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A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The
pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one
pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. This paper determines the pebbling
numbers and the 2-pebbling property of the middle graph of fan graphs.

1. Introduction

Pebbling on graphs was first introduced by Chung [1].
Consider a connected graph with a fixed number of pebbles
distributed on its vertices. A pebbling move consists of the
removal of two pebbles from a vertex and the placement of
one of those pebbles on an adjacent vertex. The pebbling
number of a vertex V in a graph 𝐺 is the smallest number
𝑓(𝐺, V) with the property that from every placement of
𝑓(𝐺, V) pebbles on 𝐺, it is possible to move a pebble to V by a
sequence of pebblingmoves.The pebbling number of a graph
𝐺, denoted by 𝑓(𝐺), is the maximum of 𝑓(𝐺, V) over all the
vertices of 𝐺.

In a graph 𝐺, if each vertex (except V) has at most one
pebble, then no pebble can be moved to V. Also, if 𝑢 is of
distance 𝑑 from V and at most 2𝑑 − 1 pebbles are placed on
𝑢 (and none elsewhere), then no pebble can be moved from 𝑢

to V. So it is clear that 𝑓(𝐺) ≥ max{|𝑉(𝐺)|, 2
𝐷
}, where |𝑉(𝐺)|

is the number of vertices of 𝐺 and 𝐷 is the diameter of 𝐺.
Throughout this paper, let𝐺 be a simple connected graph

with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). For a distribution of
pebbles on𝐺, denote by𝑝(𝐻) and𝑝(V) the number of pebbles
on a subgraph𝐻 of 𝐺 and the number of pebbles on a vertex
V of 𝐺, respectively. In addition, denote by 𝑝(𝐻) and 𝑝(V) the
number of pebbles on𝐻 and the number of pebbles on V after
a specified sequence of pebblingmoves, respectively. For 𝑢V ∈

𝐸(𝐺), 𝑢 𝑚→ V refers to taking 2𝑚 pebbles off 𝑢 and placing 𝑚

pebbles on V. Denote by ⟨V1, V2, . . . , V𝑛⟩ the path with vertices
V1, V2, . . . , V𝑛 in order.

We now introduce some definitions and give some lem-
mas, which will be used in subsequent proofs.

Definition 1. A fan graph, denoted by 𝐹𝑛, is a path 𝑃𝑛−1 plus
an extra vertex V0 connected to all vertices of the path 𝑃𝑛−1,
where 𝑃𝑛−1 = ⟨V1, V2, . . . , V𝑛−1⟩.

Definition 2. The middle graph 𝑀(𝐺) of a graph 𝐺 is the
graph obtained from 𝐺 by inserting a new vertex into every
edge of 𝐺 and by joining by edges those pairs of these new
vertices which lie on adjacent edges of 𝐺.

Now one creates the middle graph of 𝐹𝑛. Edges
V1V2, V2V3, . . . , V(𝑛−2)(𝑛−1) of 𝐹𝑛 are the inserted new
vertices 𝑢12, 𝑢23, . . . , 𝑢(𝑛−2)(𝑛−1) in the sequence, and edges
V0V1, V0V2, . . . , V0V𝑛−1 of 𝐹𝑛 are the inserted new vertices
𝑢01, 𝑢02, . . . , 𝑢0(𝑛−1), respectively. By joining by edges those
pairs of these inserted vertices which lie on adjacent edges of
𝐹𝑛, this obtains the middle graph of 𝐹𝑛 (see Figure 1).

Definition 3. A transmitting subgraph is a path
⟨V0, V1, . . . , V𝑘⟩ such that there are at least two pebbles
on V0, and after a sequence of pebbling moves, one can
transmit a pebble from V0 to V𝑘.

Lemma 4 (see [2]). Let 𝑃𝑘+1 = ⟨V0, V1, . . . , V𝑘⟩. If

𝑝 (V0) + 2𝑝 (V1) + ⋅ ⋅ ⋅ + 2
𝑖
𝑝 (V𝑖) + ⋅ ⋅ ⋅ + 2

𝑘−1
𝑝 (V𝑘−1) ≥ 2

𝑘
,

(1)

then 𝑃𝑘+1 is a transmitting subgraph.
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Figure 1: 𝑀(𝐹4).

Definition 5. The 𝑡-pebbling number, 𝑓𝑡(𝐺), of a connected
graph, 𝐺, is the smallest positive integer such that from every
placement of 𝑓𝑡(𝐺) pebbles, 𝑡 pebbles can be moved to a
specified target vertex by a sequence of pebbling moves.

Lemma 6 (see [3]). If𝐾𝑛 is the complete graph with 𝑛 (𝑛 ≥ 2)

vertices, then 𝑓𝑡(𝐾𝑛) = 2𝑡 + 𝑛 − 2.

Lemma 7 (see [4]). Consider 𝑓(𝑀(𝑃𝑛)) = 2
𝑛
+ 𝑛 − 2.

Chung found the pebbling numbers of the 𝑛-cube𝑄𝑛, the
complete graph 𝐾𝑛, and the path 𝑃𝑛 (see [1]). The pebbling
number of 𝐶𝑛 was determined in [5]. In [6, 7], Ye et al. gave
the number of squares of cycles. Feng and Kim proved that
𝑓(𝐹𝑛) = 𝑛 and 𝑓(𝑊𝑛) = 𝑛 (see [8]). Liu et al. determined the
pebbling numbers of middle graphs of 𝑃𝑛,𝐾𝑛, and𝐾1,𝑛−1 (see
[4]). In [9], Ye et al. proved that 𝑓(𝑀(𝐶2𝑛)) = 2

𝑛+1
+ 2𝑛 −

2 (𝑛 ≥ 2) and 𝑓(𝑀(𝐶2𝑛+1)) = ⌊2
𝑛+3

/3⌋ + 2𝑛, where 𝑀(𝐶𝑛)

denotes the middle graph of 𝐶𝑛. Motivated by these works,
we will determine the value of the pebbling number and the
2-property of middle graphs of 𝐹𝑛.

