbers. Entani et al. [18] proposed a
DEA model with an interval efficiency by the pessimistic
and the optimistic values. Many researchers have introduced
possibility measure [19] into DEA [20, 21].

A lot of surveys showed that human uncertainty does
not behave like fuzziness. For example, we say “the input is
about 10.” Generally, we employ fuzzy variable to describe
the concept of “about 10;” then there exists a membership
function, such as a triangular one (9, 10, 11). Based on
this membership function, we can obtain that “the input is
exactly 10” with possibility measure 1. On the other hand,
the opposite event of “not exactly 10” has the same possibility
measure. The conclusion that “not 10” and “exactly 10” have
the same possibility measure is not appropriate.This inspired
Liu [22] to found an uncertainty theory which has become
a branch of axiomatic mathematics for modeling human
uncertainty. This paper will apply the uncertainty theory to
DEA to deal with human uncertainty, thus producing some
uncertain DEA models.

In this paper, we will assume the inputs and outputs are
uncertain variables and propose some uncertain DEA mod-
els. The rest of this paper is organized as follows. Section 2
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will introduce some basic concepts and properties about
uncertain variables. Then an uncertain DEA model as well
as its equivalent crisp model will be presented in Section 3.
Finally, a numerical example will be given to illustrate the
uncertain DEA model in Section 4.

2. Preliminaries

Uncertainty theory was founded by Liu [22] in 2007 and
refined by Liu [23] in 2010. As extensions of uncertainty the-
ory, uncertain process, and uncertain differential equations
[24], uncertain calculus [25] were proposed. Besides, uncer-
tain programming was first proposed by Liu [26] in 2009,
which wants to deal with the optimal problems involving
uncertain variable. This work was followed by an uncertain
multiobjective programming, an uncertain goal program-
ming [27], and an uncertain multilevel programming [28].
Since that, uncertainty theory was used to solve variety of
real optimal problems, including finance [29–31], reliability
analysis [32, 33], graph [34, 35], and train scheduling [36,
37]. In this section, we will state some basic concepts and
results on uncertain variables.These results are crucial for the
remainder of this paper.

Let Γ be a nonempty set, and let Ł be a 𝜎-algebra over
Γ. Each element Λ ∈ Ł is assigned a number 𝑀{Λ} ∈

[0, 1]. In order to ensure that the number 𝑀{Λ} has cer-
tain mathematical properties, Liu [22] presented the four
axioms.

Axiom 1. 𝑀{Γ} = 1 for the universal set Γ.

Axiom 2. 𝑀{Λ} + 𝑀{Λ
𝑐

} = 1 for any event Λ.

Axiom 3. For every countable sequence of events Λ
1
, Λ
2
, . . .,

we have

𝑀{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

𝑀{Λ
𝑖
} . (1)

Axiom 4. Let (Γ
𝑘
, Ł
𝑘
,𝑀
𝑘
) be uncertainty spaces for 𝑘 =

1, 2, . . .. Then the product uncertain measure 𝑀 is an uncer-
tain measure satisfying

𝑀{

∞

∏

𝑘=1

Λ
𝑘
} =

∞

⋀

𝑘=1

𝑀
𝑘
{Λ
𝑘
} , (2)

where Λ
𝑘
are arbitrarily chosen events from Ł

𝑘
for 𝑘 =

1, 2, . . ., respectively.
If the set function 𝑀 satisfies the first three axioms, it is

called an uncertain measure.

Definition 1 (see Liu [22]). Let Γ be a nonempty set, let
Ł be a 𝜎-algebra over Γ, and let 𝑀 be an uncertain
measure. Then the triplet (Γ, Ł,𝑀) is called an uncertainty
space.

Definition 2 (see Liu [22]). An uncertain variable 𝜉 is a
measurable function from an uncertainty space (Γ, Ł,𝑀) to

the set of real numbers; that is, for any Borel set 𝐵 of real
numbers, the set

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ 𝐵} (3)

is an event.

