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This paper is to investigate the Schwarzian type difference equation [(Δ3𝑓/Δ𝑓) − (3/2) (Δ2𝑓/Δ𝑓)2]
𝑘

= 𝑅 (𝑧, 𝑓) =
(𝑃(𝑧, 𝑓)/𝑄(𝑧, 𝑓)) , where 𝑅(𝑧, 𝑓) is a rational function in 𝑓 with polynomial coefficients, 𝑃(𝑧, 𝑓), respectively 𝑄(𝑧, 𝑓) are two
irreducible polynomials in 𝑓 of degree 𝑝, respectively 𝑞. Relationship between 𝑝 and 𝑞 is studied for some special case. Denote
𝑑 = max {𝑝, 𝑞}. Let 𝑓(𝑧) be an admissible solution of (∗) such that 𝜌

2
(𝑓) < 1; then for 𝑠 (≥2) distinct complex constants 𝛼

1
, . . . , 𝛼

𝑠
,

𝑞 + 2𝑘∑𝑠
𝑗=1
𝛿(𝛼
𝑗
, 𝑓) ≤ 8𝑘. In particular, if𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), then 𝑑 + 2𝑘∑𝑠

𝑗=1
𝛿(𝛼
𝑗
, 𝑓) ≤ 4𝑘.

1. Introduction and Results

Throughout this paper, a meromorphic function always
means being meromorphic in the whole complex plane, and
𝑐 always means a nonzero constant. For a meromorphic
function 𝑓(𝑧), we define its shift by 𝑓(𝑧 + 𝑐) and define its
difference operators by

Δ
𝑐
𝑓 (𝑧) = 𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧) , Δ𝑛

𝑐
𝑓 (𝑧) = Δ𝑛−1

𝑐
(Δ
𝑐
𝑓 (𝑧)) ,

𝑛 ∈ N, 𝑛 ≥ 2.
(1)

In particular, Δ𝑛
𝑐
𝑓(𝑧) = Δ𝑛𝑓(𝑧) for the case 𝑐 = 1. We use

standard notations of theNevanlinna theory ofmeromorphic
functions such as 𝑇(𝑟, 𝑓), 𝑚(𝑟, 𝑓), and 𝑁(𝑟, 𝑓) and as stated
in [1–3]. For a constant 𝑎, we define theNevanlinna deficiency
by

𝛿 (𝑎, 𝑓) = lim inf
𝑟→∞

𝑚(𝑟, 1/ (𝑓 − 𝑎))
𝑇 (𝑟, 𝑓)

= 1 − lim sup
𝑟→∞

𝑁(𝑟, 1/ (𝑓 − 𝑎))
𝑇 (𝑟, 𝑓) .

(2)

Recently, numbers of papers (see, e.g., [4–12]) are devoted
to considering the complex difference equations and differ-
ence analogues of Nevanlinna theory. Due to some idea of
[13], we consider the admissible solution of the Schwarzian
type difference equation:

𝑆
𝑘
(𝑓) := [Δ

3𝑓
Δ𝑓 − 32(

Δ2𝑓
Δ𝑓 )
2

]
𝑘

= 𝑅 (𝑧, 𝑓) = 𝑃 (𝑧, 𝑓)
𝑄 (𝑧, 𝑓) ,

(3)

where 𝑅(𝑧, 𝑓) is a rational function in 𝑓 with polynomial
coefficients, 𝑃(𝑧, 𝑓), respectively𝑄(𝑧, 𝑓), are two irreducible
polynomials in 𝑓 of degree 𝑝, respectively, 𝑞. Here and in the
following, “admissible” always means “transcendental.” And
we denote 𝑑 = max{𝑝, 𝑞} from now on. For the existence of
solutions of (3), we give some examples below.

Examples. (1) 𝑓(𝑧) = sin 𝜋𝑧 + 𝑧 is an admissible solution of
the Schwarzian type difference equation:

Δ3𝑓
Δ𝑓 − 32(

Δ2𝑓
Δ𝑓 )
2

=
−8 [𝑓2 + (1 − 2𝑧) 𝑓 + 𝑧 (𝑧 − 1)]
4𝑓2 − 4 (2𝑧 + 1) 𝑓 + (2𝑧 + 1)2

.
(4)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 306360, 5 pages
http://dx.doi.org/10.1155/2014/306360

http://dx.doi.org/10.1155/2014/306360


2 Abstract and Applied Analysis

(2) 𝑓(𝑧) = (𝑒𝑧 ln 2/ sin 2𝜋𝑧) + 𝑧 is an admissible solution
of the Schwarzian type difference equation