2. Pebbling Numbers of 𝑀(𝐹𝑛)

In this section, we study the pebbling number of
𝑀(𝐹𝑛). Let 𝑆 = {V0, 𝑢01, 𝑢02, . . . , 𝑢0(𝑛−1)}, and let
𝐴 = {V1, 𝑢12, V2, 𝑢23, . . . , V𝑛−1}. Obviously, the subgraph
induced by 𝑆 is a complete graph with 𝑛 vertices. For 𝑛 = 3,
𝑀(𝐹3) ≅ 𝑀(𝐶3). Hence we have the following theorem.

Theorem 8 (see [9]). Consider 𝑓(𝑀(𝐹3)) = 7.

Lemma 9. Let 𝑓(𝑀(𝐹𝑛−1)) = 𝑝. If 𝑝 + 3 pebbles are placed on
𝑀(𝐹𝑛), then one pebble can be moved to any specified vertex of
𝑆 by a sequence of pebbling moves.

Proof. Let V be our target vertex, and let𝑝(V) = 0, where V ∈ 𝑆.
We may assume that V ̸= 𝑢01 (after relabeling if necessary).
Let 𝐵 = {V1, 𝑢12, 𝑢01}. If 𝑝(𝐵) ≥ 5, then 𝑝(𝑢01) ≥ 2 by
Lemma 6, and we canmove one pebble to V. If 𝑝(𝐵) = 4, then
𝐵
1

→ 𝑢02. We delete V1, 𝑢01, and 𝑢12 to obtain the subgraph
𝑀(𝐹𝑛−1) with 𝑝 pebbles, thus we can move one pebble to
V. If 𝑝(𝐵) ≤ 3, then we delete V1, 𝑢01, and 𝑢12 to obtain
the subgraph 𝑀(𝐹𝑛−1) with at least 𝑝 pebbles and we are
done.

Theorem 10. Consider 𝑓(𝑀(𝐹4)) = 11.

Proof. Weplace 7 pebbles on V3 and one pebble on each vertex
of the set {V0, 𝑢02, V2}, other vertices have no pebble, then no
pebble can be moved to V1. So 𝑝(𝑀(𝐹4)) ≥ 11. We now
place 11 pebbles on 𝑀(𝐹4). We assume that V is our target
vertex and 𝑝(V) = 0. Recall 𝑆 = {V0, 𝑢01, 𝑢02, 𝑢03} and 𝐴 =

{V1, 𝑢12, V2, 𝑢23, V3}.

(1) Consider V ∈ 𝑆. By Theorem 8 and Lemma 9, we can
move one pebble to V.

(2) Consider V = V1 (or V = V3). Let 𝐴1 = 𝐴 − {V1}, let
𝐴2 = {𝑢12, V2}, and let𝐴3 = 𝐴1 −𝐴2. If 𝑝(𝑆) = 𝑡, then
𝑝(𝐴1) = 11 − 𝑡. Thus we can move at least ⌊(8 − 𝑡)/2⌋

pebbles from 𝐴1 to 𝑆 so that 𝑝(𝑆) = ⌊(8 + 𝑡)/2⌋ ≥ 6

for 𝑡 ≥ 4. By Lemma 6, 𝑝(𝑢01) = 2 and we can move
one pebble to V1. If 𝑡 ≤ 2, then 𝑝(𝐴) ≥ 9. By Lemma 7,
we can move one pebble to V1. If 𝑡 = 3, then at least
one of 𝑢01 and 𝑢03 can obtain one pebble from every
placement of 3 pebbles on 𝑆 by a sequence of pebbling
moves. If 𝑝(𝐴3) ≥ 7, then 𝐴3

3

→ 𝑢03. So ⟨𝑢03, 𝑢01, V1⟩
is a transmitting subgraph. If 4 ≤ 𝑝(𝐴3) ≤ 6, then 2 ≤

𝑝(𝐴2) ≤ 4. By Lemma 6, 𝑝(𝑢23) ≥ 2 and 𝑝(𝑢12) ≥ 1.
So ⟨𝑢23, 𝑢12, V1⟩ is a transmitting subgraph. If𝑝(𝐴3) ≤

3, then 𝑝(𝐴2) ≥ 5. So ⟨V2, 𝑢12, V1⟩ is a transmitting
subgraph.

(3) Consider V = V2. If 𝑝(𝑆) ≥ 4 or 𝑝(𝑆) ≤ 2, then we are
done with (2). If 𝑝(𝑆) = 3, then 𝑝(V1) + 𝑝(𝑢12) ≥ 4 or
𝑝(𝑢23) + 𝑝(V3) ≥ 4. So ⟨V1, 𝑢12, V2⟩ or ⟨V3, 𝑢23, V2⟩ is a
transmitting subgraph.

(4) Consider V = 𝑢12 (or V = 𝑢23). If 𝑝(𝑆) ≥ 4 or
𝑝(𝑆) ≤ 2, then we are done with (2). If 𝑝(𝑆) = 3, then
𝑝(V1) + 𝑝(V2) + 𝑝(𝑢23) + 𝑝(V3) = 8. Obviously, we are
done if 𝑝(V1) ≥ 2 or 𝑝(V2) ≥ 2. Next suppose that
𝑝(V1) ≤ 1 and 𝑝(V2) ≤ 1. Thus 𝑝(𝑢23) + 𝑝(V3) ≥ 6. So
⟨V3, 𝑢23, 𝑢12⟩ is a transmitting subgraph.