Definition 3 (see Liu [22]). The uncertainty distributionΦ of
an uncertain variable 𝜉 is defined by

Φ (𝑥) = 𝑀 {𝜉 ≤ 𝑥} (4)

for any real number 𝑥.

Example 4. The linear uncertain variable 𝜉 ∼ L(𝑎, 𝑏) has an
uncertainty distribution

Φ (𝑥) =

{{{{{{

{{{{{{

{

0, if 𝑥 ≤ 𝑎,

(𝑥 − 𝑎)

(𝑏 − 𝑎)
, if 𝑎 ≤ 𝑥 ≤ 𝑏,

1, if 𝑥 ≥ 𝑏.

(5)

Example 5. An uncertain variable 𝜉 is called zigzag if it has a
zigzag uncertainty distribution

Φ (𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

0, if 𝑥 ≤ 𝑎,

(𝑥 − 𝑎)

2 (𝑏 − 𝑎)
, if 𝑎 ≤ 𝑥 ≤ 𝑏,

(𝑥 + 𝑐 − 2𝑏)

2 (𝑐 − 𝑏)
, if 𝑏 ≤ 𝑥 ≤ 𝑐,

1, if 𝑥 ≥ 𝑐

(6)

denoted byZ(𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐 are real numbers with 𝑎 <

𝑏 < 𝑐.

Definition 6 (see Liu [25]). The uncertain variables
𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are said to be independent if

𝑀{

𝑛

⋂

𝑖=1

(𝜉
𝑖
∈ 𝐵
𝑖
)} =

𝑛

⋀

𝑖=1

𝑀{𝜉
𝑖
∈ 𝐵
𝑖
} (7)

for any Borel sets 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
.

Definition 7 (see Liu [23]). An uncertainty distribution Φ

of an uncertain variable 𝜉 is said to be regular if its inverse
function Φ

−1

(𝛼) exists and is unique for each 𝛼 ∈ (0, 1). In
this case, the inverse function Φ

−1

(𝛼) is called the inverse
uncertainty distribution of 𝜉.

Example 8. The inverse uncertainty distribution of a zigzag
uncertain variableZ(𝑎, 𝑏, 𝑐) is

Φ
−1

(𝛼) = {
(1 − 2𝛼) 𝑎 + 2𝛼𝑏, if 𝛼 ≤ 0.5,

(2 − 2𝛼) 𝑏 + (2𝛼 − 1) 𝑐, if 𝛼 > 0.5.
(8)

Theorem 9 (see Liu [23]). Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be independent

uncertain variables with regular uncertainty distributions
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Φ
1
, Φ
2
, . . . , Φ

𝑛
, respectively. If 𝑓 is a strictly increasing func-

tion, then

𝜉 = 𝑓 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) (9)

is an uncertain variable with inverse uncertainty distribution

Ψ
−1

(𝛼) = 𝑓 (Φ
−1

1
(𝛼) , Φ

−1

2
(𝛼) , . . . , Φ

−1

𝑛
(𝛼)) . (10)

Example 10. Let 𝜉 be an uncertain variable with regular
uncertainty distribution Φ. Since 𝑓(𝑥) = 𝑎𝑥 + 𝑏 is a strictly
increasing function for any constants 𝑎 > 0 and 𝑏, the inverse
uncertainty distribution of 𝑎𝜉 + 𝑏 is

Ψ
−1

(𝛼) = 𝑎Φ
−1

1
(𝛼) + 𝑏. (11)

Example 11. Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be independent uncertain vari-

ables with regular uncertainty distributions Φ
1
, Φ
2
, . . . , Φ

𝑛
,

respectively. Since

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
(12)

is a strictly increasing function, the sum

𝜉 = 𝜉
1
+ 𝜉
2
+ ⋅ ⋅ ⋅ + 𝜉

𝑛
(13)

is an uncertain variable with inverse uncertainty distribution

Ψ
−1

(𝛼) = Φ
−1

1
(𝛼) + Φ

−1

2
(𝛼) + ⋅ ⋅ ⋅ + Φ

−1

𝑛
(𝛼) . (14)

