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A nonautonomous predator-prey model with infertility control in the prey is formulated and investigated. Threshold conditions
for the permanence and extinction of fertility prey and infertility prey are established. Some new threshold values of integral form
are obtained. For the periodic cases, these threshold conditions act as sharp threshold values for the permanence and extinction
of fertility prey and infertility prey. There are also mounting concerns that the quantity of biological sterile drug is obtained in the
process of the prevention and control of pest in the grasslands and farmland. Finally, two examples are given to illustrate the main
results of this paper. The numerical simulations shown that, when the pest population is permanet, different dynamic behaviors
may be found in this model, such as the global attractivity and the chaotic attractor.

1. Introduction

Small mammals living in the grasslands, such as the plateau
pika, not only burrow, but also accumulate the soil outside the
hole, which makes the grass cease growing. More seriously,
after a rainstorm, the soil would be washed away which
increased soil erosion. So a greater range of damages resulted.
And the lack of protective vegetation exacerbated the deserti-
fication and degradation of pastures. Besides, pirates of pikas
also eat grass, which reduced the carrying capacity. When
the number of these small mammals increased sharply, it
would cause a lot of trouble and loss to economy, ecology,
and people’s lives on the grassland. So at this moment, they
are referred to as harmful animals.

As the change of the natural environment by the human
production activities, agricultural, and the rapid development
of cities provide plenty of food resources and good habitat
for rodent, rat increases seriously, the management of pest
also will be more difficult. Mouse control strategy from the
traditional damage caves andmachinery catch to fumigation,
acute rodenticide, anticoagulant therapy, and the application
of many chemical methods has made important progress.
At present, the chemical prevention and control play

an important role in the mouse control technology. However,
chemical control is effective for short and harmful rat will
soon come again and reproduction rapidly leads to the
quick rebound in this species. In the fields, the application
of acute rodenticide reaches 80; the population in the two
years can be restored to the original level. In addition, there
still exist many problems such as environmental pollution,
secondary poisoning, and fungicide resistance in chemical
control, which makes chemical Rodenticide restricted to
the application of the rodent sustainable control. And inte-
grating multidisciplinary approach and means, the sterility
control technology based on ecological security has grad-
ually become the development direction of rodent control.
Infertility control technology has both directly and indirectly
reduced the rodent population density, and will not lead to
sharp fluctuations in ecological system, so it has a very good
advantage in the environmental safety and cost-effectiveness.

Now, there are very serious rat in many areas of China,
such as Xinjiang, Inner Mongolia, Gansu, Shanxi, and The
Tibetan Plateau. In the Inner Mongolia grasslands, it is
predicted that pest harm area is about 100 million mu and
the serious disaster area is about 50 million mu [1]. Prairie
mousehole per hectare is 300 at least and even 900 at most.
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In 2006, eleven silver foxes were introduced for the first
time at Alxa League in Inner Mongolia grassland in order to
control the prairie mice.Those foxes can catch large amounts
of prairie gerbil, Meriones unguiculatus, and jerboa [2]. In
addition, in 2011, Beowulf Biological antisterility rodenticide
was used. The purpose is to test the effect of preventing
grassland rat and whether or not achieves these requirements
such as restraining the birth rates of harmful rat population,
reducing the pest population density, slowing population
growth benefiting Environmental Health and Safety [3].

At present, the research about infertility control is at most
laboratory studies [4–9] and theoretical analysis even less.
Based on the above understanding of the facts andmathemat-
ical biology background, the study about a class of predator-
preymodel with infertility control in the prey (harmful rat) is
very meaningful. Moreover, the result indicated that species
and quantity are different by vegetation and physiognomy,
and change of density is more distinct along with changing
season. Therefore, it is a very basilic problem to research this
kind of nonautonomous population dynamic systems.

It is interesting to note that rodents living in the North
generally have seasonal breeding, such as plateau pika nearby
Qinghai lake breed fromApril to August, Brandt’s voles breed
from March to September, and Mongolian gerbil in Inner
Mongolia breed from April to August. Obviously, this kind
of periodic phenomenon, extensively exists in the real world.
Therefore, the dynamical behavior of the 𝜔-periodic system
is also worthy of being discussed.

Now, we only consider infertility control in the prey
(harmful rat)𝑋(𝑡) population. It is composed of two popula-
tion classes: one is the class of fertility prey, denoted by 𝐹(𝑡),
and the other is the class of infertility prey, denoted by 𝑆(𝑡).
Therefore, at any time 𝑡, the total density of prey population
is 𝑋(𝑡) = 𝐹(𝑡) + 𝑆(𝑡). Fertility rodents will become infertile
after eating the sterilant. Therefore, 𝜇(𝑡) is assumed to the
rate at which infertility prey contacts occur. In this paper,
we study the following nonautonomous predator-prey model
with infertility control in the prey:

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) [𝑏
1
(𝑡) − 𝑎

11
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))

− 𝜇 (𝑡) − 𝑎
12
(𝑡) 𝑍 (𝑡)] ,

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑆 (𝑡) − 𝑎

11
(𝑡)

× [𝐹 (𝑡) + 𝑆 (𝑡)] 𝑆 (𝑡) − 𝑎12 (
𝑡) 𝑆 (𝑡) 𝑍 (𝑡) ,

𝑑𝑍 (𝑡)

𝑑𝑡

= 𝑍 (𝑡) [𝑏
2
(𝑡) + 𝑎

21
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝑎

22
(𝑡) 𝑍 (𝑡)]

(1)

with initial conditions

𝐹 (0) = 𝐹
0
, 𝑆 (0) = 𝑆

0
, 𝑍 (0) = 𝑍

0
, (2)

where

(𝐹
0
, 𝑆
0
, 𝑍
0
) ∈ 𝑅
3

+
= {(𝐹, 𝑆, 𝑍) ∈ 𝑅

3
: 𝐹 > 0, 𝑆 > 0, 𝑍 > 0} .

(3)

Here, 𝐹(𝑡) is the fertility prey population density, 𝑆(𝑡) is the
sterility prey population density, 𝑍(𝑡) is the predator popu-
lation density, 𝑏

1
(𝑡), 𝑎
11
(𝑡) are the intrinsic growth rate and

density-dependent coefficient of the prey, respectively, 𝑏
2
(𝑡),

𝑎
22
(𝑡) are the intrinsic growth rate and density-dependent

coefficient of the predator, respectively, 𝑎
12
(𝑡) is the capturing

rate of the predator, and 𝑎
21
(𝑡) is the rate of conversion of

nutrients into the reproduction of the predator.

