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The dynamical behaviors of the Lorenz-84 atmospheric circulation model are investigated based on qualitative theory and
numerical simulations.The stability and local bifurcation conditions of the Lorenz-84 atmospheric circulation model are obtained.
It is also shown that when the bifurcation parameter exceeds a critical value, the Hopf bifurcation occurs in this model. Then, the
conditions of the supercritical and subcritical bifurcation are derived through the normal form theory. Finally, the chaotic behavior
of the model is also discussed, the bifurcation diagrams and Lyapunov exponents spectrum for the corresponding parameter are
obtained, and the parameter interval ranges of limit cycle and chaotic attractor are calculated in further. Especially, a computer-
assisted proof of the chaoticity of the model is presented by a topological horseshoe theory.

1. Introduction

Atmospheric models provided an excellent instrument for
complex dynamical behaviors which can be observed in
natural science.They involve processes occurring over a wide
spectrum of space scales and time scales, from the chemistry
of minor constituents in the stratosphere to hurricanes,
droughts, or the Quaternary glaciations, and give rise to a
variety of intricate behaviors in the formof abrupt transitions,
wave propagation, weak chaos, or fully developed turbu-
lence [1–7]. The generally accepted approaches to study the
atmospheric and climate dynamics are based on numerical
forecasting models, in which all processes deemed to be
relevant are included. As for the low-order atmospheric
models, they involve a large number equations. Although
it is unreasonable to expect solutions to low-dimensional
problems to generalize to a million-dimensional spaces, it
is unlikely too that problems identified in the simplified
models will vanish in operational models [8]. It is equally
important to note recent results which indicate the possibility
that high-dimensional models may behave in a smooth way
with respect to changes in parameter values [9–11]. Thus,
low-order models may well have little to do with higher-
dimensional operational models.

On the other side, the earth’s atmosphere is in constant
circulation due to the earth’s atmosphere being heated by the
sun and the earth’s rotation. A succession of the heating of the
air near the earth’s surface, rising, and cool air coming down
sets up a general circulation pattern: air rises near the equator,
moves north and south away from the equator at higher
altitudes, sinks down near the poles, and flows back along the
surface from both poles to the equator [12]. This important
type of flow is called Hadley circulation that was first named
after Hadley [13]. There is some evidence that the expansion
of the Hadley circulation is related to climate change [14].
The majority of earth’s driest and arid regions are located
in the areas underneath the descending branches of the
Hadley circulation around 30 degrees latitude. Both idealised
and more realistic climate model experiments show that
the Hadley circulation expands with increased global mean
temperature; this can lead to large changes in precipitation in
the latitudes at the edge of the cells [15]. Scientists fear that
the ongoing presence of global warmingmight bring changes
to the ecosystems in the deep tropics and that the deserts will
become drier and expand [16]. Based on the above discussion,
the Hadley circulation is very important to the atmospheric
science. Furthermore, the stable and unstable atmospheric
circulations are closely linked with the dramatic changes and
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persistent abnormalities of the weather. Therefore, it is very
important to research the stable and unstable atmospheric
circulation for meteorological phenomena.

A very appealing low-order model of atmospheric cir-
culation is introduced by Lorenz in 1984 [17], which is
called Lorenz-84 atmospheric circulation model (Lorenz-84
model). The Lorenz-84 model involves just three ordinary
differential equations, and it includes some important fea-
tures of Hadley circulation. So far, this model was known
to have a pair of coexisting climates described originally by
Lorenz [18]. Due to the importance of Lorenz-84model, it has
received great attention from researchers, and many impor-
tant results on Lorenz-84model have also been obtained [19–
23]. In 1995, Shil’nikov et al. discussed the bifurcation and
predictability of the Lorenz-84 model [19]. Soon afterward,
Broer et al. studied the bifurcations and strange attractors
in the Lorenz-84 model with seasonal forcing [20]. Van
et al. [21] and Roebber [22] investigated the dynamical
behaviors of a low-order coupled ocean-atmospheric model.
It is well known that the synoptic atmospheric dynamics
over the North Atlantic ocean can be dominated by the jet
stream, a westerly circulation, and baroclinic waves, which
transport heat andmomentumnorthward. Based on this fact,
Kuznetsov et al. considered the intensity of the jet stream and
discussed the fold-flip bifurcation in the Lorenz-84 model
[23]. For somemore detailed investigations for the Lorenz-84
model, the interested reader could also see [24–29]. However,
the most important results are mainly based on numerical
simulations in [19, 20, 22, 28].

This paper aims to further investigate the dynamical
behaviors of the Lorenz-84 model by theoretical analysis.
Some stability conditions, supercritical, and subcritical Hopf
bifurcations are obtained by using the qualitative analy-
sis method. Moreover, bifurcation analysis of a nonlinear
dynamical system throws useful light on the behavior of
the system in different parameter ranges. Generally, equi-
librium points play an important role in governing the
overall system behavior. It is therefore useful to consider the
mathematical expressions of equilibrium points as a function
of system parameters. However, it is so difficult to obtain
the equilibrium points regarded as the explicit mathematical
expressions about the parameters for the Lorenz-84model. In
this paper, one component of equilibrium point is regarded
as a parameter, and others are considered as its functions.
In this way, it is not necessary to know what kind of the
equilibrium point it is, and the stability conditions and
the direction of the Hopf bifurcation are still obtained. In
addition, there are many important results about the chaotic
behaviors of the Lorenz-84 model [17–20, 22, 28], in which
the chaotic behaviors of the Lorenz-84 model were studied
by considering only one parameter. In this paper, the chaotic
behaviors of the Lorenz-84 model are studied by considering
every parameter in the model. Furthermore, the topological
horseshoe is given in the Lorenz-84 model, which provides
a powerful tool in the rigorous study of chaos. Finally, some
similar dynamical behaviors of the Lorenz-84 model under
different parameters are founded, which will be very useful
for discussing the codimension-𝑛 (𝑛 ≥ 2) bifurcation or other
nonlinear phenomena.