Theorem 12 (see Liu [23]). Assume the constraint function
𝑔(𝑥, 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
) is strictly increasing with respect

to 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑘
and strictly decreasing with respect to

𝜉
𝑘+1

, 𝜉
𝑘+2

, . . . , 𝜉
𝑛
. If 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are independent uncertain

variables with uncertainty distributions Φ
1
, Φ
2
, . . . , Φ

𝑛
,

respectively, then the chance constraint

𝑀{𝑔 (𝑥, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) ≤ 0} ≥ 𝛼 (15)

holds if and only if

𝑔 (𝑥,Φ
−1

1
(𝛼) , . . . , Φ

−1

𝑘
(𝛼) , Φ

−1

𝑘+1
(1 − 𝛼) , . . . , Φ

−1

𝑛
(1 − 𝛼))

≤ 0.

(16)

3. DEA Model

In many situations, inputs and outputs are volatile and
complex so that they are difficult to measure in an accurate
way. This inspired many researchers to apply probability to
DEA. As we know, probability or statistics needs a large
amount of historical data. In the vast majority of real cases,
the sample size is too small (even no sample) to estimate a
probability distribution.Then we have to invite some domain
experts to evaluate their degree of belief that each event will
occur. This section will give some researches to empirical
uncertain DEA using the theory introduced in Section 2.The
new symbols and notations are given as follows:

DMU
𝑖
: the 𝑖th DMU, 𝑖 = 1, 2, . . . , 𝑛;

DMU
0
: the target DMU;

𝑥
𝑘
= (𝑥
𝑘1
, 𝑥
𝑘2
, . . . , 𝑥

𝑘𝑝
): the uncertain inputs vector of

DMU
𝑘
, 𝑘 = 1, 2, . . . , 𝑛;

Φ
𝑘𝑖
(𝑥): the uncertainty distribution of 𝑥

𝑘𝑖
, 𝑘 =

1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝;
𝑥
0
= (𝑥
01
, 𝑥
02
, . . . , 𝑥

0𝑝
): the inputs vector of the target

DMU
0
;

Φ
0𝑖
(𝑥): the uncertainty distribution of 𝑥

0𝑖
, 𝑖 =

1, 2, . . . , 𝑝;
𝑦
𝑘
= (𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑞
): the uncertain outputs vector

of DMU
𝑘
, 𝑘 = 1, 2, . . . , 𝑛;

Ψ
𝑘𝑗
(𝑥): the uncertainty distribution of 𝑦

𝑘𝑗
, 𝑘 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑞;
𝑦
0

= (𝑦
01
, 𝑦
02
, . . . , 𝑦

0𝑞
): the outputs vector of the

target DMU
0
;

Ψ
0𝑗
(𝑥): the uncertainty distribution of 𝑦

0𝑗
, 𝑗 =

1, 2, . . . , 𝑞.

3.1. Uncertainty Distributions of Inputs and Outputs. Liu
and Ha [38] proposed a questionnaire survey for collecting
expert’s experimental data. It is based on expert’s experimen-
tal data rather than historical data. The starting point is to
invite one expert who is asked to complete a questionnaire
about themeaning of an uncertain input (output) 𝜉 like “How
many is the input (output).”

We first ask the domain expert to choose a possible value
𝑥 that the uncertain input 𝜉 may take and then quiz him,

“How likely is 𝜉 less than or equal to 𝑥?”

Denote the expert’s belief degree by 𝛼. An expert’s
experimental data (𝑥, 𝛼) is thus acquired from the domain
expert.