Δ3𝑓
Δ𝑓 − 32(

Δ2𝑓
Δ𝑓 )
2

= −𝑓2 + 2 (𝑧 + 1) 𝑓 − 𝑧2 − 2𝑧
2𝑓2 − 4 (𝑧 − 1) 𝑓 + 2(𝑧 − 1)2

. (5)

(3) Let 𝑓(𝑧) = 𝑧2 + 𝑧, then 𝑓(𝑧) solves the Schwarzian
type difference equation:

Δ3𝑓
Δ𝑓 − 32(

Δ2𝑓
Δ𝑓 )
2

= − 3
2 [𝑓2 − 2 (𝑧2 − 1) 𝑓 + (𝑧2 − 1)2]

.

(6)

This example shows that (3) may admit polynomial solutions.

Considering the relationship between 𝑝 and 𝑞 in those
examples above, we prove the following result.

Theorem 1. For the Schwarzian type difference equation (3)
with polynomial coefficients, note the following.

(i) If it admits an admissible solution 𝑓(𝑧) such that
𝜌
2
(𝑓) < 1, then

𝑝𝑚 (𝑟, 𝑓) ≤ 𝑞𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (7)

In particular, if𝑚(𝑟, 𝑓) ̸= 𝑆(𝑟, 𝑓), then 𝑝 ≤ 𝑞.
(ii) If its coefficients are all constants and it admits a

polynomial solution 𝑓(𝑧) with degree 𝑠, then 𝑠 ≥ 2 and
𝑞𝑠 = 𝑝𝑠 + 2𝑘.

Remark 2. From examples (1) and (2), we conjecture that
𝑝 = 𝑞 inTheorem 1(i). However, we cannot prove it currently.
From example (3) given before, we see that the restriction on
the coefficients in Theorem 1(ii) cannot be omitted.

For the Schwarzian differential equation,

𝑆
𝑘
(𝑓) = [𝑓



𝑓 −
3
2(

𝑓
𝑓 )
2

]
𝑘

= 𝑅 (𝑧, 𝑓) = 𝑃 (𝑧, 𝑓)
𝑄 (𝑧, 𝑓) ,

(8)

where 𝑅(𝑧, 𝑓), 𝑃(𝑧, 𝑓), and 𝑄(𝑧, 𝑓) are as stated before;
Ishizaki [13] proved the following result (see also Theorem
9.3.2 in [2]).

Theorem A (see [2, 13]). Let 𝑓(𝑧) be an admissible solution
of (8) with polynomial coefficients, and let 𝛼

1
, . . . , 𝛼

𝑠
be 𝑠 (≥2)

distinct complex constants. Then

𝑑 + 2𝑘
𝑠

∑
𝑗=1

𝛿 (𝛼
𝑗
, 𝑓) ≤ 4𝑘. (9)

For the Schwarzian type difference equation (3), we prove
the following result.

Theorem 3. Let 𝑓(𝑧) be an admissible solution of (3) with
polynomial coefficients such that 𝜌

2
(𝑓) < 1, and let 𝛼

1
, . . . , 𝛼

𝑠

be 𝑠 (≥2) distinct complex constants. Then

𝑞 + 2𝑘
𝑠

∑
𝑗=1

𝛿 (𝛼
𝑗
, 𝑓) ≤ 8𝑘. (10)

In particular, if𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), then

𝑑 + 2𝑘
𝑠

∑
𝑗=1

𝛿 (𝛼
𝑗
, 𝑓) ≤ 4𝑘. (11)

Remark 4. From Theorem 1, under the condition 𝑁(𝑟, 𝑓) =
𝑆(𝑟, 𝑓) in Theorem 3, we have 𝑑 = 𝑞 in (11). The behavior of
the zeros and the poles of 𝑓(𝑧) in 𝑆

𝑘
(𝑓) is essentially different

from that in the 𝑆
𝑘
(𝑓). We wonder whether the restriction

𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓) can be omitted or not.

2. Lemmas

The following lemmaplays a very important role in the theory
of complex differential equations and difference equations.
It can be found in Mohon’ko [14] and Valiron [15] (see also
Theorem 2.2.5 in the book of Laine and Yang [2]).