2. Preliminaries

For a continuous bounded function 𝑓(𝑡) defined on 𝑅
+
=

[0,∞), we denote

𝑓
𝑚
= lim sup
𝑡→∞

𝑓 (𝑡) , 𝑓
𝑙
= lim inf
𝑡→∞

𝑓 (𝑡) . (4)

If𝑓 is𝜔-periodic, then the average value of on a time interval
[0, 𝜔] can be defined as

𝑓 =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡. (5)

For system (1), we introduce the following assumptions.

(H
1
) Functions 𝑎

11
(𝑡), 𝜇(𝑡), 𝑎

12
(𝑡), 𝑑
2
(𝑡), 𝑎
21
(𝑡), and 𝑎

22
(𝑡)

are all negative, continuous, and bounded on 𝑅
+
and

𝑏
𝑖
(𝑡) (𝑖 = 1, 2) are continuous and bounded functions.

(H
2
) There exist positive constants 𝜔

𝑗
> 0 (𝑗 = 1, 2, 3,

4, 5, 6) such that

lim inf
𝑡→∞

∫

𝑡+𝜔𝑖

𝑡

𝑏
𝑖
(𝜃) 𝑑𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔3

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0,

lim inf
𝑡→∞

∫

𝑡+𝜔3+𝑖

𝑡

𝑎
𝑖𝑖
(𝜃) 𝑑𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔6

𝑡

𝜇 (𝜃) 𝑑𝜃 > 0.

(6)

In particular, whenmodel (1) degenerates into𝜔-periodic
system, that is, 𝑎

11
(𝑡), 𝜇(𝑡), 𝑎

12
(𝑡), 𝑑
2
(𝑡), 𝑎
21
(𝑡), 𝑏
1
(𝑡), 𝑏
2
(𝑡), and

𝑎
22
(𝑡) are continuous periodic functions with period 𝜔 > 0,

then assumption (H
2
) is equivalent to the following forms:

(H
2
) 𝑏
𝑖
> 0, 𝑎

𝑖𝑖
> 0, 𝑑

2
> 0, and 𝜇 > 0 (𝑖 = 1, 2).

In the following, we state several lemmas which will be
useful in the proof of main results in the paper.

Firstly, we consider the following nonautonomous logistic
equation:

𝑑𝑧 (𝑡)

𝑑𝑡

= 𝑧 (𝑡) (𝑏
2
(𝑡) − 𝑎

22
(𝑡) 𝑧 (𝑡)) , (7)

where functions 𝑏
2
(𝑡) and 𝑎

22
(𝑡) are bounded continuous

defined on 𝑅
+
and 𝑎

22
(𝑡) ≥ 0 for all 𝑡 ≥ 0. We have the

following result.

Lemma 1 (see [10]). Suppose that there are constants 𝜔
𝑖
>

0 (𝑖 = 1, 2) such that

lim inf
𝑡→∞

∫

𝑡+𝜔1

𝑡

𝑏
2
(𝜃) d𝜃 > 0, lim inf

𝑡→∞

∫

𝑡+𝜔2

𝑡

𝑎
22
(𝜃) d𝜃 > 0.

(8)
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Then,

(a) there exist positive constants𝑚 and𝑀 such that for any
positive solution 𝑧(𝑡) of (7)

𝑚 ≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ 𝑀; (9)

(b) each fixed positive solution 𝑧
∗
(𝑡) of (7) is globally

uniformly attractive;
(c) if 𝑎𝑙

22
> 0, then for any positive solution 𝑧(𝑡) of (7)

(

𝑏
2

𝑎
22

)

𝑙

≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ (

𝑏
2

𝑎
22

)

𝑚

; (10)

(d) if (7) is𝜔-periodic, then condition (8) reduces to 𝑏
2
> 0

and 𝑎
22
> 0; thus (7) has a uniformly attractive positive

𝜔-periodic solution.

Further, we consider the following nonautonomous equa-
tion:
𝑑𝑧 (𝑡)

𝑑𝑡

= 𝑧 (𝑡) [𝑏
2
(𝑡) − 𝑎

22
(𝑡) 𝑧 (𝑡) + 𝑎

21
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))] ,

(11)

where 𝑏
2
(𝑡) and 𝑎

22
(𝑡) are defined as in (7) and 𝑎

21
(𝑡)(𝐹(𝑡) +

𝑆(𝑡)) is continuous and bounded function defined on 𝑅
+
.

Let 𝑧(𝑡, 𝑡
0
, 𝑧
0
) be the solution of (11) with initial condition

𝑧(𝑡
0
) = 𝑧
0
and let 𝑧

0
(𝑡) be some fixed positive solution of (7).

We have the following result.

Lemma 2 (see [11]). Suppose that all conditions of Lemma 1
hold. Then for any constants 𝜀 > 0 and 𝑀 > 0 there exist
constant 𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any
𝑡
0
∈ 𝑅
+
and 𝑧
0
∈ [𝑀
−1
,𝑀], when |𝑎

21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡))| < 𝛿 for

all 𝑡 ≥ 𝑡
0
, one has




𝑧 (𝑡, 𝑡
0
, 𝑧
0
) − 𝑧
0
(𝑡)




< 𝜀, ∀𝑡 ≥ 𝑡

0
+ 𝑇. (12)

Next, we consider the following nonautonomous linear
equation:

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) − 𝑑
2
(𝑡) 𝑢 (𝑡) , (13)

where 𝜇(𝑡) and 𝑑
2
(𝑡) are bounded continuous defined on 𝑅

+

and 𝜇(𝑡) ≥ 0 for all 𝑡 ≥ 0. We have the following result.

Lemma 3 (see [12]). Suppose that there are constants 𝜔
𝑖
>

0 (𝑖 = 1, 2) such that

lim inf
𝑡→∞

∫

𝑡+𝜔1

𝑡

𝜇 (𝜃) d𝜃 > 0, lim inf
𝑡→∞

∫

𝑡+𝜔2

𝑡

𝑑
2
(𝜃) d𝜃 > 0.

(14)

Then,

(a) there exist positive constants𝑚 and𝑀 such that for any
positive solution 𝑢(𝑡) of (13)

𝑚 ≤ lim inf
𝑡→∞

𝑢 (𝑡) ≤ lim sup
𝑡→∞

𝑢 (𝑡) ≤ 𝑀; (15)

(b) each fixed positive solution 𝑢
∗
(𝑡) of (13) is globally

uniformly attractive;

(c) if 𝑑𝑙
2
> 0, then for any positive solution 𝑢(𝑡) of (13)

(

𝜇

𝑑
2

)

𝑙

≤ lim inf
𝑡→∞

𝑧 (𝑡) ≤ lim sup
𝑡→∞

𝑧 (𝑡) ≤ (

𝜇

𝑑
2

)

𝑚

; (16)

(d) if (13) is 𝜔-periodic, then the condition (14) reduces to
𝜇 > 0 and 𝑑

2
> 0; thus (13) has a uniformly attractive

positive 𝜔-periodic solution.