Repeating the above process, we can obtain the following
expert’s experimental data:

(𝑥
1
, 𝛼
1
) , (𝑥
2
, 𝛼
2
) , . . . , (𝑥

𝑛
, 𝛼
𝑛
) (17)

that meet the following consistence condition (perhaps after
a rearrangement):

𝑥
1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
, 0 ≤ 𝛼

1
≤ 𝛼
2
≤ ⋅ ⋅ ⋅ 𝛼

𝑛
≤ 1. (18)

Based on those expert’s experimental data, Liu and Ha
[38] suggested an empirical uncertainty distribution,

Φ (𝑥)

=

{{{{

{{{{

{

0, if 𝑥 ≤ 𝑥
1
,

𝛼
𝑖
+

(𝛼
𝑖+1

− 𝛼
𝑖
) (𝑥 − 𝑥

𝑖
)

𝑥
𝑖+1

− 𝑥
𝑖

, if 𝑥
𝑖
≤ 𝑥 ≤ 𝑥

𝑖+1
, 1 ≤ 𝑖 < 𝑛,

1, if 𝑥 > 𝑥
𝑛
.

(19)

Assume there are 𝑚 domain experts and each produces
an uncertainty distribution. Then we may get 𝑚 uncertainty
distributions Φ

1
(𝑥), Φ

2
(𝑥), . . . , Φ

𝑚
(𝑥). The Delphi method
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was originally developed in the 1950s by the RAND Cor-
poration based on the assumption that group experience is
more valid than individual experience.Wang et al. [39] recast
the Delphi method as a process to determine the uncertainty
distribution. The main steps are listed as follows.

Step 1. The 𝑚 domain experts provide their expert’s experi-
mental data,

(𝑥
𝑖𝑗
, 𝛼
𝑖𝑗
) , 𝑗 = 1, 2, . . . , 𝑛

𝑖
, 𝑖 = 1, 2, . . . , 𝑚. (20)

Step 2. Use the 𝑖th expert’s experimental data
(𝑥
𝑖1
, 𝛼
𝑖1
), (𝑥
𝑖2
, 𝛼
𝑖2
), . . . , (𝑥

𝑖𝑛𝑖
, 𝛼
𝑖𝑛𝑖
) to generate the 𝑖th expert’s

uncertainty distributionΦ
𝑖
.

Step 3. ComputeΦ(𝑥) = 𝑤
1
Φ
1
(𝑥)+𝑤

2
Φ
2
(𝑥)+⋅ ⋅ ⋅+𝑤

𝑚
Φ
𝑚
(𝑥),

where 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
are convex combination coefficients.

Step 4. If |𝛼
𝑖𝑗
− Φ(𝑥

𝑖𝑗
)| are less than a given level 𝜀 > 0, then

go to Step 5. Otherwise, the 𝑖th expert receives the summary
(Φ and reasons) and then provides a set of revised expert’s
experimental data. Go to Step 2.

Step 5. The last Φ is the uncertainty distribution of the input
(output).

3.2. Uncertain DEAModel. Similar to traditional DEAmodel
[3], the objective of the uncertain DEA model is to max-
imize the total slacks in inputs and outputs subject to the
constraints. Then the uncertain DEA model can be given as
follows:

max
𝑝

∑

𝑖=1

𝑠
−

𝑖
+

𝑞

∑

𝑗=1

𝑠
+

𝑗

subject to: 𝑀{

𝑛

∑

𝑘=1

𝑥
𝑘𝑖
𝜆
𝑘
≤ 𝑥
0𝑖
− 𝑠
−

𝑖
} ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑝,

𝑀{

𝑛

∑

𝑘=1

𝑦
𝑘𝑗
𝜆
𝑘
≥ 𝑦
0𝑗

+ 𝑠
+

𝑗
} ≥ 𝛼, 𝑗 = 1, 2 . . . , 𝑞,

𝑛

∑

𝑘=1

𝜆
𝑘
= 1,

𝜆
𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑛,

𝑠
−

𝑖
≥ 0, 𝑖 = 1, 2 . . . , 𝑝,

𝑠
+

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑞.

(21)

Definition 13 (𝛼-efficiency). DMU
0
is 𝛼-efficient if 𝑠

−∗

𝑖
and

𝑠
+∗

𝑗
are zero for 𝑖 = 1, 2, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑞, where 𝑠

−∗

𝑖

and 𝑠
+∗

𝑗
are optimal solutions of (21).