Theorem 11. Consider 𝑓(𝑀(𝐹𝑛)) = 3𝑛 − 1 (𝑛 ≥ 4).

Proof. We place 7 pebbles on V𝑛−1 and one pebble on each
vertex of 𝑀(𝐹𝑛) except V1, 𝑢01, 𝑢12, 𝑢(𝑛−2)(𝑛−1), 𝑢0(𝑛−1), and
V𝑛−1. In this configuration of pebbles, we cannot move one
pebble to V1. So𝑓(𝑀(𝐹𝑛)) ≥ 3𝑛−1. Next, let us use induction
on 𝑛 to show that𝑓(𝑀(𝐹𝑛)) = 3𝑛−1. For 𝑛 = 4, our theorem is
true byTheorem 10. Suppose that 𝑓(𝑀(𝐹𝑘)) = 3𝑘−1 if 𝑘 < 𝑛.
Now 3𝑛 − 1 pebbles are placed arbitrarily on the vertices of
𝑀(𝐹𝑛). Suppose that V is our target vertex and 𝑝(V) = 0.

(1) Consider V ∈ 𝑆. By induction and Theorem 8, we can
move one pebble to V.

(2) Consider V = V1 (or V = V𝑛−1). Obviously, 𝑝(𝑢01) ≤ 1.
Otherwise, 𝑝(𝑢01) > 1. V1 can obtain one pebble. Let 𝐵𝑖 =
{𝑢𝑖(𝑖+1), 𝑢0(𝑖+1), V𝑖+1} (1 ≤ 𝑖 ≤ 𝑛 − 2).

If 𝑝(𝐵𝑛−2) ≤ 3, then we delete 𝐵𝑛−2 to obtain the subgraph
𝑀(𝐹𝑛−1)with at least 3(𝑛−1)−1 pebbles. By induction, we can
move one pebble to V1. If 𝑝(𝐵𝑛−2) = 4, then 𝐵𝑛−2

1

→ 𝑢0(𝑛−2).
Thus we delete 𝐵𝑛−2 to obtain the subgraph 𝑀(𝐹𝑛−1) with
3(𝑛 − 1) − 1 pebbles. By induction, we are done.
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Next, suppose that𝑝(𝐵𝑛−2) ≥ 5. By Lemma 6,𝑝(𝑢0(𝑛−1)) ≥

2. If 𝑝(𝑢01) = 1, then ⟨𝑢0(𝑛−1), 𝑢01, V1⟩ is a transmitting
subgraph. If 𝑝(V0) ≥ 2, then V0

1

→ 𝑢01, and we are done. If
there exists some 𝐵𝑖 with 𝑝(𝐵𝑖) ≥ 5 (𝑖 ̸= 𝑛−2), then 𝐵𝑖

1

→ 𝑢01,
and we are done. Thus we assume that 𝑝(𝑢01) = 0, 𝑝(V0) ≤ 1,
and 𝑝(𝐵𝑖) ≤ 4 for 1 ≤ 𝑖 ≤ 𝑛 − 3.

Now, we consider 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 3). Clearly, if 𝑝(𝐵1) =

4, then we are done. Suppose that there exists some 𝐵𝑗 with
𝑝(𝐵𝑗) = 4 (𝑗 ̸= 1). It is clear that if one of the three cases ((i)
𝑝(𝑢0𝑗) ≥ 1 (𝑢0𝑗 ∈ 𝐵𝑗−1), (ii) 𝑝(𝐵𝑗−1) ≥ 3, and (iii) 𝑝(V𝑗) ≥ 2

(V𝑗 ∈ 𝐵𝑗−1)) happens, then we canmove one pebble to V.Thus
we assume that𝑝(𝐵𝑖) = 4 (2 ≤ 𝑖 ≤ 𝑛−3),𝑝(𝐵𝑖−1) ≤ 2,𝑝(𝑢0𝑖) =

0, and 𝑝(V𝑖) ≤ 1. If there are 𝑟 sets 𝐵𝑖
1

, 𝐵𝑖
2

, . . . , 𝐵𝑖
𝑟

such that
𝑝(𝐵𝑖

𝑘

) = 4 for 1 ≤ 𝑘 ≤ 𝑟, then 𝑝(𝐵𝑖
𝑘
−1) ≤ 2 for 1 ≤ 𝑘 ≤ 𝑟.

Let 𝑁1 = {𝑖1, 𝑖2, . . . , 𝑖𝑟}, let 𝑁2 = {𝑖1 − 1, 𝑖2 − 1, . . . , 𝑖𝑟 − 1},
and let 𝑁3 = {1, 2, . . . , 𝑛 − 3} − 𝑁1 − 𝑁2. If 𝑝(𝐵𝑗) = 2 for all
𝑗 ∈ 𝑁2 and 𝑝(𝐵𝑘) = 3 for all 𝑘 ∈ 𝑁3, then 𝑝(𝑢𝑗(𝑗+1)) = 1

and 𝑝(𝑢𝑘(𝑘+1)) = 1. Recall that 𝑝(𝐵𝑖) = 4 for all 𝑖 ∈ 𝑁1 and
𝑝(𝐵𝑛−2) ≥ 5. Then 𝑝(𝑢𝑖(𝑖+1)) = 1 and 𝑝(𝑢(𝑛−2)(𝑛−1)) = 2. Thus
⟨𝑢(𝑛−2)(𝑛−1), 𝑢(𝑛−3)(𝑛−2), . . . , 𝑢12, V1⟩ is a transmitting subgraph.
So there is at least some 𝑗 in 𝑁2 such that 𝑝(𝐵𝑗) ≤ 1 or at
least some 𝑘 in 𝑁3 such that 𝑝(𝐵𝑘) ≤ 2. If there are two 𝑗