This paper is arranged as follows. In Section 2, the
stability and bifurcation of the model are discussed, and
the conditions of stability and bifurcation are also given.
Especially, the Hopf bifurcation is discussed, and the con-
ditions of the supercritical and subcritical bifurcation are
derived. In addition, some numerical simulations are shown
to verify our theoretical results and conditions. The chaotic
behavior of Lorenz-84 model is researched in Section 3. The
bifurcation diagrams and Lyapunov exponent spectrum for
every parameter are discussed, and the parameter interval
ranges of limit cycle and chaotic attractor of every parameter
are calculated. Conclusions in Section 4 close the paper.

2. The Stability and Bifurcation Analysis
of the Lorenz-84 Model

In this section, we mainly discuss the stability and local
bifurcation of the Lorenz-84 model and obtain the stability
conditions and direction of the Hopf bifurcation.

2.1. The Lorenz-84 Model. The Lorenz-84 model is a three-
dimensional system [17] and is given by

𝑑𝑥

𝑑𝑡

= − 𝑦
2
− 𝑧
2
− 𝑎𝑥 + 𝑎𝐹,

𝑑𝑦

𝑑𝑡

= 𝑥𝑦 − 𝑏𝑥𝑧 − 𝑦 + 𝐺,

𝑑𝑧

𝑑𝑡

= 𝑏𝑥𝑦 + 𝑥𝑧 − 𝑧,

(1)

where 𝑥 represents the strength of the globally averaged west-
erly current and𝑦 and 𝑧 are the strength of the cosine and sine
phases of a chain of superposedwaves.Theunit of the variable
𝑡 is equal to the damping time of the waves that is estimated
to be five days. 𝐹 and 𝐺 represent the thermal forcing terms,
and the parameter 𝑏 represents the advection strength of the
waves by the westerly current. Hence, the equilibrium point
of model (1) satisfies the following equation:

−𝑦
2
− 𝑧
2
− 𝑎𝑥 + 𝑎𝐹 = 0,

𝑥𝑦 − 𝑏𝑥𝑧 − 𝑦 + 𝐺 = 0,

𝑏𝑥𝑦 + 𝑥𝑧 − 𝑧 = 0.

(2)

That is,

𝑦 =

(1 − 𝑥)𝐺

1 − 2𝑥 + (1 + 𝑏
2
) 𝑥
2
,

𝑧 =

𝑏𝑥𝐺

1 − 2𝑥 + (1 + 𝑏
2
) 𝑥
2
,

𝑎 (𝐹 − 𝑥) (1 − 2𝑥 + (1 + 𝑏
2
) 𝑥
2
) = 𝐺

2
.

(3)

It is well known that when the parameter 𝐺 = 0, the
dynamical behaviors of model (1) are simple which have
been discussed in [24], while the parameter 𝐺 ̸= 0, the
dynamical behaviors become complicated anddisplay chaotic
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attractors inmodel (1).The objective of this paper is to discuss
the stability and local bifurcation and to obtain the corre-
sponding stability and bifurcation conditions aboutmodel (1)
with 𝐺 ̸= 0. Note from (2) that it is difficult to obtain the
explicit mathematical expression of the equilibrium points
on the parameters 𝑎, 𝑏, 𝐹, and 𝐺. However, we can also
view the variable 𝑥 as a parameter. Then, we can get 𝑦 =
𝑦(𝑥, 𝑎, 𝑏, 𝐹, 𝐺), 𝑧 = 𝑧(𝑥, 𝑎, 𝑏, 𝐹, 𝐺) and 𝑥 satisfies the equation
𝑎(𝐹 − 𝑥)(1 − 2𝑥 + (1 + 𝑏

2
)𝑥
2
) = 𝐺
2, that are shown in (3).

2.2.The Stability andBifurcationAnalysis with Parameters𝐺 ≠
0 and 𝑏 = 0. When 𝐺 ̸= 0 and 𝑏 = 0, model (1) is given as

𝑑𝑥

𝑑𝑡

= − 𝑦
2
− 𝑧
2
− 𝑎𝑥 + 𝑎𝐹,

𝑑𝑦

𝑑𝑡

= 𝑥𝑦 − 𝑦 + 𝐺,

𝑑𝑧

𝑑𝑡

= 𝑥𝑧 − 𝑧.

(4)

Then, the equilibrium point of model (4) satisfies the follow-
ing equation:

−𝑦
2
− 𝑧
2
− 𝑎𝑥 + 𝑎𝐹 = 0,

𝑥𝑦 − 𝑦 + 𝐺 = 0,

𝑥𝑧 − 𝑧 = 0.

(5)

From the third equation, in (5), we have (𝑥 − 1)𝑧 = 0. If
𝑥 = 1, then, from the second equation in (5), 𝐺 = 0, which is
contradictory to the hypotheses 𝐺 ̸= 0 in this section. Hence,
it implies 𝑧 = 0 and𝑥 ̸= 1.Then,we can obtain an equilibrium
point𝐾(𝑥

0
, 𝐺/(1 − 𝑥

0
), 0) of model (1), where 𝑥

0
satisfies the

equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2 and 𝑥
0
̸= 1.

Theorem 1. When 𝐺 ̸= 0 and 𝑏 = 0, there exists at least one
equilibrium point 𝐾(𝑥

0
, 𝐺/(1 − 𝑥

0
), 0) in model (1)

(1) if 𝑎 > 0 and the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2 has
solution 𝑥

0
< 1, the equilibrium point 𝐾 is stable,

(2) if 𝑎 > 0 and the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2 has
solution 𝑥

0
> 1, the equilibrium point 𝐾 is unstable,

(3) if 𝑎 < 0 and the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2 has
solution 1 − 3√−2𝐺2/𝑎 < 𝑥

0
< 1 + 𝑎, the equilibrium

point 𝐾 is stable.