Lemma 5 (see [14, 15]). Let 𝑓(𝑧) be a meromorphic function.
Then, for all irreducible rational functions in 𝑓,

𝑅 (𝑧, 𝑓) = 𝑃 (𝑧, 𝑓)
𝑄 (𝑧, 𝑓) =

∑𝑝
𝑖=0
𝑎
𝑖
(𝑧) 𝑓𝑖

∑𝑞
𝑗=0

𝑏
𝑗 (𝑧) 𝑓𝑗

, (12)

with meromorphic coefficients 𝑎
𝑖
(𝑧), 𝑏
𝑗
(𝑧) such that

𝑇 (𝑟, 𝑎
𝑖
) = 𝑆 (𝑟, 𝑓) , 𝑖 = 0, . . . , 𝑝,

𝑇 (𝑟, 𝑏
𝑗
) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, . . . , 𝑞,

(13)

and the characteristic function of 𝑅(𝑧, 𝑓) satisfies

𝑇 (𝑟, 𝑅 (𝑧, 𝑓)) = 𝑑𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (14)

where 𝑑 = max{𝑝, 𝑞}.

The following two results can be found in [10]. In fact,
Lemma 6 is a special case of Lemma 8.3 in [10].

Lemma 6 (see [10]). Let 𝑓(𝑧) be a meromorphic function of
hyper order 𝜌

2
(𝑓) = 𝜍 < 1, 𝑐 ∈ C and 𝜀 > 0. Then

𝑇 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (15)

possibly outside of a set of 𝑟 with finite logarithmic measure.

Lemma 7 (see [10]). Let 𝑓(𝑧) be a meromorphic function of
hyper order 𝜌

2
(𝑓) = 𝜍 < 1, 𝑐 ∈ C and 𝜀 > 0. Then

𝑚(𝑟, 𝑓 (𝑧 + 𝑐)𝑓 (𝑧) ) = 𝑜(𝑇 (𝑟, 𝑓)𝑟1−𝜍−𝜀 ) = 𝑆 (𝑟, 𝑓) , (16)

possibly outside of a set of 𝑟 with finite logarithmic measure.

From Lemma 7, we can easily get the following conclu-
sion.
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Lemma 8. Let 𝑓(𝑧) be a meromorphic function of hyper order
𝜌
2
(𝑓) = 𝜍 < 1, 𝑐 ∈ C and 𝜀 > 0. Then

𝑚(𝑟, Δ
𝑛

𝑐
𝑓 (𝑧)
𝑓 (𝑧) ) = 𝑆 (𝑟, 𝑓) ,

𝑚(𝑟, Δ
𝑘

𝑐
𝑓 (𝑧)

Δ𝑗𝑐𝑓 (𝑧)
) = 𝑆 (𝑟, 𝑓) , 𝑘 > 𝑗,

(17)

possibly outside of a set of 𝑟 with finite logarithmic measure.

Lemma 9. Let 𝑓 be an admissible solution of (3) with
coefficients. Then, using the notation 𝑄(𝑧) := 𝑄(𝑧, 𝑓(𝑧)),

𝑞𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑁(𝑟, 1𝑄) . (18)

In particular, if𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), then

𝑑𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑁(𝑟, 1𝑄) . (19)

Proof. We use the idea by Ishizaki [13] (see also [2]) to prove
Lemma 9. It follows from Lemma 8 that

𝑚(𝑟, 𝑅) = 𝑚(𝑟, [Δ
3𝑓
Δ𝑓 − 32(

Δ2𝑓
Δ𝑓 )
2

]
𝑘

)

≤ 𝑘𝑚(𝑟, Δ
3𝑓
Δ𝑓 ) + 2𝑘𝑚(𝑟, Δ

2𝑓
Δ𝑓 )

+ 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) .

(20)

From this and Lemma 5, we get

𝑑𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, 𝑅) = 𝑁 (𝑟, 𝑅) + 𝑆 (𝑟, 𝑓) , (21)

and hence

𝑑𝑇 (𝑟, 𝑓) = 𝑁 (𝑟, 𝑅) + 𝑆 (𝑟, 𝑓) . (22)

If 𝑑 = 𝑝 > 𝑞, since all coefficients of 𝑃(𝑧, 𝑓) and 𝑄(𝑧, 𝑓)
are polynomials, there are at the most finitely many poles of
𝑅(𝑧, 𝑓), neither the poles of 𝑓(𝑧) nor the zeros of 𝑄(𝑧, 𝑓).
Therefore, we see that