Further we investigate the following nonautonomous
linear equation:

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) − 𝑑
2
(𝑡) 𝑢 (𝑡) + 𝑒 (𝑡) , (17)

where 𝜇(𝑡) and 𝑑
2
(𝑡) are defined as in (13) and 𝑒(𝑡) is

continuous and bounded function defined on 𝑅
+
.

Let 𝑢(𝑡, 𝑡
0
, 𝑢
0
) be the solution of (17) with initial condition

𝑢(𝑡
0
) = 𝑢
0
and let 𝑢

0
(𝑡) be some fixed positive solution of (13).

We have the following result.

Lemma 4 (see [13]). Suppose that there exists a constant 𝛾 > 0
such that

lim inf
𝑡→∞

∫

𝑡+𝛾

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0. (18)

Then for any constants 𝜀 > 0 and𝑀 > 0 there exist constants
𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any 𝑡

0
∈ 𝑅
+

and 𝑢
0
∈ [𝑀
−1
,𝑀], when |𝑒(𝑡)| < 𝛿 for all 𝑡 ≥ 𝑡

0
, one has





𝑢 (𝑡, 𝑡
0
, 𝑢
0
) − 𝑢
0
(𝑡)




< 𝜀, ∀𝑡 ≥ 𝑡

0
+ 𝑇. (19)

In (17), if function 𝜇(𝑡) ≡ 0, then we can obtain that
𝑢
0
(𝑡) ≡ 0. We have the following Corollary 5 of Lemma 4.

Corollary 5. Suppose that 𝜇(𝑡) ≡ 0 for all 𝑡 ∈ 𝑅
+ and there

exists a constant 𝛾 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝛾

𝑡

𝑑
2
(𝜃) 𝑑𝜃 > 0. (20)

Then for any constants 𝜀 > 0 and𝑀 > 0 there exist constants
𝛿 = 𝛿(𝜀) > 0 and 𝑇 = 𝑇(𝜀,𝑀) > 0 such that for any 𝑡

0
∈ 𝑅
+

and 𝑢
0
∈ [𝑀
−1
,𝑀], when |𝑒(𝑡)| < 𝛿 for all 𝑡 ≥ 𝑡

0
, one has





𝑢 (𝑡, 𝑡
0
, 𝑧
0
)




< 𝜀, ∀𝑡 ≥ 𝑡

0
+ 𝑇. (21)

3. Main Results

It is obvious that the solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of model (1)
with initial condition (2) is positive; that is, 𝐹(𝑡) > 0, 𝑆(𝑡) > 0,
𝑍(𝑡) > 0 for all 𝑡 ≥ 0 in the maximum interval of existence
of the solution. On the ultimate boundedness of solutions of
system (1), we get the following theorem.
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Theorem 6. Suppose that (𝐻
1
) and (𝐻

2
) hold. Then system

(1) is ultimately bounded in the sense that there is a positive
constant M such that

lim sup
𝑡→∞

𝐹 (𝑡) < 𝑀, lim sup
𝑡→∞

𝑆 (𝑡) < 𝑀,

lim sup
𝑡→∞

𝑍 (𝑡) < 𝑀

(22)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

The ecological implication of Theorem 6 is that the
fertility prey 𝐹(𝑡) is ultimately bounded. The sterility prey
𝑆(𝑡), when assumptions (H

1
) and (H

2
) hold, if 𝑆(𝑡) is not

ultimately bounded, then 𝑆(𝑡) will expand unlimitedly. But
the conversion of the fertile prey lies on the sterile prey by
sterile drugs. So, the prerequisite for the unlimited increase of
the sterility prey is that the fertility prey must be expanding
unlimitedly. In short, the number of harmful rat will not go
on rising forever.

Proof. Let (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) be any positive solution of system
(1). From the first equation of system (1) we have

𝑑𝐹 (𝑡)

𝑑𝑡

≤ 𝐹 (𝑡) (𝑏
1
(𝑡) − 𝑎

11
(𝑡) 𝐹 (𝑡)) . (23)

From (H
2
), it is easy to verify that the comparison equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [𝑏
1
(𝑡) − 𝑎

11
(𝑡) 𝑥 (𝑡)] (24)

satisfies all conditions of Lemma 1. So, the comparison
theoremandLemma 1 imply thatwe obtain there is a constant
𝑀
1
such that for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of

system (1), there is a 𝑇
1
> 0 such that we have 𝐹(𝑡) < 𝑀

1

for all 𝑡 ≥ 𝑇
1
. Further, from the second equation of system (1)

we have
𝑑𝑆 (𝑡)

𝑑𝑡

≤ 𝜇 (𝑡)𝑀
1
− 𝑑
2
(𝑡) 𝑆 (𝑡) (25)

for all 𝑡 ≥ 𝑇
2
. From Lemma 3 it can be obtained that under

assumption (H
2
) any positive solution 𝑥(𝑡) of the following

nonautonomous linear equation:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝜇 (𝑡)𝑀
1
− 𝑑
2
(𝑡) 𝑆 (𝑡) (26)

is ultimately bounded.Hence, using the comparison theorem,
we further can obtain that there is a constant𝑀

2
> 0 such that

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1), there
is a 𝑇
2
≥ 𝑇
1
such that 𝑆(𝑡) < 𝑀

2
for all 𝑡 ≥ 𝑇

1
. Lastly, from

the third equation of equation of system (1) we have

𝑑𝑍 (𝑡)

𝑑𝑡

≤ 𝑍 (𝑡) (𝑏
2
(𝑡) + 𝑎

21
(𝑡) (𝑀

1
+𝑀
2
) − 𝑎
22
(𝑡) 𝑍 (𝑡))

(27)

for all 𝑡 ≥ 𝑇
2
. Consider the following nonautonomous

equation:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) (𝑏
2
(𝑡) + 𝑎

21
(𝑡) (𝑀

1
+𝑀
2
) − 𝑎
22
(𝑡) 𝑥 (𝑡)) ,

(28)

the comparison theorem and Lemma 1 imply that there
is a constant 𝑀

3
such that for any positive solution

(𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (2), there is a 𝑇
3
> 0 such that

𝑍(𝑡) < 𝑀
3
for all 𝑡 ≥ 𝑇

3
.