Since the uncertain measure is involved, this definition is
different from traditional efficiency definition. For instance,
as determined by the choice of 𝛼, there is a risk that DMU

0

will not be efficient even when the condition of Definition 13
is satisfied.

Since 𝑗 = 0 is one of the DMU
𝑗
, we can always get a

solution with 𝜆
0

= 1, 𝜆
𝑗

= 0 (𝑗 ̸= 0), and all slacks zero.
Thus this uncertain DEA model has feasible solution and the
optimal value 𝑠

−∗

𝑖
= 𝑠
+∗

𝑗
= 0 for all 𝑖, 𝑗.

3.3. Deterministic Model. Model (21) is an uncertain pro-
gramming model, which is too complex to compute directly.
This section will give its equivalent crisp model to simplify
the computation process.

Theorem 14. Assume that 𝑥
1𝑖
, 𝑥
2𝑖
, . . . , 𝑥

𝑛𝑖
are independent

uncertain inputs with uncertainty distribution
Φ
1𝑖
, Φ
2𝑖
, . . . , Φ

𝑛𝑖
for each 𝑖, 𝑖 = 1, 2, . . . , 𝑝, and 𝑦

1𝑖
, 𝑦
2𝑖
, . . . , 𝑦

𝑛𝑖

are independent uncertain outputs with uncertainty
distribution Ψ

1𝑗
, Ψ
2𝑗
, . . . , Ψ

𝑛𝑗
for each 𝑗, 𝑗 = 1, 2, . . . , 𝑞.

Then

𝑀{

𝑛

∑

𝑘=1

𝑥
𝑘𝑖
𝜆
𝑘
≤ 𝑥
0𝑖
− 𝑠
−

𝑖
} ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑝,

𝑀{

𝑛

∑

𝑘=1

𝑦
𝑘𝑗
𝜆
𝑘
≥ 𝑦
0𝑗

+ 𝑠
+

𝑗
} ≥ 𝛼, 𝑗 = 1, 2 . . . , 𝑞

(22)

holds if and only if

𝑛

∑

𝑘=1,𝑘 ̸=0

𝜆
𝑘
Φ
−1

𝑘𝑖
(𝛼) + 𝜆

0
Φ
−1

0𝑖
(1 − 𝛼) ≤ Φ

−1

0𝑖
(1 − 𝛼) − 𝑠

−

𝑖
,

𝑖 = 1, 2, . . . , 𝑝,

𝑛

∑

𝑘=1,𝑘 ̸=0

𝜆
𝑘
Ψ
−1

𝑘𝑗
(1 − 𝛼) + 𝜆

0
Ψ
−1

0𝑗
(𝛼) ≥ Ψ

−1

0𝑗
(𝛼) + 𝑠

−

𝑗
,

𝑗 = 1, 2, . . . , 𝑞.

(23)

Proof. Without loss of generality, let 𝑖 = 1 and 𝑥
0
= 𝑥
1
; then

we will consider the equation

𝑀{

𝑛

∑

𝑘=1

𝑥
𝑘1
𝜆
𝑘
≤ 𝑥
11

− 𝑠
−

𝑖
} ≥ 𝛼. (24)

Rewrite (24) as

𝑀{

𝑛

∑

𝑘=2

𝑥
𝑘1
𝜆
𝑘
− (1 − 𝜆

1
) 𝑥
11

≤ −𝑠
−

𝑖
} ≥ 𝛼. (25)

Since −(1 − 𝜆
1
)𝑥
11

is an uncertain variable which is
decreasing with respect to 𝑥

11
, its inverse uncertainty distri-

bution is

Υ
−1

11
(𝛼) = − (1 − 𝜆

1
)Φ
−1

11
(1 − 𝛼) , 0 < 𝛼 < 1. (26)

For each 2 ≤ 𝑘 ≤ 𝑛, 𝑥
𝑘1
𝜆
𝑘
is an uncertain variable whose

inverse uncertainty distribution is

Υ
−1

𝑘1
(𝛼) = 𝜆

𝑘
Φ
−1

𝑘1
(𝛼) , 0 < 𝛼 < 1. (27)
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Table 1: DMUs with two uncertain inputs and two uncertain outputs.