and 𝑗
 in 𝑁2 such that 𝑝(𝐵𝑗) ≤ 1 and 𝑝(𝐵𝑗) ≤ 1 or two

𝑘
 and 𝑘

 in 𝑁3 such that 𝑝(𝐵𝑘) ≤ 2 and 𝑝(𝐵𝑘) ≤ 2 or
some 𝑗 in𝑁2 such that 𝑝(𝐵𝑗) ≤ 1 and some 𝑘 in𝑁3 such that
𝑝(𝐵𝑘) ≤ 2, then 𝑝(𝐵𝑛−2) ≥ 9. By Lemma 6, 𝑝(𝑢0(𝑛−1)) = 4.
Hence ⟨𝑢0(𝑛−1), 𝑢01, V1⟩ is a transmitting subgraph.

Finally, there are two remaining cases, (i) there is only
some 𝑗 in 𝑁2 such that 𝑝(𝐵𝑗) ≤ 1, and (ii) there is only
some 𝑘 in 𝑁3 such that 𝑝(𝐵𝑘) ≤ 2. So 𝑝(𝐵𝑛−2) ≥ 8. If
𝑝(𝑢(𝑛−2)(𝑛−1)) = 0, then ⟨V𝑛−1, 𝑢0(𝑛−1), 𝑢01, V1⟩ is a transmitting
subgraph. If 𝑝(𝑢(𝑛−2)(𝑛−1)) ̸= 0, then, in 𝐵𝑛−2, 𝑝(𝑢(𝑛−2)(𝑛−1)) ≥

2 and 𝑝(𝑢0(𝑛−1)) ≥ 2. For (i), we have 𝑝(𝑢𝑖(𝑖+1)) ≥ 1

for 𝑗 + 2 ≤ 𝑖 ≤ 𝑛 − 3. By the transmitting subgraph
⟨𝑢(𝑛−2)(𝑛−1), 𝑢(𝑛−3)(𝑛−2), . . . , 𝑢(𝑗+1)(𝑗+2)⟩, 𝑝(𝐵𝑗+1) = 5 and we are
done. Suppose that (ii) holds. If 𝑝(𝐵𝑘) = 2, then we can move
one pebble from 𝑢0(𝑛−1) to 𝑢0(𝑘+1) so that 𝑝(𝐵𝑘) = 3, and we
are done. If 𝑝(𝐵𝑘) ≤ 1, then 𝑝(𝐵𝑛−2) ≥ 9 and we are done.

(3) Consider V = 𝑢12 (or V = 𝑢(𝑛−2)(𝑛−1)). Obviously,
𝑝(𝑢01) ≤ 1 and 𝑝(V𝑖) ≤ 1 (𝑖 = 1, 2). Otherwise, one pebble
can be moved to 𝑢12. The proof is similar to (2).

(4) Consider V = V𝑖(2 ≤ 𝑖 ≤ 𝑛 − 2) (or V = 𝑢𝑗(𝑗+1)(2 ≤

𝑗 ≤ 𝑛 − 3)) and 𝑝(V𝑖) = 0. Let 𝐵 = {V1, 𝑢12, 𝑢01}, and let
𝐵

= {V𝑛−1, 𝑢(𝑛−2)(𝑛−1), 𝑢0(𝑛−1)}. If 𝑝(𝐵) ≤ 3, then delete 𝐵 to

obtain the subgraph𝑀(𝐹𝑛−1)with at least 3(𝑛−1)−1 pebbles.
By induction, we can move one pebble to V. If 𝑝(𝐵) = 4, then
we can move one pebble from 𝐵 to 𝑢02, after deleting 𝐵 to
obtain the subgraph𝑀(𝐹𝑛−1)with 3(𝑛−1)−1 pebbles. Hence
we assume that 𝑝(𝐵) ≥ 5. According to symmetry, 𝑝(𝐵) ≥ 5.
Therefore we are done.

3. The 2-Pebbling Property of 𝑀(𝐹𝑛)

For a distribution of pebbles on 𝐺, let 𝑞 be the number of
vertices with at least one pebble. We say a graph 𝐺 satisfies
the 2-pebbling property if two pebbles can be moved to any
specified vertex when the total starting number of pebbles

is 2𝑓(𝐺) − 𝑞 + 1. Next we will discuss the 2-pebbling
property of 𝑀(𝐹𝑛). For the convenience of statement, let 𝑆 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛}, and let𝐴 = {𝑦1, 𝑦2, . . . , 𝑦2𝑛−3}, where 𝑥1 = V0,
𝑥2 = 𝑢01, . . . , 𝑥𝑛 = 𝑢0(𝑛−1), 𝑦1 = V1, and 𝑦2 = 𝑢12, . . . , 𝑦2𝑛−3 =

V𝑛−1. In this section let 𝑞 = 𝑞𝑠 + 𝑞𝑎, where 𝑞𝑠 and 𝑞𝑎 are
the number of vertices with at least one pebble in 𝑆 and 𝐴,
respectively.

Lemma 12. Suppose that 𝑝(𝑀(𝐹𝑛)) ≥ 2(3𝑛 − 1) − 𝑞 and 𝑞𝑎 =

2𝑛 − 4. If 𝑝(𝑆) = 𝑞𝑠 + 𝑡 (𝑡 = 0, 1, 2) and 𝑝(𝑦𝑟) = 0 (1 ≤ 𝑟 ≤

2𝑛 − 3), then one can move 2 pebbles to 𝑦𝑟.