Now, let 𝑀 = max{𝑀
1
,𝑀
2
,𝑀
3
}; then from the above

proofs, we have

lim sup
𝑡→∞

𝐹 (𝑡) < 𝑀, lim sup
𝑡→∞

𝑆 (𝑡) < 𝑀,

lim sup
𝑡→∞

𝑍 (𝑡) < 𝑀.

(29)

Therefore, solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) is ultimately bounded.
This completes the proof.

Remark 7. Applying the comparison theorem and combining
conclusion (c) of Lemmas 1 and 3, we can obtain that if
assumptions (H

1
) and (H

2
) hold in system (1), 𝑎𝑙

11
> 0,𝑑𝑙

2
> 0,

and 𝑎𝑙
22
> 0, then constants𝑀

𝑖
(𝑖 = 1, 2, 3) given above can

be chosen by

𝑀
1
= (

𝑏
1

𝑎
11

)

𝑚

, 𝑀
2
= (

𝜇𝑀
1

𝑑
2

)

𝑚

,

𝑀
3
= (

𝑏
2
+ 𝑎
21
(𝑀
1
+𝑀
2
)

𝑎
22

)

𝑚

.

(30)

Next, we discuss the permanence and extinction of
fertility prey 𝐹(𝑡) and infertility prey 𝑆(𝑡).

Let 𝑍
0
(𝑡) be some fixed positive solution of the following

nonautonomous logistic equation:

𝑑𝑍 (𝑡)

𝑑𝑡

= 𝑍 (𝑡) (𝑏
2
(𝑡) − 𝑎

22
(𝑡) 𝑍 (𝑡)) . (31)

Particularly, if 𝑎𝑙
22
> 0, using conclusion (c) of Lemma 1, we

can obtain

(

𝑏
2

𝑎
22

)

𝑙

≤ lim inf
𝑡→∞

𝑍
0
(𝑡) ≤ lim sup

𝑡→∞

𝑍
0
(𝑡) ≤ (

𝑏
2

𝑎
22

)

𝑚

. (32)

Theorem 8. Suppose that (𝐻
1
) and (𝐻

2
) hold and there exists

a constant 𝜆 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃) − 𝜇 (𝜃) − 𝑎

12
(𝜃) 𝑍
0
((𝜃))) d𝜃 > 0. (33)

Then,

lim inf
𝑡→∞

𝐹 (𝑡) > 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) > 𝑚 (34)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).
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Theorem 8 shows that if we guarantee that assumptions
(H
1
), (H
2
) and (35) hold, then the prey species must be

permanent. In the ecological system, each component part,
including the animal, plant and microorganism, plays its
own role, and they are indispensable and irreplaceable. Every
creature may deviate from its original trajectory, which lead
to the outbreak of this population and the negative effect on
human beings, such as harmful rat. Even if it happens, this
species should not be extinct through the human activity.
What we should do is to control the rat population to such
a degree that will not be harmful to human beings.Therefore,
the permanence of harmful rat given by Theorem 8 is very
necessary.

Proof. Let (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) be any positive solution of system
(1). From condition (17) there are positive constants 𝜀

0
, 𝜂 and

𝑇
∗ such that for all 𝑡 ≥ 𝑇∗

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃) − 𝜇 (𝜃) − 2𝜀

0
𝑎
11
(𝜃) − 𝑎

12
(𝜃)

× (𝑍
0
(𝜃) + 𝜀

0
)) 𝑑𝜃 > 𝜂.

(35)

According to Theorem 6, there exists a constant 𝑇∗∗ ≥ 𝑇
∗

such that

𝐹 (𝑡) < 𝑀, 𝑆 (𝑡) < 𝑀, 𝑍 (𝑡) < 𝑀, (36)

for all 𝑡 ≥ 𝑇∗∗. Consider (11), that is,

𝑑𝑧 (𝑡)

𝑑𝑡

= 𝑧 (𝑡) (𝑏
2
(𝑡) − 𝑎

22
(𝑡) 𝑧 (𝑡) + 𝑎

21
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡))) ,

(37)

from Lemma 2, for 𝜀
0
and 𝑀 given in above there exist

constants 𝛿
0
= 𝛿
0
(𝜀
0
) > 0 and 𝑇

0
= 𝑇
0
(𝜀
0
,𝑀) > 0 such that

for any 𝑡
0
∈ 𝑅
+
and 𝑍

0
∈ [0,𝑀], when |𝑎

21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡))| <

𝛿
0
for all 𝑡 ≥ 𝑡

0
, we have





𝑧 (𝑡, 𝑡
0
, 𝑧
0
) − 𝑧
0
(𝑡)




< 𝜀
0
, ∀𝑡 ≥ 𝑡

0
+ 𝑇
0
, (38)

where 𝑧(𝑡, 𝑡
0
, 𝑧
0
) is the solution of (11) with initial condition

𝑧(𝑡
0
) = 𝑧
0
.

Choose constant 𝛼
0
as follows:

0 < 𝛼
0
≤ min{𝜀

0
,

𝛿
0

𝑎
𝑚

21
(𝐹
𝑚
+ 𝑆
𝑚
) + 1

} . (39)

Consider the following nonautonomous linear equation:

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑢 (𝑡) . (40)

From Corollary 5, for 𝛼
0
and 𝑀 given in above there exist

constants 𝛿
1
= 𝛿
1
(𝛼
0
) < 𝛼

0
and 𝑇

1
= 𝑇
1
(𝛼
0
,𝑀) > 0 such

that for any 𝑡
0
∈ 𝑅
+
and 𝑢
0
∈ [0,𝑀], when |𝜇(𝑡)𝐹(𝑡)| < 𝛿

1
for

all 𝑡 ≥ 𝑡
0
, we have





𝑢 (𝑡, 𝑡
0
, 𝑢
0
)




< 𝛼
0
, ∀𝑡 ≥ 𝑡

0
+ 𝑇
1
. (41)

Let 𝛼
1

= min{𝜀
0
, 𝛿
1
/(𝜇
𝑚
+ 1)}, we will discuss the

following three cases.
Case 1.There exists a constant𝑇 ≥ 𝑇

0
such that 𝐹(𝑡) ≤ 𝛼

1
for

all 𝑡 ≥ 𝑇.
Case 2. There exists a constant 𝑇 ≥ 𝑇

0
such that 𝐹(𝑡) ≥ 𝛼

1

for all 𝑡 ≥ 𝑇.
Case 3.There exists a time sequence {[𝑠

𝑘
, 𝑡
𝑘
]} satisfying 𝑇

0
≤

𝑠
1
< 𝑡
1
< 𝑠
2
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑠

𝑘
< 𝑡
𝑘
< ⋅ ⋅ ⋅ , and lim

𝑘→∞
𝑠
𝑘
= ∞

such that

𝐹 (𝑡) ≤ 𝛼
1
, ∀𝑡 ∈

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] ,

𝐹 (𝑡) > 𝛼
1
, ∀𝑡 ∉

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] .