Proof. The Jacobian matrix of model (1) at the point
𝐾(𝑥
0
, 𝐺/(1 − 𝑥

0
), 0) is given as

𝐽 = (

−𝑎 −2𝑦
0
0

𝑦
0
𝑥
0
− 1 0

0 0 𝑥
0
− 1

) , (6)

and its characteristic equation is given as

𝑓 (𝜆) = (𝜆 + 1 − 𝑥
0
) (𝜆
2
+ (𝑎 + 1 − 𝑥

0
) 𝜆

+ (𝑎 + 1) 𝑥
0
+ 2𝑦
2

0
) .

(7)

Then, eigenvalues 𝜆
1
, 𝜆
2
, and 𝜆

3
are obtained as follows:

𝜆
1
= 𝑥
0
− 1,

𝜆
2
=

− (𝑎 + 1 − 𝑥
0
) + √(𝑎 − 1 + 𝑥

0
)
2

− (8𝐺
2
/ (1 − 𝑥

0
)
2

)

2

,

𝜆
3
=

− (𝑎 + 1 − 𝑥
0
) − √(𝑎 − 1 + 𝑥

0
)
2

− (8𝐺
2
/ (1 − 𝑥

0
)
2

)

2

.

(8)

If 𝑎 > 0 and the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2 has solution
𝑥
0
< 1, then there is 𝜆

1
< 0. Since 8𝐺2/(1 − 𝑥

0
)
2
> 0 and

(𝑎 + 1 − 𝑥
0
)
2
− (𝑎 − 1 + 𝑥

0
)
2
= 4(1 − 𝑥

0
)𝑎 > 0, it follows

that Re(𝜆
2
) < 0 and Re(𝜆

3
) < 0. Therefore, the equilibrium

point𝐾 is stable. If the solution 𝑥
0
> 1, it is easy to verify that

the equilibrium point𝐾 is unstable. If 𝑎 < 0 and the equation
𝑎(𝐹 − 𝑥)(1 − 𝑥)

2
= 𝐺
2 has solution 1 − 3√−2𝐺2/𝑎 < 𝑥

0
<

1 + 𝑎, it follows that Re(𝜆
1
) < 0, Re(𝜆

2
) < 0, and Re(𝜆

3
) <

0. Therefore, the equilibrium point 𝐾 is stable. The proof is
completed.

Theorem 2. If 𝐺 ̸= 0 and 𝑏 = 0, then there exists at least one
equilibrium point 𝐾(𝑥

0
, 𝐺/(1 − 𝑥

0
), 0) in model (1)

(1) when 𝑎 > 0 and 2𝐺2 = 𝑎4, if 𝑥
0
= 𝑎 + 1 is a solution

of the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2, the equilibrium
point𝐾(𝑥

0
, 𝐺/(1−𝑥

0
), 0) is unstable andmodel (1) has

a fold bifurcation,

(2) when 𝑎 < 0 and 2𝐺2 > 𝑎4, if 𝑥
0
= 𝑎 + 1 is a solution

of the equation 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2, the equilibrium
point𝐾(𝑥

0
, 𝐺/(1−𝑥

0
), 0) is unstable, andmodel (1) has

a Hopf bifurcation.

Proof. It is easy to obtain the result from (8) and is therefore
omitted here.

2.3. Direction and Stability of theHopf Bifurcation. In this sec-
tion, the supercritical and subcritical bifurcations of model
(1) are considered. According to Theorem 2, model (1) has a
Hopf bifurcation when 𝑥

0
= 𝑎 + 1, 2𝐺2 > 𝑎4, and 𝑎 < 0. Let

the eigenvectors corresponding to the eigenvalues 𝜆
1
and 𝜆

3

be 𝛼
1
+ 𝑖𝛼
2
and 𝛼

3
, respectively, where 𝛼

1
, 𝛼
2
, and 𝛼

3
are all

real vectors. Under the following linear transformation:

𝑥
1
= 𝑥 − 𝑥

0
,

𝑦
1
= 𝑦 − 𝑦

0
,

𝑧
1
= 𝑧 − 𝑧

0
,

(9)
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model (1) can be changed into

�̇�
1
= − 𝑦

2

1
− 2𝑦
0
𝑦
1
− 𝑦
2

0
− 𝑧
2

1
+ 𝑎𝑥
0
− 𝑎𝑥
1
+ 𝑎𝐹,

̇𝑦
1
= 𝑥
1
𝑦
1
+ 𝑥
1
𝑦
0
+ 𝑥
0
𝑦
1
+ 𝑥
0
𝑦
0
− 𝑦
1
− 𝑦
0
+ 𝐺,

�̇�
1
= 𝑥
1
𝑧
1
+ 𝑥
0
𝑧
1
− 𝑧
1
.

(10)

For (6), (7), and (8), if 𝑥
0
= 𝑎 + 1 is a solution of the equation

𝑎(𝐹 − 𝑥)(1 − 𝑥)
2
= 𝐺
2
, 2𝐺
2
> 𝑎
4 and 𝑎 < 0, we have

𝛼

(0) = Re (𝜆 (𝑎)) = 1

2

> 0,

𝜔

(0) = Im (𝜆 (𝑎)) =

√4𝐺
2
− 𝑎
4

4 (2𝐺
2
− 𝑎
4
)

̸= 0,

𝜔 (0) = Im (𝜆 (𝑎)) =
√2𝐺
2
− 𝑎
4

|𝑎|

> 0,

𝜆
3
< 0.