DMU
𝑖

1 2 3 4 5
Input 1 Z(3.5, 4.0, 4.5) Z(2.9, 2.9, 2.9) Z(4.4, 4.9, 5.4) Z(3.4, 4.1, 4.8) Z(5.9, 6.5, 7.1)
Input 2 Z(2.9, 3.1, 3.3) Z(1.4, 1.5, 1.6) Z(3.2, 3.6, 4.0) Z(2.1, 2.3, 2.5) Z(3.6, 4.1, 4.6)
Output 1 Z(2.4, 2.6, 2.8) Z(2.2, 2.2, 2.2) Z(2.7, 3.2, 3.7) Z(2.5, 2.9, 3.3) Z(4.4, 5.1, 5.8)
Output 2 Z(3.8, 4.1, 4.4) Z(3.3, 3.5, 3.7) Z(4.3, 5.1, 5.9) Z(5.5, 5.7, 5.9) Z(6.5, 7.4, 8.3)

Table 2: Results of evaluating the DMUs with 𝛼 = 0.6.

DMUs (𝜆
∗

1
, 𝜆
∗

2
, 𝜆
∗

3
, 𝜆
∗

4
, 𝜆
∗

5
)

𝑝

∑

𝑖=1

𝑠
−∗

𝑖
+

𝑞

∑

𝑗=1

𝑠
+∗

𝑗
The result of evaluating

DMU1 (0, 0.25, 0, 0.75, 0) 1.89 Inefficiency
DMU2 (0, 1, 0, 0, 0) 0 Efficiency
DMU3 (0, 0, 0, 0.78, 0.22) 1.54 Inefficiency
DMU4 (0, 0, 0, 1, 0) 0 Efficiency
DMU5 (0, 0, 0, 0, 1) 0 Efficiency

It follows from the operational law that the inverse
uncertainty distribution of the sum∑

𝑛

𝑘=2
𝑥
𝑘1
𝜆
𝑘
− (1 − 𝜆

1
)𝑥
11

is

Υ
−1

(𝛼) =

𝑛

∑

𝑘=1

Υ
−1

21
(𝛼)

=

𝑛

∑

𝑘=2

𝜆
𝑘
Φ
−1

𝑘1
(𝛼) − (1 − 𝜆

1
)Φ
−1

11
(1 − 𝛼) , 0 < 𝛼 < 1.

(28)

From which we may derive the result immediately for 𝑖 = 1

and 𝑥
0
= 𝑥
1
. Similarly, we can get other results.

Following Theorem 14, the uncertain DEA model can be
converted to the crisp model as follows:

max
𝑝

∑

𝑖=1

𝑠
−

𝑖
+

𝑞

∑

𝑗=1

𝑠
+

𝑗

subject to:
𝑛

∑

𝑘=1,𝑘 ̸=0

𝜆
𝑘
Φ
−1

𝑘𝑖
(𝛼) + 𝜆

0
Φ
−1

0𝑖
(1 − 𝛼)

≤ Φ
−1

0𝑖
(1 − 𝛼) − 𝑠

−

𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

𝑛

∑

𝑘=1,𝑘 ̸=0

𝜆
𝑘
Ψ
−1

𝑘𝑗
(1 − 𝛼) + 𝜆

0
Ψ
−1

0𝑗
(𝛼)

≥ Ψ
−1

0𝑗
(𝛼) + 𝑠

+

𝑗
, 𝑗 = 1, 2, . . . , 𝑞,

𝑛

∑

𝑘=1

𝜆
𝑘
= 1,

𝜆
𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑛,

𝑠
−

𝑖
≥ 0, 𝑖 = 1, 2 . . . , 𝑝,

𝑠
+

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑞

(29)

which is a linear programming model. Thus it can be easily
solved by many traditional methods.