(42)

If Case 1 appears, we have

𝑑𝑆 (𝑡)

𝑑𝑡

≤ 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑆 (𝑡) , (43)

for all 𝑡 ≥ 𝑇. Considering the auxiliary system

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑢 (𝑡) . (44)

Let 𝑆(𝑡) be the solution of the above equation satisfying initial
condition 𝑆(𝑇) = 𝑢(𝑇), by the comparison theorem,we have
𝑆(𝑡) ≤ 𝑢(𝑡) for all 𝑡 ≥ 𝑇. Since 𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ≥ 𝑇, Hence,

|𝜇(𝑡)𝐹(𝑡)| < 𝛿
1
for all 𝑡 ≥ 𝑇 and 𝑢(𝑇) ≤ 𝑀. By (41), we have

𝑢(𝑡) = 𝑢(𝑡, 𝑇

, 𝑢
0
(𝑇

)) < 𝛼

0
for all 𝑡 ≥ 𝑇+𝑇

1
.Then, we obtain

𝑆(𝑡) < 𝛼
0
for all 𝑡 ≥ 𝑇 + 𝑇

1
. So,

𝐹 (𝑡) ≤ 𝛼
1
, 𝑆 (𝑡) < 𝛼

0
, 𝑍 (𝑡) < 𝑀, ∀𝑡 ≥ 𝑇


+ 𝑇
1
.

(45)

Hence, 𝑎
21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡)) < 𝛿

0
for all 𝑡 ≥ 𝑇


+ 𝑇
1
. In

(38), choosing 𝑡
0
= 𝑇

+ 𝑇
1
, 𝑍
0
= 𝑍(𝑇


+ 𝑇
1
) and 𝑍(𝑡) =

𝑍(𝑡, 𝑡
0
, 𝑍(𝑇

+ 𝑇
1
)), by (38), we can get

𝑍(𝑡, 𝑡
0
, 𝑍 (𝑇


+ 𝑇
1
)) < 𝑍

0
(𝑡) + 𝜀

0
, ∀𝑡 ≥ 𝑇


+ 𝑇
1
+ 𝑇
0
.

(46)

Then,

𝐹 (𝑡) ≤ 𝛼
1
< 𝜀
0
, 𝑆 (𝑡) < 𝛼

0
< 𝜀
0
, 𝑍 (𝑡) < 𝑍

0
(𝑡) + 𝜀

0
,

∀𝑡 ≥ 𝑇

+ 𝑇
1
+ 𝑇
0
.

(47)

For any 𝑡 ≥ 𝑇 + 𝑇
1
+ 𝑇
0
, we have

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) (𝑏
1
(𝑡) − 𝑎

11
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 (𝑡) − 𝑎

12
(𝑡) 𝑍 (𝑡))

≥ 𝐹 (𝑡) (𝑏
1
(𝑡) − 2𝜀

0
𝑎
11
(𝑡) − 𝜇 (𝑡) − 𝑎

12
(𝑡) (𝑍

0
(𝑡) + 𝜀

0
)) .

(48)
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Integrating the above inequality from 𝑇

+𝑇
1
+𝑇
0
to 𝑡 > 𝑇 +

𝑇
1
+ 𝑇
0
, we can obtain

𝐹 (𝑡) ≥ 𝐹 (𝑇

+ 𝑇
1
+ 𝑇
0
)

× exp∫
𝑡

𝑇

+𝑇1+𝑇0

(𝑏
1
(𝜃) − 2𝜀

0
𝑎
11
(𝜃)

−𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃.

(49)

From this and (35), it follows lim
𝑡→∞

𝐹(𝑡) = ∞ which leads
to a contradiction.

If Case 2 appears, then obviously 𝐹(𝑡) is permanent.
If Case 3 appears, for any {[𝑠

𝑘
, 𝑡
𝑘
]} we have 𝐹(𝑠

𝑘
) =

𝐹(𝑡
𝑘
) = 𝛼
1
and𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
]. If 𝑡
𝑘
− 𝑠
𝑘
≤ 𝑇
1
+𝑇
0
,

choosing constant

ℎ = sup
𝑡≥0

{𝑏
1
(𝑡) + 𝑎

11
(𝑡) (𝜀
0
+𝑀) + 𝜇 (𝑡) + 𝑎

12
(𝑡)𝑀} , (50)

integrating the first equation of model (1) in interval [𝑠
𝑘
, 𝑡
𝑘
],

we get

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑠
𝑘
) exp∫

𝑡

𝑠𝑘

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) (𝐹 (𝜃) + 𝑆 (𝜃))

− 𝜇 (𝜃) − 𝑎
12
(𝜃) 𝑍 (𝜃)) 𝑑𝜃

≥ 𝐹 (𝑠
𝑘
) exp∫

𝑡

𝑠𝑘

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) (𝜀
0
+𝑀)

− 𝜇 (𝜃) − 𝑎
12
(𝜃)𝑀) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} .

(51)

If 𝑡
𝑘
−𝑠
𝑘
> 𝑇
1
+𝑇
0
, because 𝐹(𝑡) ≤ 𝛼

1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
], we

have |𝜇(𝑡)𝐹(𝑡)| < 𝛿
1
for all 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
] and 𝑢(𝑠

𝑘
) = 𝑆(𝑠

𝑘
) ≤ 𝑀.

Hence, we have 𝑢(𝑡) < 𝛼
0
for all 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. Then, we

obtain 𝑆(𝑡) < 𝛼
0
for all 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. So,

𝐹 (𝑡) ≤ 𝛼
1
, 𝑆 (𝑡) < 𝛼

0
, 𝑍 (𝑡) < 𝑀

∀𝑡 ∈ [𝑠
𝑘
+ 𝑇
1
, 𝑡
𝑘
] .