(11)

Therefore, model (1) at the equilibrium point 𝐾 has a Hopf
bifurcation. By calculations, we have

𝛼
1
= (

1

0

0

) , 𝛼
2
= (

𝑎

𝐾

𝐺

𝑎𝐾

0

), 𝛼
3
= (

0

0

1

) ,

𝑇 = (𝛼
2
, 𝛼
1
, 𝛼
3
) = (

𝑎

𝑘

1 0

𝐺

𝑎𝑘

0 0

0 0 1

),

(12)

where 𝑘 = √2𝐺2 − 𝑎4/𝑎.
For model (10), taking the following transformation

(

𝑥1
𝑦1
𝑧1

) = 𝑇 (

𝑥2
𝑦2
𝑧2

), we have

̇
𝑥
2
= 𝐴𝑥
2
+ 𝐵, (13)

where

𝐴 = (

0 −𝑘 0

𝑘 0 0

0 0 𝑎

) , 𝑥
2
= (

𝑥
2

𝑦
2

𝑧
2

) ,

𝐵 =(

𝑎

𝑘

𝑥
2

2
+ 𝑥
2
𝑦
2
+

𝑎𝑘

𝐺

𝑥
0
𝑦
0
− 𝑦
0
+ 𝐺

−

𝐺
2
+ 𝑎
4

𝑎
2
𝑘
2
𝑥
2

2
−

𝑎

𝑘

𝑥
2
𝑦
2
− 𝑧
2

2
− (

𝑎
2

𝐺

+

2𝐺

𝑎𝑘

)𝑥
0
𝑦
0
− 𝑎𝑥
0
+

𝑎
2

𝐺

𝑥
0
+ 𝑎𝐹 − 𝑎

2

𝑎

𝑘

𝑥
2
𝑧
2
+ 𝑦
2
𝑧
2
,

) .

(14)

From (13),

�̇�
2
= − 𝑘𝑦

2
+ 𝑃 (𝑥

2
, 𝑦
2
, 𝑧
2
) ,

̇𝑦
2
= 𝑘𝑥
2
+ 𝑄 (𝑥

2
, 𝑦
2
, 𝑧
2
) ,

�̇�
2
= 𝑎𝑧
2
+ 𝑅 (𝑥

2
, 𝑦
2
, 𝑧
2
) ,

(15)

where

𝑃 (𝑥
2
, 𝑦
2
, 𝑧
2
) =

𝑎

𝑘

𝑥
2

2
+ 𝑥
2
𝑦
2
+

𝑎𝑘

𝐺

𝑥
0
𝑦
0
− 𝑦
0
+ 𝐺,

𝑄 (𝑥
2
, 𝑦
2
, 𝑧
2
)

= −

𝐺
2
+ 𝑎
4

𝑎
2
𝑘
2
𝑥
2

2
−

𝑎

𝑘

𝑥
2
𝑦
2
− 𝑧
2

2

− (

𝑎
2

𝐺

+

2𝐺

𝑎𝑘

)𝑥
0
𝑦
0
− 𝑎𝑥
0
+

𝑎
2

𝐺

𝑥
0
+ 𝑎𝐹 − 𝑎

2
,

𝑅 (𝑥
2
, 𝑦
2
, 𝑧
2
) =

𝑎

𝑘

𝑥
2
𝑧
2
+ 𝑦
2
𝑧
2
.

(16)

For model (15), according to the normal form theory in [30,
31], we have

𝑔
11
=

1

4

(

𝜕𝑃
2

𝜕𝑥
2

2

+

𝜕𝑃
2

𝜕𝑦
2

2

+ 𝑖 (

𝜕𝑄
2

𝜕𝑥
2

2

+

𝜕𝑄
2

𝜕𝑦
2

2

))

=

1

2

(

𝑎

𝑘

−

𝐺
2
+ 𝑎
4

𝑎
2
𝑘
2
𝑖) ,

𝑔
02
=

1

4

(

𝜕𝑃
2

𝜕𝑥
2

2

−

𝜕𝑃
2

𝜕𝑦
2

2

− 2

𝜕𝑄
2

𝜕𝑥
2
𝜕𝑦
2

+ 𝑖 (

𝜕𝑄
2

𝜕𝑥
2

2

−

𝜕𝑄
2

𝜕𝑦
2

2

+ 2

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑦
2

))

=

1

2

(1 −

𝐺
2
+ 𝑎
4

𝑎
2
𝑘
2
) 𝑖,

𝑔
20
=

1

4

(

𝜕𝑃
2

𝜕𝑥
2

2

−

𝜕𝑃
2

𝜕𝑦
2

2

+ 2

𝜕𝑄
2

𝜕𝑥
2
𝜕𝑦
2

+ 𝑖 (

𝜕𝑄
2

𝜕𝑥
2

2

−

𝜕𝑄
2

𝜕𝑦
2

2

− 2

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑦
2

))
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=

1

2

(−1 −

𝐺
2
+ 𝑎
4

𝑎
2
𝑘
2
) 𝑖,

𝐺
21
=

1

8

(

𝜕𝑃
3

𝜕𝑥
3

2

+

𝜕𝑃
3

𝜕𝑥
2
𝜕𝑦
2

2

+

𝜕𝑄
3

𝜕𝑥
2

2
𝜕𝑦
2

+

𝜕𝑄
3

𝜕𝑦
3

2

+ 𝑖 (

𝜕𝑄
3

𝜕𝑥
3

2

+

𝜕𝑄
3

𝜕𝑥
2
𝜕𝑦
2

2

−

𝜕𝑃
3

𝜕𝑥
2

2
𝜕𝑦
2

−

𝜕𝑃
3

𝜕𝑦
3

2

)) = 0.

(17)

Since the dimension 𝑛 = 3 > 2, we obtain the following
equations:

ℎ
11
=

1

4

(

𝜕𝑅
2

𝜕𝑥
2

2

+

𝜕𝑅
2

𝜕𝑦
2

2

) = 0,

ℎ
20
=

1

4

(

𝜕𝑅
2

𝜕𝑥
2

2

−

𝜕𝑅
2

𝜕𝑦
2

2

− 2

𝜕𝑅
2

𝜕𝑥
2
𝜕𝑦
2

) = 0.

(18)

Next, we solve the following equations:

𝜆
1
𝜙
11
= −ℎ
11
,

(𝜆
1
− 2𝑘𝑖) 𝜙

20
= −ℎ
20
.

(19)

Then,

𝜙
11
= 0,

𝜙
20
= 0.