Proof. Let 𝑟 = 2𝑘 − 1 (or 𝑟 = 2𝑘). Since 𝑞𝑎 = 2𝑛 − 4 and
𝑝(𝑆) = 𝑞𝑠 + 𝑡, so 𝑝(𝐴) ≥ 4𝑛 + 2 − 2𝑞𝑠 − 𝑡. Without loss of
generality, there exists a positive integer 𝑗 (𝑗 > 𝑟) such that
the corresponding vertex 𝑦𝑗 with 𝑝(𝑦𝑗) ≥ 2 and 𝑝(𝑦𝑖) = 1 for

𝑟 + 1 ≤ 𝑖 ≤ 𝑗 − 1. Thus 𝑦𝑗

1

→ 𝑦𝑗−1

1

→ ⋅ ⋅ ⋅
1

→ 𝑦𝑟. Using the
remaining 4𝑛 + 2 − 𝑡 − 2𝑞𝑠 − (𝑗 − 𝑟 + 1) pebbles on vertices
𝑦1, 𝑦2, . . . , 𝑦𝑟−1, 𝑦𝑗, 𝑦𝑗+1, . . . , 𝑦2𝑛−3, we can move at least 𝑛 +

⌊(5 − 𝑡)/2⌋ − 𝑞𝑠 pebbles to 𝑆 so that 𝑝(𝑆) ≥ 𝑛 + ⌊(5 + 𝑡)/2⌋. By
Lemma 6,𝑝(𝑥𝑘+1) = 2. So we canmove one additional pebble
from 𝑥𝑘+1 to 𝑦𝑟 so that 𝑝(𝑦𝑟) = 2.

Lemma 13. Suppose that 𝑝(𝑀(𝐹𝑛)) = 2(3𝑛 − 1) − 𝑞 + 1 and
𝑞𝑎 = 2𝑛 − 5. If 𝑝(𝑆) = 𝑞𝑠 + 𝑡 (𝑡 = 0, 1) and 𝑝(𝑦𝑟) = 0 (1 ≤ 𝑟 ≤

2𝑛 − 3), then one can move 2 pebbles to 𝑦𝑟.

Proof. Let 𝑟 = 2𝑘−1 (or 𝑟 = 2𝑘). Since 𝑞𝑎 = 2𝑛−5, we see that
there is only some vertex 𝑦𝑖

0

(𝑖0 ̸= 𝑟)with𝑝(𝑦𝑖
0

) = 0.Without
loss of generality, there exists a positive integer 𝑗 (𝑗 > 𝑟)

such that the corresponding vertex 𝑦𝑗 with 𝑝(𝑦𝑗) ≥ 2 and
𝑝(𝑦𝑖) ≤ 1 for 𝑟 < 𝑖 < 𝑗. If 𝑖0 = 2𝑘0 − 1 (𝑘0 ̸= 𝑘) or
𝑖0 ∉ {𝑟 + 1, 𝑟 + 2, . . . , 𝑗 − 1}, then we can move one pebble
to 𝑦𝑟 by the transmitting subgraph ⟨𝑦𝑗, 𝑦𝑗−2, . . . , 𝑦𝑟+1, 𝑦𝑟⟩ or
⟨𝑦𝑗, 𝑦𝑗−1, 𝑦𝑗−3, . . . , 𝑦𝑟+1, 𝑦𝑟⟩. Now using the remaining at least
4𝑛 + 4 − 𝑡 − 2𝑞𝑠 − (𝑗 − 𝑟 + 1) pebbles on the set 𝐴1 =

{𝑦1, 𝑦2, . . . , 𝑦𝑟−1, 𝑦𝑗, 𝑦𝑗, . . . , 𝑦2𝑛−3}, we can move 𝑛 + ⌊(7 −

𝑡)/2⌋−𝑞𝑠 pebbles from the𝐴1 to 𝑆 so that𝑝(𝑆) = 𝑛+⌊(7+𝑡)/2⌋.
By Lemma 6, 𝑝(𝑥𝑘+1) = 2 and we can move one additional
pebble from 𝑥𝑘+1 to 𝑦𝑟 so that 𝑝(𝑦𝑟) = 2.

Suppose that 𝑖0 = 2𝑘0 (𝑘0 ≥ 𝑘) and 𝑖0 ∈ {𝑟+1, 𝑟+2, . . . , 𝑗−

1}. If 𝑗 = 𝑖0 + 1, then 𝑦𝑗

1

→ 𝑦𝑖
0

. Thus there must exist one
vertex 𝑦𝑗 (𝑗


≥ 𝑗) with 𝑝(𝑦𝑗) ≥ 2 and 𝑝(𝑦𝑖) ≤ 1 for 𝑟 < 𝑖 <

𝑗
. Using the transmitting subgraph ⟨𝑦𝑗 , 𝑦𝑗−2, . . . , 𝑦𝑟+1, 𝑦𝑟⟩

or ⟨𝑦𝑗 , 𝑦𝑗−1, 𝑦𝑗−3, . . . , 𝑦𝑟+1, 𝑦𝑟⟩, we can move one pebble to
𝑦𝑟. Now, using the remaining 4𝑛 + 4 − 𝑡 − 2𝑞𝑠 − (𝑗


− 𝑟 +

2) pebbles on the set {𝑦1, 𝑦2, . . . , 𝑦𝑟−1, 𝑦𝑗 , 𝑦𝑗+1, . . . , 𝑦2𝑛−3},
we can move 𝑛 + ⌊(6 − 𝑡)/2⌋ − 𝑞𝑠 pebbles from the set
{𝑦1, 𝑦2, . . . , 𝑦𝑟−1, 𝑦𝑗 , 𝑦𝑗+1, . . . , 𝑦2𝑛−3} to 𝑆 so that 𝑝(𝑆) ≥ 𝑛 +

⌊(6 + 𝑡)/2⌋. By Lemma 6, 𝑝(𝑥𝑘+1) = 2 and we are done. Next,
suppose that 𝑗 ≥ 𝑖0 + 2.