(52)

Hence, 𝑎
21
(𝑡)(𝐹(𝑡) + 𝑆(𝑡)) < 𝛿

0
for any 𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
, 𝑡
𝑘
]. In

(38), choosing 𝑡
0
= 𝑠
𝑘
+ 𝑇
1
, 𝑍
0
= 𝑍(𝑠

𝑘
+ 𝑇
1
) and 𝑍(𝑡) =

𝑍(𝑡, 𝑡
0
, 𝑍(𝑠
𝑘
+ 𝑇
1
)), by (38), we can get

𝑍 (𝑡, 𝑡
0
, 𝑍 (𝑠
𝑘
+ 𝑇
1
)) < 𝑍

0
(𝑡) + 𝜀

0
, ∀𝑡 ∈ [𝑠

𝑘
+ 𝑇
1
+ 𝑇
0
, 𝑡
𝑘
] .

(53)

Then,

𝐹 (𝑡) ≤ 𝛼
1
< 𝜀
0
, 𝑆 (𝑡) < 𝛼

0
< 𝜀
0
, 𝑍 (𝑡) < 𝑍

0
(𝑡) + 𝜀

0
,

∀𝑡 ∈ [𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
, 𝑡
𝑘
] .

(54)

For any 𝑡 ∈ [𝑠
𝑘
, 𝑡
𝑘
], when 𝑡 ≤ 𝑠

𝑘
+𝑇
1
+𝑇
0
, we can obtain from

the above discussion on the case 𝑡
𝑘
− 𝑠
𝑘
≤ 𝑇
1
+ 𝑇
0
,

𝐹 (𝑡) ≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} . (55)

In particular, we have𝐹(𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
) ≥ 𝛼
1
exp{−ℎ(𝑇

1
+ 𝑇
0
)}.

When 𝑡 > 𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
, then we choose an integer 𝑝 > 0 such

that 𝑡 ∈ [𝑠
𝑘
+𝑇
1
+𝑇
0
+𝑝𝜆, 𝑠

𝑘
+𝑇
1
+𝑇
0
+(𝑝+1)𝜆]; integrating the

first equation of system (1) from 𝑠
𝑘
+𝑇
1
+𝑇
0
to 𝑡 > 𝑠

𝑘
+𝑇
1
+𝑇
0

we can obtain

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑠
𝑘
+ 𝑇
1
+ 𝑇
0
)

× exp∫
𝑡

𝑠𝑘+𝑇1+𝑇0

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) (𝐹 (𝜃) + 𝑆 (𝜃))

−𝜇 (𝜃) − 𝑎
12
(𝜃) 𝑍 (𝜃)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp∫
𝑡

𝑠𝑘+𝑇1+𝑇0

(𝑏
1
(𝜃) − 2𝜀

0
𝑎
11
(𝜃) − 𝜇 (𝜃)

−𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

= 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp (∫

𝑠𝑘+𝑇1+𝑇0+𝑝𝜆

𝑠𝑘+𝑇1+𝑇0

+∫

𝑡

𝑠𝑘+𝑇1+𝑇0+𝑝𝜆

)

× (𝑏
1
(𝜃) − 2𝜀

0
𝑎
11
(𝜃)

− 𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)}

× exp∫
𝑡

𝑠𝑘+𝑇1+𝑇0+𝑝𝜆

(𝑏
1
(𝜃) − 2𝜀

0
𝑎
11
(𝜃) − 𝜇 (𝜃)

− 𝑎
12
(𝜃) (𝑍

0
(𝜃) + 𝜀

0
)) 𝑑𝜃

≥ 𝛼
1
exp {−ℎ (𝑇

1
+ 𝑇
0
)} exp {−ℎ

1
𝜆} ,

(56)

where ℎ
1
= sup

𝑡≥0
{𝑏
1
(𝑡)+2𝜀

0
𝑎
11
(𝑡)+𝜇(𝑡)+𝑎

12
(𝑡)(𝑍
0
(𝜃)+𝜀

0
)}.

Choose

𝑚
1
= 𝛼
1
exp {− (ℎ (𝑇

1
+ 𝑇
0
) + ℎ
1
𝜆)} ; (57)

then from above discussion we finally obtain

𝐹 (𝑡) ≥ 𝑚
1
, ∀𝑡 ∈

∞

⋃

𝑘=1

[𝑠
𝑘
, 𝑡
𝑘
] . (58)

In addition, we have 𝐹(𝑡) > 𝛼
1
for all 𝑡 ∉ ⋃

∞

𝑘=1
[𝑠
𝑘
, 𝑡
𝑘
].

Then, we finally obtain

𝐹 (𝑡) ≥ 𝑚
1
, ∀𝑡 ≥ 𝑇


. (59)

Considering the second equation of system (1), according
toTheorem 6, we have

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑆 (𝑡) − 𝑎

11
(𝑡)

× (𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡) − 𝑎
12
(𝑡) 𝑆 (𝑡) 𝑍 (𝑡)

≥ 𝜇 (𝑡)𝑚
1
− (𝑑
2
(𝑡) + 2𝑀𝑎

11
(𝑡) + 𝑎

12
(𝑡)𝑀) 𝑆 (𝑡)

(60)

for all 𝑡 ≥ 𝑇.
Considering the auxiliary equation

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜇 (𝑡)𝑚
1
− (𝑑
2
(𝑡) + 2𝑀𝑎

11
(𝑡) + 𝑎

12
(𝑡)𝑀) 𝑢 (𝑡) .

(61)
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According to Lemma 3, there exists a constant 𝑚
2
such that

lim inf
𝑡→∞

𝑢(𝑡) ≥ 𝑚
2
for any positive solution of (61). By the

comparison theorem and (60), we have

lim inf
𝑡→∞

𝑆 (𝑡) ≥ lim inf
𝑡→∞

𝑢 (𝑡) ≥ 𝑚
2
. (62)

Let𝑚 = min{𝑚
1
, 𝑚
2
}; from (59) and (62) we obtain

lim inf
𝑡→∞

𝐹 (𝑡) ≥ 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) ≥ 𝑚. (63)

This completes the proof.

Theorem 9. Suppose that (𝐻
1
) and (𝐻

2
) hold and there exists

a constant 𝜆 > 0 such that

lim sup
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃) − 𝜇 (𝜃) − 𝑎

12
(𝜃) 𝑍
0
(𝜃)) 𝑑𝜃 ≤ 0. (64)

Then,

lim
𝑡→∞

𝐹 (𝑡) = 0, lim
𝑡→∞

𝑆 (𝑡) = 0 (65)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

Thebiologicalmeaning ofTheorem 9 is that if (H
1
), (H
2
),

and (64) hold, the prey species will be extinct. Form the
viewpoint of the Nature Conservancy and Human Health,
the best way for our human beings is to keep the existence of
the species, and, meanwhile, guarantee such existence do no
harm to us.Thus, the condition ofmaking harmful rat extinct
for management expert is very important. Therefore, it is a
critical threshold value.