(20)

Let

𝐺
110
=

1

2

(

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑧
2

+

𝜕𝑄
2

𝜕𝑦
2
𝜕𝑧
2

+ 𝑖 (

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑧
2

−

𝜕𝑄
2

𝜕𝑦
2
𝜕𝑧
2

)) = 0,

𝐺
101
=

1

2

(

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑧
2

−

𝜕𝑄
2

𝜕𝑦
2
𝜕𝑧
2

+ 𝑖 (

𝜕𝑃
2

𝜕𝑥
2
𝜕𝑧
2

+

𝜕𝑄
2

𝜕𝑦
2
𝜕𝑧
2

)) = 0.

(21)

Taking𝑚 = (𝐺2 + 𝑎4)/𝑎2𝑘2, it then follows from (17) and (21)
that

𝑔
21
= 𝐺
21
+ (2𝐺

110
𝜙
11
+ 𝐺
101
𝜙
20
) = 0. (22)

Also, let

𝑀
1
(0) =

𝑖

2𝑘

(𝑔
20
𝑔
11
− 2




𝑔
11






2

−

1

3





𝑔
02






2

) +

1

2

𝑔
21

=

(𝑚 + 1) 𝑎

8𝑘
2
−

𝑖

8𝑘

(

2𝑎
2

𝑘
2
+

10

3

𝑚
2
+

1

3

𝑚 +

1

3

) .

(23)

Then, we have

𝜇
2
(𝑎, 𝑏) = −

Re (𝑀
1
(0))

𝛼

(0)

= −

(𝑚 + 1) 𝑎

4𝑘
2
> 0, (𝑎 < 0) ,

𝛽
2
(𝑎, 𝑏) = 2Re (𝑀

1
(0)) =

(𝑚 + 1) 𝑎

4𝑘
2
< 0, (𝑎 < 0) ,

𝜏
2
(𝑎, 𝑏) = −

Im (𝑀
1
(0)) + 𝜇

2
(𝑎, 𝑏) 𝜔


(0)

𝑏

= −(

1

8𝑘
2
(

2𝑎
2

𝑘
2
+

10

3

𝑚
2
+

1

3

𝑚 +

1

3

)

−

(𝑚 + 1) 𝑎

16𝑘
2

√4𝐺
2
− 𝑎
4

4 (2𝐺
2
− 𝑎
4
)

) < 0.

(24)

Theorem 3. When 2𝐺2 > 𝑎4, 𝑎 < 0, there is a Hopf
bifurcation in model (1) at 𝑥

0
= 𝑎 + 1, and

(1) 𝜇
2
(𝑎, 𝑏) > 0; that is to say, the direction of bifurcation

is supercritical,
(2) 𝛽
2
(𝑎, 𝑏) < 0; that is to say, the solutions of bifurcating

periodic solutions are orbitally stable,
(3) 𝜏
2
(𝑎, 𝑏) < 0; that is to say, the periods of bifurcating

periodic solutions increase.

Proof. It is easy to obtain the result from the above derivative
process in Section 2.3 and is therefore omitted here.

2.4. The Stability and Bifurcation Analysis with Parameters
𝐺 ≠ 0 and 𝑏 ≠ 0. In this section, we consider the stability
and bifurcation analysis of model (1) when 𝐺 ̸= 0 and 𝑏 ̸= 0.
Without loss of generality, we first discuss the stability and
bifurcation analysis of model (1) at two special equilibrium
points when 𝑥 = 0 and 𝑥 = 1. It is easy to verify that when
𝑥 = 0 and 𝑥 = 1, the equilibrium points of model (1) are
𝐾
1
(0, 𝐺, 0) and𝐾

2
(1, 0, 𝐺/𝑏), respectively.

In the following, let us consider the stability and bifurca-
tion analysis of model (1) at the equilibrium point𝐾

1
.

Theorem 4. For model (1), if 𝑎 > 0, the equilibrium point 𝐾
1

is stable, and
(1) when 𝑎 ≥ 1 + 2√2𝐺 > 0 or 0 < 𝑎 ≤ 1 − 2√2𝐺, the

equilibrium point 𝐾
1
is stable node point,

(2) when 0 < 1 − 2√2𝐺 < 𝑎 < 1 + 2√2𝐺, the equilibrium
point 𝐾

1
is stable focus point.

Proof. For model (1), the Jacobian matrix at the equilibrium
point𝐾

1
is

𝐽 = (

−𝑎 −2𝐺 0

𝐺 −1 0

𝑏𝐺 0 −1

) , (25)

and its characteristic equation is

𝑓 (𝜆) = (𝜆 + 1) (𝜆
2
+ (𝑎 + 1) 𝜆 + 𝑎 + 2𝐺

2
) . (26)
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We can get 𝜆
1,2,3

𝜆
1
= −1,

𝜆
2,3
=

− (𝑎 + 1) ± √(𝑎 + 1)
2
− 4 (𝑎 + 2𝐺

2
)

2

.

(27)

Since 𝑎 > 0, it then follows from (27) that Re(𝜆
1,2,3
) < 0.

Therefore, the equilibrium point 𝐾
1
is stable. In the same

time, note that if Δ = (𝑎 + 1)2 − 4(𝑎 + 2𝐺2) > 0, 𝜆
1,2,3
< 0 are

real numbers, and it then follows that the equilibrium point
𝐾
1
is stable node point; if Δ = (𝑎 + 1)2 − 4(𝑎 + 2𝐺2) <

0, 𝜆
2,3

has conjugate imaginary roots, it then follows that
the equilibrium point 𝐾

1
is stable focus point. The proof is

completed.

Theorem 5. For model (1), if 𝑎 < 0 and

(1) when 𝑎 = −1, 𝐹 < −1/2 and 𝐺2 > 1/2, then model (1)
at the equilibrium point 𝐾

1
has a Hopf bifurcation,

(2) when 𝑎 = −1, 𝐹 = −2 and 𝐺2 = 2, then model (1) at
the equilibrium point 𝐾

1
has a Fold bifurcation,

(3) when 𝑎 = −1, 𝐹 = −1/2, then model (1) at the
equilibrium point 𝐾

1
has a flip bifurcation.