𝑁(𝑟, 𝑅) ≤ (𝑝 − 𝑞)𝑁 (𝑟, 𝑓) + 𝑁(𝑟, 1𝑄) + 𝑆 (𝑟, 𝑓)

≤ (𝑝 − 𝑞) 𝑇 (𝑟, 𝑓) + 𝑁(𝑟, 1𝑄) + 𝑆 (𝑟, 𝑓) .
(23)

We obtain (18) from this and (22) immediately.
If 𝑑 = 𝑞 ≥ 𝑝, there are at most finitely many poles of

𝑅(𝑧, 𝑓), not the zeros of 𝑄(𝑧, 𝑓), then

𝑁(𝑟, 𝑅) ≤ 𝑁(𝑟, 1𝑄) + 𝑆 (𝑟, 𝑓) . (24)

Now (18) follows from (22) and (24).
Notice that if 𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), then (24) always holds.

This finishes the proof of Lemma 9.

3. Proof of Theorem 1

Case 1. Equation (3) admits an admissible solution 𝑓(𝑧) such
that 𝜌
2
(𝑓) < 1. Since all coefficients of𝑃(𝑧, 𝑓) and𝑄(𝑧, 𝑓) are

polynomials, there are at the most finitely many poles of 𝑓(𝑧)
that are not the poles of𝑃(𝑧, 𝑓) and𝑄(𝑧, 𝑓). This implies that

𝑁(𝑟, 𝑃) = 𝑝𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟, 𝑄) = 𝑞𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(25)

From Lemma 5, we get

𝑇 (𝑟, 𝑃) = 𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑇 (𝑟, 𝑄) = 𝑞𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(26)

We can deduce from (3), (25), (26), and Lemma 8 that

𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, 𝑃)
= 𝑚 (𝑟, 𝑃) + 𝑁 (𝑟, 𝑃)

≤ 𝑝𝑁 (𝑟, 𝑓) + 𝑚 (𝑟, 𝑆
𝑘
(𝑓)𝑄)

+ 𝑆 (𝑟, 𝑓)

≤ 𝑝𝑁 (𝑟, 𝑓) + 𝑚 (𝑟, 𝑆
𝑘
(𝑓))

+ 𝑚 (𝑟, 𝑄) + 𝑆 (𝑟, 𝑓)

= 𝑝𝑁 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑄) − 𝑁 (𝑟, 𝑄)
+ 𝑆 (𝑟, 𝑓)

= 𝑝𝑁 (𝑟, 𝑓) + 𝑞𝑇 (𝑟, 𝑓) − 𝑞𝑁 (𝑟, 𝑓)

+ 𝑆 (𝑟, 𝑓)

= 𝑝𝑁 (𝑟, 𝑓) + 𝑞𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(27)

It follows from this that

𝑝𝑚 (𝑟, 𝑓) ≤ 𝑞𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (28)

What is more is that if𝑚(𝑟, 𝑓) ̸= 𝑆(𝑟, 𝑓), then we obtain from
(28) that 𝑝 ≤ 𝑞

Case 2. The coefficients of (3) are all constants and it admits
a polynomial solution 𝑓(𝑧) with degree 𝑠. Set

𝑓 (𝑧) = 𝑎
𝑠
𝑧𝑠 + 𝑎

𝑠−1
𝑧𝑠−1 + ⋅ ⋅ ⋅ + 𝑎

1
𝑧 + 𝑎
0
, (29)

then

𝑓 (𝑧 + 1) = 𝑎𝑠𝑧𝑠 + 𝑏𝑠−1𝑧𝑠−1 + ⋅ ⋅ ⋅ + 𝑏1𝑧 + 𝑏0, (30)

where

𝑏
𝑠−𝑗

= 𝑎
𝑠
𝐶𝑗
𝑠
+ 𝑎
𝑠−1
𝐶𝑗−1
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑠−𝑗+1

𝐶1
𝑠−𝑗+1

+ 𝑎
𝑠−𝑗
. (31)

From (29) and (30), we obtain that

Δ𝑓 = 𝑠𝑎
𝑠
𝑧𝑠−1 + (𝑏

𝑠−2
− 𝑎
𝑠−2
) 𝑧𝑠−2

+ ⋅ ⋅ ⋅ + (𝑏
1
− 𝑎
1
) 𝑧 + (𝑏

0
− 𝑎
0
) .