Proof. By (64), we have for any 0 < 𝜀 < 1, there are positive
constants 𝜀

1
< 𝜀 and 𝜀

0
and 𝑇

0
> 0 such that

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃)−𝜇 (𝜃)−𝑎

11
(𝜃) 𝜀−𝑎

12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃 < −𝜀

0

(66)

for all 𝑡 ≥ 𝑇
0
. From the third equation of system (1) we have

𝑑𝑍 (𝑡)

𝑑𝑡

≥ 𝑍 (𝑡) (𝑏
2
(𝑡) − 𝑎

22
(𝑡) 𝑍 (𝑡)) , ∀𝑡 ≥ 𝑇

0
; (67)

applying the comparison theorem and conclusion (b) of
Lemma 1, there exists a constant 𝑇

1
≥ 𝑇
0
such that 𝑍(𝑡) ≥

𝑍
0
(𝑡) − 𝜀

1
for all 𝑡 ≥ 𝑇

1
. For any 𝑡 ≥ 𝑇

1
, we have

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) (𝑏
1
(𝑡) − 𝑎

11
(𝑡) (𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 (𝑡) − 𝑎

12
(𝑡) 𝑍 (𝑡))

≤ 𝐹 (𝑡) (𝑏
1
(𝑡) − 𝑎

11
(𝑡) 𝐹 (𝑡) − 𝜇 (𝑡) − 𝑎

12
(𝑡) 𝑍 (𝑡)) .

(68)

For any 0 < 𝜀 < 1, if 𝐹(𝑡) ≥ 𝜀 for all 𝑡 ≥ 𝑇
1
, integrating (68)

from 𝑇
1
to 𝑡, we obtain

𝐹 (𝑡) ≤ 𝐹 (𝑇
1
) exp∫

𝑡

𝑇1

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) 𝜀 − 𝜇 (𝜃)

− 𝑎
12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃.

(69)

From (66), it follows that 𝐹(𝑡) → 0 as 𝑡 → ∞ which leads
to a contradiction. Hence, there exists a 𝑡

1
≥ 𝑇
1
such that

𝐹(𝑡
1
) < 𝜀. Let

ℎ = sup
𝑡≥𝑇1

{𝑏
1
(𝑡) + 𝑎

11
(𝑡) + 𝜇 (𝑡) + 𝑎

12
(𝑡) (𝑍

0
(𝜃) − 𝜀

1
)} ; (70)

we prove

𝐹 (𝑡) ≤ 𝜀 exp {ℎ𝜆} , ∀𝑡 ≥ 𝑡
1
. (71)

If (71) is not true, then there exists a 𝑡
2
> 𝑡
1
such that 𝐹(𝑡

2
) >

𝜀 exp{ℎ𝜆}. From 𝐹(𝑡
1
) < 𝜀, there exists a 𝑡

3
∈ (𝑡
1
, 𝑡
2
) such that

𝐹(𝑡
3
) = 𝜀 and 𝐹(𝑡) > 𝜀 for all 𝑡 ∈ (𝑡

3
, 𝑡
2
). Let 𝑝 ≥ 0 be an

integer such that 𝑡
2
∈ (𝑡
3
+𝑝𝜆, 𝑡

3
+ (𝑝 + 1)𝜆], integrating (68)

from 𝑡
3
to 𝑡
2
,

𝜀 exp {ℎ𝜆} < 𝐹 (𝑡
2
) ≤ 𝐹 (𝑡

3
)

× exp∫
𝑡2

𝑡3

(𝑏
1
(𝜃) − 𝑎

11
(𝜃) 𝜀

−𝜇 (𝜃) − 𝑎
12
(𝜃) (𝑍

0
(𝜃) − 𝜀

1
)) 𝑑𝜃

≤ 𝜀 exp {ℎ𝜆} ,
(72)

which leads to a contradiction. Hence, (71) holds. From the
arbitrariness of 𝜀, we finally obtain 𝐹(𝑡) → 0 as 𝑡 → ∞.
Considering the second equation

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑆 (𝑡) − 𝑎

11
(𝑡)

× (𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡) − 𝑎
12
(𝑡) 𝑆 (𝑡) 𝑍 (𝑡)

≤ 𝜇 (𝑡) 𝐹 (𝑡) − 𝑑
2
(𝑡) 𝑆 (𝑡) ≤ 𝜀 exp {ℎ𝜆} 𝜇 (𝑡) − 𝑑

2
(𝑡) 𝑆 (𝑡)

(73)

for all 𝑡 ≥ 𝑡
1
. UsingCorollary 5,we can easily obtain 𝑆(𝑡) → 0

as 𝑡 → ∞. This completes the proof.

Further, from conclusion (c) of Lemma 1, as consequence
of Theorems 8 and 9, we also have the following corollaries.

Corollary 10. Suppose that (𝐻
1
) and (𝐻

2
) hold, 𝑎𝑙

22
> 0 and

there exists a constant 𝜆 > 0 such that

lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃) − 𝜇 (𝜃) − 𝑎

12
(𝜃) (

𝑏
2

𝑎
22

)

𝑚

) d𝜃 > 0. (74)

Then,
lim inf
𝑡→∞

𝐹 (𝑡) > 𝑚, lim inf
𝑡→∞

𝑆 (𝑡) > 𝑚 (75)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).
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Figure 1: Permanence of system (1) with parameters in Example 1.

Corollary 11. Suppose that (𝐻
1
) and (𝐻

2
) hold, 𝑎𝑙

22
> 0 and

there exists a constant 𝜆 > 0 such that

lim sup
𝑡→∞

∫

𝑡+𝜆

𝑡

(𝑏
1
(𝜃) − 𝜇 (𝜃) − 𝑎

12
(𝜃) (

𝑏
2

𝑎
22

)

𝑙

) d𝜃 ≤ 0. (76)

Then,

lim
𝑡→∞

𝐹 (𝑡) = 0, lim
𝑡→∞

𝑆 (𝑡) = 0 (77)

for any positive solution (𝐹(𝑡), 𝑆(𝑡), 𝑍(𝑡)) of system (1).

As consequences of Theorems 8 and 9, we have the
following corollaries. Firstly, from Lemmas 1 we obtain that
if (H
1
) and (H

2
) hold, then (31) have the globally uniformly

attractive nonnegative 𝜔-periodic solutions 𝑍
0
(𝑡).