Proof. According to (27), we can easily get the conclusion;
therefore, we omit it here.

Next, let us consider the equilibrium point 𝐾
2
(1, 0, 𝐺/𝑏).

Theorem 6. If 𝑎 > 0 and 𝐹 < 3/2, then the equilibrium point
𝐾
2
of model (1) is stable.

Proof. The Jacobian matrix of model (1) at the equilibrium
point𝐾

2
is

𝐽 = (

−𝑎 −2𝐺 −2

𝐺

𝑏

𝐺 0 𝑏

−

𝐺

𝑏

𝑏 0

), (28)

and its characteristic equation is

𝑓 (𝜆) = 𝜆
3
+ 𝑎𝜆
2
+ (𝑏
2
+

2𝐺
2

𝑏
2
)𝜆 + 𝑎𝑏

2
− 2𝐺
2
. (29)

Let 𝐴 = 𝑎, 𝐵 = 𝑏2 + (2𝐺2/𝑏2), and 𝐶 = 𝑎𝑏2 − 2𝐺2. By the
Routh-Hurwitz criterion, when𝐴 > 0,𝐶 > 0 and𝐴𝐵−𝐶 > 0,
the eigenvalues of (29) have negative real parts.Therefore, we
can get 𝐴𝐵 − 𝐶 = 2𝐺2(1 + (𝑎/𝑏2)) > 0, 𝐶 > 0, and 𝐹 < 3/2.
Therefore, the equilibrium point𝐾

2
ofmodel (1) is stable.The

proof is completed.

In the above discussions, we consider the stability and
bifurcation analysis of model (1) at two special equilibrium
points 𝐾

1
and 𝐾

2
, respectively. In the following, we will

discuss stability and bifurcation analysis of model (1) at the
general equilibrium point𝐾(𝑥

0
, 𝑦
0
, 𝑧
0
).

Theorem 7. Suppose 𝐾(𝑥
0
, 𝑦
0
, 𝑧
0
) is an equilibrium point in

model (1), if 𝑥
0
is a solution of the equation 𝑎(𝐹 − 𝑥)(1 − 2𝑥 +

(𝑏
2
+ 1)𝑥
2
) = 𝐺
2 and satisfies the inequations

𝑥
0
< 1 +

𝑎

2

,

𝑥
2

0
+

4 + 2𝐹 + 2𝐹𝑏
2

3 (1 + 𝑏
2
)

𝑥
0
+

1 + 2𝐹

3 (1 + 𝑏
2
)

> 0,

𝑥
3

0
−

5𝑎 + 2𝑏
2
− 𝑎𝑏
2
+ 6

2 (1 + 𝑏
2
)

𝑥
2

0
+

9𝑎 + 6 + 𝑎𝐹 + 3𝑎
2
− 𝑎𝑏
2
𝐹

2 (1 + 𝑏
2
)

𝑥
0

−

(1 + 𝑎) (2 + 2𝑎 + 𝑎𝐹)

2 (1 + 𝑏
2
)

< 0,

(30)

then the equilibrium point 𝐾 is stable.

Proof. From (2),

𝑦
0
= 𝑔 (𝑥

0
, 𝑏) (1 − 𝑥

0
) 𝐺,

𝑧
0
= 𝑔 (𝑥

0
, 𝑏) 𝑥
0
𝑏𝐺,

𝑎 (𝐹 − 𝑥) 𝑓 (𝑥
0
, 𝑏) = 𝐺

2
,

(31)

where𝑓(𝑥
0
, 𝑏) = 1−2𝑥

0
+(𝑏
2
+1)𝑥
2

0
and𝑔(𝑥

0
, 𝑏) = 1/𝑓(𝑥

0
, 𝑏).

The Jacobian matrix of model (1) at the point 𝐾(𝑥
0
, 𝑦
0
, 𝑧
0
) is

given as

𝐽 (0) =(

−𝑎 −2𝑔 (𝑥
0
, 𝑏) (1 − 𝑥

0
) 𝐺 −2𝑔 (𝑥

0
, 𝑏) 𝑏𝑥

0
𝐺

𝑔 (𝑥
0
, 𝑏) (1 − 𝑥

0
− 𝑏
2
𝑥
2

0
)𝐺 𝑥

0
− 1 −𝑏𝑥

0

𝑏𝑔 (𝑥
0
, 𝑏) 𝐺 𝑏𝑥

0
𝑥
0
− 1

). (32)
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Taking 𝐺𝑔(𝑥
0
, 𝑏) = 𝑇, we can get

𝑓 (𝜆) = 𝜆
3
+ (2 − 2𝑥

0
+ 𝑎) 𝜆

2

+ (2𝑎 (1 − 𝑥
0
) + 𝑓 (𝑥

0
, 𝑏) (1 + 2𝑇

2
)) 𝜆

+ 𝑓 (𝑥
0
, 𝑏) (𝑎 + 2𝑇

2
(1 − 𝑥

0
− 𝑏
2
𝑥
0
)) .

(33)

Let 𝐴 = 2 − 2𝑥
0
+ 𝑎, 𝐵 = 2𝑎(1 − 𝑥

0
) + 𝑓(𝑥

0
, 𝑏)(1 + 2𝑇

2
), and

𝐶 = 𝑓(𝑥
0
, 𝑏)(𝑎 + 2𝑇

2
(1 − 𝑥

0
− 𝑏
2
𝑥
0
)).