4. A Numerical Example

This example wants to illustrate the uncertain DEA model.
For simplicity, we will only consider five DMUs with two
inputs and two outputs which are all zigzag uncertain vari-
ables denoted by Z(𝑎, 𝑏, 𝑐). Table 1 gives the information of
the DMUs.

For illustration, let DMU
1
be the target DMU; then the

uncertain DEA model (29) can be written as

max 𝑠
−

1
+ 𝑠
−

2
+ 𝑠
+

1
+ 𝑠
+

2

subject to:
5

∑

𝑘=2

𝜆
𝑘
Φ
−1

𝑘1
(𝛼) + 𝜆

1
Φ
−1

11
(1 − 𝛼)

≤ Φ
−1

11
(1 − 𝛼) − 𝑠

−

1
,

5

∑

𝑘=2

𝜆
𝑘
Φ
−1

𝑘2
(𝛼) + 𝜆

1
Φ
−1

12
(1 − 𝛼)

≤ Φ
−1

12
(1 − 𝛼) − 𝑠

−

2
,

5

∑

𝑘=2

𝜆
𝑘
Ψ
−1

𝑘1
(1 − 𝛼) + 𝜆

1
Ψ
−1

11
(𝛼) ≥ Ψ

−1

11
(𝛼) + 𝑠

+

1
,

5

∑

𝑘=2

𝜆
𝑘
Ψ
−1

𝑘2
(1 − 𝛼) + 𝜆

1
Ψ
−1

12
(𝛼) ≥ Ψ

−1

12
(𝛼) + 𝑠

+

2
,

5

∑

𝑘=1

𝜆
𝑘
= 1,

𝜆
𝑘
≥ 0, 𝑘 = 1, 2, . . . , 5,
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Table 3: Results of evaluating the DMUs with different confidence level 𝛼.

𝛼 DMU1 DMU2 DMU3 DMU4 DMU5

0.5 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.6 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.7 Inefficiency Efficiency Inefficiency Efficiency Efficiency
0.8 Inefficiency Efficiency Efficiency Efficiency Efficiency
0.9 Efficiency Efficiency Efficiency Efficiency Efficiency

𝑠
−

1
≥ 0,

𝑠
−

2
≥ 0,

𝑠
+

1
≥ 0,

𝑠
+

2
≥ 0.

(30)

Table 2 shows the results of evaluating DMUs with con-
fidence level 𝛼 = 0.6. The results can be interpreted in the
following way: DMU

1
and DMU

3
are inefficient, whereas

DMU
2
, DMU

4
, and DMU

5
are efficient. Moreover, DMU

3

is more efficient than DMU
1
from the total slacks ∑𝑝

𝑖=1
𝑠
−∗

𝑖
+

∑
𝑞

𝑗=1
𝑠
+∗

𝑗
, since they are both inefficient.

Uncertain efficiencies obtained from model (30) for
different confidence levels 𝛼 are shown in Table 3. DMU

1
is

inefficient at all confidence levels, whereas DMU
2
, DMU

4
,

and DMU
5
are always efficient at all levels. It can be seen that

the number of the efficient DMUs is affected by the confi-
dence level 𝛼. The higher the confidence level 𝛼 is, the bigger
the number of efficient DMUs is. This phenomena indicate
that uncertain DEA is more complex than the traditional
DEA because of the inherent uncertainty contained in inputs
and outputs.

5. Conclusion

Due to its widely practical used background, data envelop-
ment analysis (DEA) has become a pop area of research.
Since the data cannot be preciselymeasured in some practical
cases, many papers have been published when the inputs and
outputs are uncertain. This paper has given some researches
to uncertain DEA model. A new DEA model as well as its
equivalent deterministic model was presented. For illustra-
tion, a numerical example was designed.
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