(1) Consider 𝑝(𝑦2𝑘) = 1. We divide into three subcases.
(1.1) Consider 𝑝(𝑥𝑘+2) = 0. We delete vertices

𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘
0

, 𝑥𝑘+2 to obtain the subgraph with two sets
𝐴2 = 𝐴 − {𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘

0

} and 𝑆1 = 𝑆 − {𝑥𝑘+2}, and
𝑝(𝐴2) = 4𝑛 + 4 − 2𝑞𝑠 − 𝑡 − (2𝑘0 − 𝑟 − 1) and 𝑝(𝑆1) = 𝑞𝑠 + 𝑡.
Thus we can move 𝑛 + ⌊(10 − 𝑡)/2⌋ − 𝑞𝑠 pebbles from 𝐴2 to
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𝑆1 so that 𝑝(𝑆1) = 𝑛 + ⌊(10 + 𝑡)/2⌋. By Lemma 6, 𝑝(𝑥𝑘+1) = 4

and we can move two pebbles from 𝑥𝑘+1 to 𝑦𝑟.
(1.2) Consider 𝑝(𝑥𝑘+2) = 1. Suppose that 𝑗 = 2𝑘

 or 𝑗 =

2𝑘

+1 (𝑘 > 𝑘). Let𝐴3 = {𝑦2𝑘 , 𝑦2𝑘+1}. Obviously, 𝑝(𝐴3) ≥ 3.

If 𝑝(𝐴3) ≥ 5, then

𝐴3

2

→ 𝑥𝑘+2

1

→ 𝑥𝑘+2

1

→ 𝑦𝑟+1

1

→ 𝑦𝑟.
(2)

We delete 𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘
0

, 𝑥𝑘+2 to obtain the subgraph with
two sets 𝐴2 and 𝑆1. So 𝑝(𝐴2) = 4𝑛 − 2𝑞𝑠 − 𝑡 − (2𝑘0 − 𝑟 − 1)

and 𝑝(𝑆1) = 𝑞𝑠 − 1 + 𝑡. We can move 𝑛 + ⌊(6 − 𝑡)/2⌋ − 𝑞𝑠

pebbles from 𝐴2 to 𝑆1 so that 𝑝(𝑆1) = 𝑛 + ⌊(4 + 𝑡)/2⌋. By
Lemma 6, 𝑝(𝑥𝑘+1) = 2 and we are done. If 𝑝(𝐴3) = 3, 4 and
𝑝(𝑥𝑘+2) ̸= 0, then

𝐴3

1

→ 𝑥𝑘+2

1

→ 𝑥𝑘+2

1

→ 𝑦𝑟+1

1

→ 𝑦𝑟.
(3)

We delete 𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘
0

, 𝑥𝑘+2 to obtain the subgraph with
two sets𝐴2 and 𝑆1. So𝑝(𝐴2) = 4𝑛+2−2𝑞𝑠−𝑡−(2𝑘0−𝑟−1) and
𝑝(𝑆1) = 𝑞𝑠−2+𝑡.We canmove 𝑛+⌊(8−𝑡)/2⌋−𝑞𝑠 pebbles from
𝐴2 to 𝑆1 so that𝑝(𝑆1) = 𝑛+⌊(4+𝑡)/2⌋. By Lemma 6,𝑝(𝑥𝑘+1) =

2 and we are done. If 𝑝(𝐴3) = 3, 4 and 𝑝(𝑥𝑘+2) = 0, then
𝐴3

1

→ 𝑥𝑘+1. We delete 𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘
0

, 𝑦2𝑘 , 𝑦2𝑘+1, 𝑥𝑘+2 to
obtain the subgraph with two sets 𝐴4 = 𝐴2 − 𝐴3 and 𝑆2 =

𝑆 − {𝑥2𝑘+2}. So 𝑝(𝐴4) ≥ 4𝑛 − 2𝑞𝑠 − 𝑡 − (2𝑘0 − 𝑟 − 1) and
𝑝(𝑆2) = 𝑞𝑠 + 1 + 𝑡. We can move 𝑛 + ⌊(8 − 𝑡)/2⌋ − 𝑞𝑠 pebbles
from 𝐴4 to 𝑆2 so that 𝑝(𝑆2) = 𝑛 + ⌊(10 + 𝑡)/2⌋. By Lemma 6,
𝑝(𝑥𝑘+1) = 4.

(1.3) Consider 𝑝(𝑥𝑘+2) = 2 for 𝑡 = 1. Thus 𝑥𝑘+2
1

→ 𝑦2𝑘

1

→

𝑦𝑟. We delete 𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦2𝑘
0

, 𝑥𝑘+2 to obtain the subgraph
with two sets𝐴2 and 𝑆1. So 𝑝(𝐴2) = 4𝑛+3−2𝑞𝑠−(2𝑘0−𝑟−1)

and 𝑝(𝑆1) = 𝑞𝑠 − 1. 𝑛 + 4 − 𝑞𝑠 pebbles can be moved from 𝐴2

to 𝑆1 so that 𝑝(𝑆1) = 𝑛 + 3. By Lemma 6, 𝑝(𝑥𝑘+1) = 3. So we
can move one additional pebble from 𝑥𝑘+1 to 𝑦𝑟.