Note that the 𝑓(𝑥
0
, 𝑏) > 0, 𝑔(𝑥

0
, 𝑏) > 0, 𝑇2 > 0, and

𝑥
0
< 1 +

𝑎

2

,

𝑥
2

0
+

4 + 2𝐹 + 2𝐹𝑏
2

3 (1 + 𝑏
2
)

𝑥
0
+

1 + 2𝐹

3 (1 + 𝑏
2
)

> 0,

𝑥
3

0
−

5𝑎 + 2𝑏
2
− 𝑎𝑏
2
+ 6

2 (1 + 𝑏
2
)

𝑥
2

0

+

9𝑎 + 6 + 𝑎𝐹 + 3𝑎
2
− 𝑎𝑏
2
𝐹

2 (1 + 𝑏
2
)

𝑥
0

−

(1 + 𝑎) (2 + 2𝑎 + 𝑎𝐹)

2 (1 + 𝑏
2
)

< 0,

(34)

and we have 𝐴 > 0, 𝐶 > 0, and 𝐴𝐵 − 𝐶 > 0. According to the
Routh-Hurwitz criterion, the real parts of the roots of (33) are
all negative. Therefore, the equilibrium point 𝐾 is stable. The
proof is completed.

Theorem8. Suppose that𝐾(𝑥
0
, 𝑦
0
, 𝑧
0
) is an equilibrium point

in model (1). If 𝑥
0
is a solution of the equation 𝑎(𝐹 − 𝑥)(1 −

2𝑥 + (𝑏
2
+ 1)𝑥
2
) = 𝐺

2 and satisfies the following inequations
and equation:

𝑥
0
< 1 +

𝑎

2

,

𝑥
2

0
+

4 + 2𝐹 + 2𝐹𝑏
2

3 (1 + 𝑏
2
)

𝑥
0
+

1 + 2𝐹

3 (1 + 𝑏
2
)

> 0,

𝑥
3

0
−

5𝑎 + 2𝑏
2
− 𝑎𝑏
2
+ 6

2 (1 + 𝑏
2
)

𝑥
2

0

+

9𝑎 + 6 + 𝑎𝐹 + 3𝑎
2
− 𝑎𝑏
2
𝐹

2 (1 + 𝑏
2
)

𝑥
0

−

(1 + 𝑎) (2 + 2𝑎 + 𝑎𝐹)

2 (1 + 𝑏
2
)

= 0,

𝛽
1
𝑥
4

0
− 𝛽
2
𝑥
3

0
+ 𝛽
3
𝑥
2

0
+ 𝛽
4
𝑥
0
+ 𝛽
5
̸= 0,

(35)

then model (1) has a Hopf bifurcation, where

𝛽
1
=

4𝑎
2
(1 − 𝑏

4
)

𝐺
2

,

𝛽
2
=

4𝑎
2

𝐺
2
(2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
+ 2𝐹 − 2𝐹𝑏

4
) ,

𝛽
3
=

4𝑎
2
𝐹
2
(1 − 𝑏

4
)

𝐺
2

+

8𝐹𝑎
2
(2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
)

𝐺
2

+ 3 (𝑏
2
+ 1) ,

𝛽
4
= 4𝑎𝑏

2
− 14𝑎 − 8 − 4𝑏

2
−

4𝑎
2
𝐹 (2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
)

𝐺
2

,

𝛽
5
= 12𝑎 + 2𝑎𝐹 + 2𝑎𝑏

2
𝐹 + 4𝑎

2
+ 3.

(36)

Proof. From (33), we can obtain 𝐴 = 2 − 2𝑥
0
+ 𝑎, 𝐵 = 2𝑎(1 −

𝑥
0
)+𝑓(𝑥

0
, 𝑏)(1+2𝑇

2
), and𝐶 = 𝑓(𝑥

0
, 𝑏)(𝑎+2𝑇

2
(1−𝑥
0
−𝑏
2
𝑥
0
)).

Since

𝑥
0
< 1 +

𝑎

2

,

𝑥
2

0
+

4 + 2𝐹 + 2𝐹𝑏
2

3 (1 + 𝑏
2
)

𝑥
0
+

1 + 2𝐹

3 (1 + 𝑏
2
)

> 0,

𝑥
3

0
−

5𝑎 + 2𝑏
2
− 𝑎𝑏
2
+ 6

2 (1 + 𝑏
2
)

𝑥
2

0

+

9𝑎 + 6 + 𝑎𝐹 + 3𝑎
2
− 𝑎𝑏
2
𝐹

2 (1 + 𝑏
2
)

𝑥
0

−

(1 + 𝑎) (2 + 2𝑎 + 𝑎𝐹)

2 (1 + 𝑏
2
)

= 0,

(37)

it follows that 𝐴(𝑥
0
) > 0, 𝐵(𝑥

0
) = 𝐶(𝑥

0
)/𝐴(𝑥

0
) > 0, and

𝐶(𝑥
0
) > 0. Similarly, since 𝛽

1
𝑥
4

0
−𝛽
2
𝑥
3

0
+𝛽
3
𝑥
2

0
+𝛽
4
𝑥
0
+𝛽
5
̸= 0,

it follows that 𝐶(𝑥
0
) ̸= 𝐴

(𝑥
0
)𝐵(𝑥
0
) − 𝐴(𝑥

0
)𝐵

(𝑥
0
), where

𝛽
1
=

4𝑎
2
(1 − 𝑏

4
)

𝐺
2

,

𝛽
2
=

4𝑎
2

𝐺
2
(2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
+ 2𝐹 − 2𝐹𝑏

4
) ,

𝛽
3
=

4𝑎
2
𝐹
2
(1 − 𝑏

4
)

𝐺
2

+

8𝐹𝑎
2
(2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
)

𝐺
2

+ 3 (𝑏
2
+ 1) ,

𝛽
4
= 4𝑎𝑏

2
− 14𝑎 − 8 − 4𝑏

2

−

4𝑎
2
𝐹 (2 + 2𝑏

2
+ 𝑎 + 𝑎𝑏

2
)

𝐺
2

,

𝛽
5
= 12𝑎 + 2𝑎𝐹 + 2𝑎𝑏

2
𝐹 + 4𝑎

2
+ 3.