(32)
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If 𝑠 = 1, then Δ2𝑓 = Δ3𝑓 ≡ 0, which yields that 𝑃(𝑧, 𝑓) ≡
0. That is a contradiction to our assumption. Thus, 𝑠 ≥ 2.

If 𝑠 = 2, thenΔ𝑓 = 2𝑎
2
𝑧+𝑎
2
+𝑎
1
,Δ2𝑓 = 2𝑎

2
, andΔ3𝑓 ≡ 0.

Now from (3), we get

(−3)𝑘𝑄 (𝑧, 𝑓) (Δ2𝑓)2𝑘 = 2𝑘𝑃 (𝑧, 𝑓) (Δ𝑓)2𝑘. (33)

Considering degrees of both sides of the equation above, we
can see that 𝑞 = 𝑝 + 𝑘.

If 𝑠 ≥ 3, we can deduce similarly that

Δ2𝑓 = 𝑠 (𝑠 − 1) 𝑎
𝑠
𝑧𝑠−2 + 𝑃

1
(𝑧) ,

Δ3𝑓 = 𝑠 (𝑠 − 1) (𝑠 − 2) 𝑎
𝑠
𝑧𝑠−3 + 𝑃

2
(𝑧) ,

(34)

where 𝑃
1
(𝑧), 𝑃
2
(𝑧) are polynomials such that deg𝑃

1
≤ 𝑠 −

3, deg𝑃
2
≤ 𝑠 − 4.

Rewrite (3) as follows:

𝑄 (𝑧, 𝑓) [2Δ3𝑓 ⋅ Δ𝑓 − 3(Δ2𝑓)2]
𝑘

= 2𝑘𝑃 (𝑧, 𝑓) (Δ𝑓)2𝑘.
(35)

From (34), we find that the leading coefficient of 2Δ3𝑓 ⋅
Δ𝑓 − 3(Δ2𝑓)2 is

−𝑎2
𝑠
𝑠2 (𝑠 − 1) (𝑠 + 1) ̸= 0. (36)

Considering degrees of both sides of (35), we prove that
𝑞𝑠 = 𝑝𝑠 + 2𝑘.

4. Proof of Theorem 3

Firstly, we consider the general case. Asmentioned inRemark
1 in [13], due to Jank and Volkmann [16], if (3) admits an
admissible solution, then there are at most 𝑆(𝑟, 𝑓) common
zeros of 𝑃(𝑧, 𝑓) and 𝑄(𝑧, 𝑓). Since all coefficients of 𝑄(𝑧, 𝑓)
are polynomials, there are at the most finitely many poles of
𝑓 that are the zeros of 𝑄(𝑧, 𝑓). Therefore, from (3), we have

1
2𝑘𝑁(𝑟, 1𝑄) ≤ 𝑁(𝑟, 1Δ𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, Δ𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓 (𝑧 + 1) − 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓)

≤ 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(37)

Combining this and Lemma 9, applying the second main
theorem, we get

𝑞
2𝑘𝑇 (𝑟, 𝑓) +

𝑠

∑
𝑗=1

𝑚(𝑟, 1
𝑓 − 𝛼
𝑗

)

≤ 𝑞
2𝑘𝑇 (𝑟, 𝑓) + 𝑚 (𝑟, 𝑓) +

𝑠

∑
𝑗=1

𝑚(𝑟, 1
𝑓 − 𝛼
𝑗

)

≤ 1
2𝑘𝑁(𝑟, 1𝑄) + 𝑚 (𝑟, 𝑓) +

𝑠

∑
𝑗=1

𝑚(𝑟, 1
𝑓 − 𝛼
𝑗

) + 𝑆 (𝑟, 𝑓)

≤ 2𝑇 (𝑟, 𝑓) + 𝑚 (𝑟, 𝑓) +
𝑠

∑
𝑗=1

𝑚(𝑟, 1
𝑓 − 𝛼
𝑗

) + 𝑆 (𝑟, 𝑓)

≤ 4𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(38)

Thus, we prove that (10) holds.
Secondly, we consider the case that 𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓).

From (3) and Lemma 8, we similarly get that

1
2𝑘𝑁(𝑟, 1𝑄) ≤ 𝑁(𝑟, 1Δ𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, Δ𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑚 (𝑟, Δ𝑓) + 𝑁 (𝑟, Δ𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟, Δ𝑓𝑓 ) + 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(39)

From this and applying Lemma 9with (19), as arguing before,
we can prove that (11) holds.
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