(2) Consider 𝑝(𝑦2𝑘) = 0; that is, 𝑘 = 𝑘0. We divide into
three subcases.

(2.1) Consider 𝑝(𝑥2𝑘+2) = 0. We delete 𝑦𝑟, 𝑦𝑟+1, 𝑦𝑟+2, 𝑥2𝑘+2
to obtain the subgraph with two sets𝐴5 = 𝐴− {𝑦𝑟, 𝑦𝑟+1, 𝑦𝑟+2}

and 𝑆1. One has 𝑝(𝐴5) = 4𝑛 + 3 − 2𝑞𝑠 − 𝑡 and 𝑝(𝑆1) = 𝑞𝑠 + 𝑡.
We can move 𝑛 + ⌊(10 − 𝑡)/2⌋ − 𝑞𝑠 pebbles from 𝐴5 to 𝑆1 so
that 𝑝(𝑆1) = 𝑛 + ⌊(10 + 𝑡)/2⌋. By Lemma 6, 𝑝(𝑥𝑘+1) = 4 and
we can move two pebbles from 𝑥𝑘+1 to 𝑦𝑟.

(2.2) Consider 𝑝(𝑥𝑘+2) = 1. We have

𝑦𝑗

1

→ 𝑦𝑗−1

1

→ ⋅ ⋅ ⋅
1

→ 𝑦𝑟+2

1

→ 𝑥𝑘+2

1

→ 𝑥𝑘+1.
(4)

We delete vertices 𝑦𝑟, 𝑦𝑟+1, . . . , 𝑦𝑗−1, 𝑥𝑘+2 to obtain the sub-
graph with two sets 𝐴1 and 𝑆1. So 𝑝(𝐴1) = 4𝑛 + 4 − 2𝑞𝑠 − 𝑡 −

(𝑗 − 𝑟) and 𝑝(𝑆1) = 𝑞𝑠 + 𝑡 − 1 (except one moved pebble on
𝑥𝑘+1). We can move 𝑛+ ⌊(8 − 𝑡)/2⌋ − 𝑞𝑠 pebbles from𝐴5 to 𝑆1

so that 𝑝(𝑆1) = 𝑛 + ⌊(6 + 𝑡)/2⌋ (except one moved pebble on
𝑥𝑘+1). By Lemma 6, we can move 3 additional pebbles to 𝑥𝑘+1

so that 𝑝(𝑥𝑘+1) = 4.
(2.3) 𝑝(𝑥𝑘+2) = 2 for 𝑡 = 1. Thus 𝑥𝑘+2

1

→ 𝑥𝑘+1. Deleting
𝑦𝑟, 𝑦𝑟+1, 𝑦𝑟+2, 𝑥𝑘+2 to obtain the subgraph with two sets 𝐴5

and 𝑆1. One has𝑝(𝐴5) = 4𝑛+2−2𝑞𝑠 and𝑝(𝑆1) = 𝑞𝑠−1 (except
one moved pebble on 𝑥𝑘+1). We can move 𝑛 + 4 − 𝑞𝑠 pebbles
from𝐴4 to 𝑆1 so that 𝑝(𝑆1) = 𝑛+3 (except one moved pebble

on 𝑥𝑘+1). By Lemma 6, we can move 3 additional pebbles to
𝑥𝑘+1 so that 𝑝(𝑥𝑘+1) = 4.

Theorem 14. 𝑀(𝐹𝑛) has the 2-pebbling property.

Proof. Suppose that V is our target vertex. If 𝑝(V) = 1, then
the number of pebbles on 𝑀(𝐹𝑛) except one pebble on V is
2(3𝑛 − 1) + 1 − 𝑞 − 1 (> 3𝑛 − 1). ByTheorem 11, we can move
one additional pebble to V so that 𝑝(V) = 2. Next we assume
that 𝑝(V) = 0.

(1) Consider V = 𝑥𝑟 (1 ≤ 𝑟 ≤ 𝑛). If there exists some vertex
𝑥𝑖 with 𝑝(𝑥𝑖) ≥ 2 (𝑖 ̸= 𝑟), then 𝑥𝑖

1

→ 𝑥𝑟. Using the remaining
2(3𝑛−1)+1−𝑞−2 > 3𝑛−1pebbles, we canmove one additional
pebble to 𝑥𝑟 so that 𝑝(𝑥𝑟) = 2. If 𝑝(𝑥𝑖) ≤ 1 for 1 ≤ 𝑖 ≤ 𝑛, then
𝑝(𝐴) = 2(3𝑛−1)−𝑞+1−𝑞𝑠 = 6𝑛−1−𝑞𝑎 −2𝑞𝑠 ≥ 4𝑛+2−2𝑞𝑠.
Thus we can move at least 𝑛 + 2 − 𝑞𝑠 pebbles from 𝐴 to 𝑆 so
that 𝑝(𝑆) = 𝑛 + 2. By Lemma 6, we can move two pebbles to
𝑥𝑟.