Corollary 12. Suppose that system (1) is 𝜔-periodic and (𝐻
1
)

and (𝐻
2
) hold. Then the fertility prey 𝐹(𝑡) and infertility prey

𝑆(𝑡) in model (1) are permanent if and only if

𝜇 < 𝑏
1
− 𝑎
12
𝑍
0
. (78)

Corollary 13. Suppose that system (1) is 𝜔-periodic and (𝐻
1
)

and (𝐻
2
) hold. Then the fertility prey 𝐹(𝑡) and infertility prey

𝑆(𝑡) in model (1) are extinct if and only if

𝜇 ≥ 𝑏
1
− 𝑎
12
𝑍
0
. (79)

Remark 14. In the process of the prevention and control of
rat in the grasslands and farmland, we are concerned about
how many biological sterile drug should be put in a period
in order to make the population of the harmful rat reduce
to a very low level. From Corollaries 12 and 13, we can easily
obtain that 𝜇 = 𝑏

1
− 𝑎
12
𝑍
0
is a critical value. If 𝜇 ≥ 𝑏

1
− 𝑎
12
𝑍
0
,

we can control the population of rat at a very low level. The
results are very meaningful and significant.

When system (1) is simplified into the corresponding
autonomous system, that is,

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐹 (𝑡) (𝑏
1
− 𝑎
11
(𝐹 (𝑡) + 𝑆 (𝑡)) − 𝜇 − 𝑎

12
𝑍 (𝑡)) ,

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝜇𝐹 (𝑡) − 𝑑
2
𝑆 (𝑡) − 𝑎

11
(𝐹 (𝑡) + 𝑆 (𝑡)) 𝑆 (𝑡)

− 𝑎
12
𝑆 (𝑡) 𝑍 (𝑡) ,

𝑑𝑍 (𝑡)

𝑑𝑡

= 𝑍 (𝑡) (𝑏
2
+ 𝑎
21
(𝐹 (𝑡) + 𝑆 (𝑡)) − 𝑎

22
𝑍 (𝑡)) .

(80)

Remark 15. For system (80), we know that 𝜇 = 𝑏
1
− 𝑎
12
𝑏
2
/𝑎
22

is a critical value. Then, we can obtain that the quantity of
biological sterile drug should be 𝜇 ≥ 𝑏

1
− 𝑎
12
𝑏
2
/𝑎
22
.

4. Example and Numerical Simulation

In this section, we give some examples and numerical
simulations to the above theoretical analysis.
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Figure 2: Chaotic behavior of system (1) with parameters in Example 2.

Example 1. Take 𝑏
1
(𝑡) = 10+sin(6𝑡/𝜋), 𝑎

11
(𝑡) = 0.09+0.001×

sin(6𝑡/𝜋), 𝜇(𝑡) = 9×(0.35+0.2×cos(4𝑡/𝜋)+0.01×sin(4𝑡/𝜋)),
𝑎
12
(𝑡) = 1.2 + cos(6𝑡/𝜋), 𝑑

2
(𝑡) = 2 + 0.005 × sin(𝑡𝜋/6), 𝑏

2
(𝑡) =

1.5 +cos(6𝑡/𝜋), 𝑎
21
(𝑡) = 0.7+0.3×cos(6𝑡/𝜋) and 𝑎

22
(𝑡) = 5+

3 × sin(6𝑡/𝜋) in system (1). We easily verify that assumptions
(H
1
), (H
2
) hold. From Lemma 1, some fixed positive solution

𝑍
0
(𝑡) of system (32) satisfies 0.00625 ≤ 𝑍

0
(𝑡) ≤ 1.25.

Moreover, condition (35) lim inf
𝑡→∞

∫

𝑡+𝜆

𝑡
(𝑏
1
(𝜃) − 𝜇(𝜃) −

𝑎
12
(𝜃)𝑍
0
((𝜃)))𝑑𝜃 > 0 > 9 − 9 × (0.35 + 0.21) − 2.2 × 1.25 =

1.21 > 0 holds, therefore, by Theorem 8, system (1) with
these parameters is permanent.The corresponding numerical
simulations are given in Figure 1, and this figure illustrates
that the solutions will tend towards periodic oscillation along
with time passing. It means that there exists a periodic
solution, and it is seemed that this periodic solution is
globally attractive.

Example 2. Take 𝑏
1
(𝑡) = 10+sin(6𝑡/𝜋), 𝑎

11
(𝑡) = 0.09+0.001×

sin(6𝑡/𝜋), 𝜇(𝑡) = 9 × (0.35 + 0.1 × cos(𝑡/4) + 0.1 × sin(𝑡/4)),
𝑎
12
(𝑡) = 1.2 + cos(𝑡/6), 𝑑

2
(𝑡) = 2 + 0.005 × sin(6𝑡/𝜋),

𝑏
2
(𝑡) = 1.5 + cos(𝑡/6), 𝑎

21
(𝑡) = 0.7 + 0.3 × cos(6𝑡/𝜋) and

𝑎
22
(𝑡) = 5 + 3 × sin(𝑡/6) in system (1). By similar calculation,

we can obtain that (H
1
), (H
2
) and (35) hold. Therefore, by

Theorem 8, system (1) with these parameters is permanent, as
shown in numerical simulations of Figures 2(a)–2(d), which
not only illustrate the validity of the proposed results, but also
display the interesting complex dynamic behaviors; that is,
there is not periodic oscillation alongwith time passing as like
Figure 1, and from (a)–(d) in Figure 2, it can be obviously seen
that there is a strange chaotic attractor, which may contribute
to a better understanding of the complex chaotic behaviors
which can be a high risk of the uncertain number of the
population due to the unpredictability.

5. Conclusion

Based on the mouse rampant phenomenon in some areas, a
predator-prey model with infertility control in rat species is
established in the situation where all coefficients depend on
time. For the nonautonomous system threshold conditions
for the permanence and the extinction of fertility prey and
infertility prey are established.The condition for permanence
has the form of a lim inf condition for some time-dependent
sterility conversion rate (𝜇(𝑡)) while the condition for extinc-
tion assumes the form of a lim sup condition. Hence, in
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the general case the main results are not threshold criteria in
a strict sense. However, in the periodic cases, the conditions
merge into a sharp threshold criterion and sterile drug dosage
can be obtained. Two numerical examples are carried out to
support theoretical results, and the second simulation result
suggests that there may be interesting dynamic behaviors in
this model-a strange chaotic attractor. Furthermore, chaos
may cause the number of pests approaching to the uncontrol-
lable state due to the unpredictability. Thus, how to control
chaos in the populationmodel is very important, which needs
further investigation.
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