(2) Consider V = 𝑦𝑟 (1 ≤ 𝑟 ≤ 2𝑛 − 3). Let 𝑟 = 2𝑘 − 1

(or 𝑟 = 2𝑘). If 𝑝(𝑥𝑘+1) ≥ 2, then we can put one pebble on
𝑦𝑟. After that, the remaining 2(3𝑛 − 1) − 𝑞 + 1 − 2 (> 3𝑛 − 1)

pebbles on 𝑀(𝐹𝑛) suffice to put one additional pebble on 𝑦𝑟

byTheorem 11. Next we assume 𝑝(𝑥𝑘+1) ≤ 1.
(2.1) Suppose that 𝑝(𝑥𝑘+1) = 1. If there is some vertex

𝑥𝑖 with 𝑝(𝑥𝑖) ≥ 2 (𝑖 ̸= 𝑘 + 1), then 𝑥𝑖

1

→ 𝑥𝑘+1

1

→ 𝑦𝑟. The
remaining 2(3𝑛−1)−𝑞+1−3 (> 3𝑛−1) pebbles on𝑀(𝐹𝑛)will
suffice to put one additional pebble on 𝑦𝑟 so that 𝑝(𝑦𝑟) = 2.
Next we assume that 𝑝(𝑥𝑖) ≤ 1 for 1 ≤ 𝑖 ≤ 𝑛. Obviously,
𝑝(𝑆) = 𝑞𝑠 and𝑝(𝐴) = 2(3𝑛−1)−𝑞+1−𝑞𝑠 = 6𝑛−1−𝑞𝑎−2𝑞𝑠. If
𝑞𝑎 ≤ 2𝑛−5, then𝑝(𝐴) ≥ 4𝑛+4−2𝑞𝑠.Thuswe canmove at least
𝑛+5−𝑞𝑠 pebbles from𝐴 to 𝑆 so that𝑝(𝑆) = 𝑛+5. By Lemma 6,
we can move 3 additional pebbles to 𝑥𝑘+1 so that 𝑝(𝑥𝑘+1) = 4

and we are done. If 𝑞𝑎 = 2𝑛 − 4, then, by Lemma 12, we are
done.

(2.2) Suppose that 𝑝(𝑥𝑘+1) = 0. If we can find some vertex
𝑥𝑖 with 𝑝(𝑥𝑖) ≥ 4 or find two vertices 𝑥𝑗 with 𝑝(V𝑗) ≥ 2 and
𝑥𝑗 with 𝑝(𝑥𝑗) ≥ 2, then using 4 pebbles on 𝑥𝑖 or two pebbles
on 𝑥𝑗 and two pebbles on 𝑥𝑗 we can move one pebble to 𝑦𝑟.
Then the remaining 2(3𝑛−1)−𝑞+1−4 (> 3𝑛−1) pebbles on
𝑀(𝐹𝑛) will suffice to put one additional pebble to 𝑦𝑟 so that
𝑝(𝑦𝑟) = 2.

Consider only some vertex 𝑥𝑖 with 2 ≤ 𝑝(𝑥𝑖) ≤ 3. If
𝑝(𝑥𝑖) = 3, then 𝑥𝑖

1

→ 𝑥𝑘+1, 𝑝(𝑆) = 𝑞𝑠, and 𝑝(𝐴) = 2(3𝑛 − 1) −

𝑞𝑠 −𝑞𝑎 +1− (𝑞𝑠 +2) = 6𝑛−3−2𝑞𝑠 −𝑞𝑎. When 𝑞𝑎 ≤ 2𝑛−5 and
𝑝(𝐴) ≥ 4𝑛 + 2 − 2𝑞𝑠, we can move at least 𝑛 + 4 − 𝑞𝑠 pebbles
from 𝐴 to 𝑆 so that 𝑝(𝑆) ≥ 𝑛 + 4 except for one pebble on
𝑥𝑘+1. By Lemma 6, we can put 3 additional pebbles on 𝑥𝑘+1

so that 𝑝(𝑥𝑘+1) = 4. When 𝑞𝑎 = 2𝑛 − 4, we are done with
Lemma 12. If 𝑝(𝑥𝑖) = 2, then 𝑥𝑖

1

→ 𝑥𝑘+1, 𝑝(𝑆) = 𝑞𝑠 − 1, and
𝑝(𝐴) = 2(3𝑛 − 1) − 𝑞𝑠 − 𝑞𝑎 + 1 − (𝑞𝑠 + 1) = 6𝑛 − 2 − 2𝑞𝑠 − 𝑞𝑎.
When 𝑞𝑎 ≤ 2𝑛 − 6 and 𝑝(𝐴) ≥ 4𝑛 + 4 − 2𝑞𝑠, we can move at
least 𝑛+5−𝑞𝑠 pebbles from𝐴 to 𝑆 so that 𝑝(𝑆) ≥ 𝑛+4 except
for one pebble on 𝑥𝑘+1. By Lemma 6, we can put 3 additional
pebbles on 𝑥𝑘+1 so that 𝑝(𝑥𝑘+1) = 4. When 𝑞𝑎 = 2𝑛 − 4 and
𝑞𝑎 = 2𝑛 − 5, we are done with Lemmas 12 and 13.

Consider 𝑝(𝑥𝑖) ≤ 1 for 1 ≤ 𝑖 ≤ 𝑛. Obviously, 𝑝(𝑆) =

𝑞𝑠 and 𝑝(𝐴) = 6𝑛 − 1 − 𝑞𝑎 − 2𝑞𝑠. When 𝑞𝑎 ≤ 2𝑛 − 6
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and 𝑝(𝐴) ≥ 4𝑛+5−2𝑞𝑠, we canmove at least 𝑛+6−𝑞𝑠 pebbles
from 𝐴 to 𝑆 so that 𝑝(𝑆) ≥ 𝑛 + 6. By Lemma 6, 𝑝(𝑥𝑘+1) = 4

and we are done. When 𝑞𝑎 = 2𝑛 − 4 and 𝑞𝑎 = 2𝑛 − 5, we are
done with Lemmas 12 and 13.
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