(38)
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Hence, we have proven that 𝐴(𝑥
0
) > 0, 𝐵(𝑥

0
) =

𝐶(𝑥
0
)/𝐴(𝑥

0
) > 0, 𝐶(𝑥

0
) > 0, and 𝐶(𝑥

0
) ̸= 𝐴


(𝑥
0
)𝐵(𝑥
0
) −

𝐴(𝑥
0
)𝐵

(𝑥
0
). Therefore, according to the Hopf bifurcation

theorem [30], model (1) has a Hopf bifurcation. The proof is
completed.

2.5. Simulation. In this section, some numerical examples
and simulations are presented to illustrate the effectiveness
of our theoretical results. Here, we mainly discuss and verify
the conditions of Theorems 1, 2, and 3.

Firstly, we verify the effectiveness of Theorem 1 with 𝑎 >
0. Taking 𝑎 = 0.25, 𝐹 = 8, then the curves of 𝑎(𝐹 −
𝑥)(1 − 𝑥)

2
= 𝐺
2 and straight line of 𝑥 = 1 are shown

in Figure 1(a), in which 𝑥-axis represents the parameter 𝐺
and 𝑦-axis represents 𝑥 values of the equilibrium point
𝐾(𝑥, 𝐺/(1 − 𝑥), 0). Note that when 𝑎 = 0.25, 𝐹 = 8, and
𝐺 = 3, there are three equilibrium points 𝐴 = (−1, 1.5, 0),
𝐵 = (7, −0.5, 0), and 𝐶 = (4, −1, 0), which are shown in
Figure 1(a). From Figure 1(b), the converging trajectories for
points 𝐵 and𝐶 are Heteroclinic orbits, and they will converge
to the equilibrium point 𝐴. Hence, the equilibrium posits 𝐵,
𝐶 are unstable. Take an arbitrary point𝐷 (see Figure 1) under
the conditions 𝑎 = 0.25, 𝐹 = 8, and 𝐺 = 3. It is shown from
Figure 1(b) that the trajectory starting from𝐷 converges to𝐴.
Therefore, we have verified that the point 𝐴 is stable.

In addition, we consider 𝑎 < 0 in Theorem 1. Choose
𝑎 = −0.25, 𝐹 = −6, and then the curves of 𝑎(𝐹 −
𝑥)(1 − 𝑥)

2
= 𝐺
2 and straight line of 𝑥 = 1 are shown in

Figure 2(a). When 𝑎 = −0.25, 𝐹 = −6, and 𝐺 = 3, we
can obtain three equilibrium points 𝐴(−2, 1, 0), 𝐵(3, −1.5, 0),
and 𝐶(−5, 0.5, 0), which are shown in Figure 2(a). From
Figure 2(b), the converging trajectories for points𝐵 and𝐶 are
heteroclinic orbits, and they will converge to the equilibrium
point 𝐴. Hence, the equilibrium posits 𝐵, 𝐶 are unstable, and
the equilibrium posits 𝐴 is stable.

Next, we verify the effectiveness ofTheorems 2 and 3. Take
the parameters 𝐺 = 2, 𝐹 = −4, and 𝑎 = −1 which satisfy the
Hopf bifurcation conditions 𝑎3(𝐹−𝑎−1) = 𝐺2 and 2𝐺2 > 𝑎4.
Figure 3(a) shows the phase plane of model (1) with 𝐺 = 1.9,
𝐹 = −4, and 𝑎 = −1. It can be seen from Figure 3(a) that
there is a stable limit cycle. Figure 3(b) shows the phase plane
of model (1) with 𝐺 = 2.1, 𝐹 = −4, and 𝑎 = −1. It can
be seen from Figure 3(b) that there is a stable equilibrium
point.Therefore, we have verified that model (1) exists a Hopf
bifurcation. In addition, we can calculate 𝜇

2
(𝑎, 𝑏) = 1/7,

according toTheorem 5, andHopf bifurcation is supercritical.
Also, we can calculate 𝛽

2
(𝑎, 𝑏) = −94/√7 < 0, according to

Theorem 5, and the periodic solution is stable.

3. Chaotic Behavior of the Lorenz-84 Model

In this section, the chaotic behavior of model (1) with the
parameters 𝐺, 𝑏, 𝑎, and 𝐹 are discussed, and the complex
dynamic behaviors are analyzed by Lyapunov exponents
spectrum, bifurcation diagram, Poincaré section, and power
spectrum. Especially, the topological horseshoe is given to
rigorous approaches to study chaos in model (1). For the sake

of simplicity, the initial condition in model (1) is chosen as
[1, 1, 1].

3.1. Dynamical Behaviors of Model (1) by Varying Parameters
𝐺 and 𝑏. This model has been found to be chaotic over a
wide range of parameters and has many interesting complex
dynamical behaviors by varying parameters 𝐺 and 𝑏, respec-
tively. It is well known that Lyapunov exponents measure
the exponential rates of divergence or convergence of nearby
trajectories in phase space.Thedynamical behaviors ofmodel
(1) by varying parameters 𝐺 and 𝑏 are listed in Table 1.

Dynamical behaviors of model (1) by varying parameter
𝐺 are first discussed. Suppose that the parameters 𝑎 = 0.25,
𝐹 = 8, and 𝑏 = 4 are fixed. Let the parameter 𝐺 vary
in interval [0, 1.4]. The Lyapunov exponents spectrum is
shown in Figure 4. It is shown from Figure 4 that when 𝐺 ∈
[0.831, 1.188] and 𝐺 ∈ [0.831, 1.188], the max Lyapunov
exponents are greater than zero; that is to say, model (1) has
chaotic state. Figure 5(a) shows the bifurcation diagram of
model (1) about the parameter 𝐺. Figure 5(b) shows the part
of Figure 5(a) with𝐺 > 0. It is shown fromFigure 5 that when
𝐺 ∈ [0, 1.4], model (1) can evolve into chaotic state.Moreover,
there are some periodic windows in the chaotic regions. It
is shown from Figure 5(a) that the dynamical behaviors of
model (1) have the symmetry for the parameter 𝐺; that is, to
say, when the parameters 𝐺 > 0 and 𝐺 < 0, model (1) has the
same dynamical behaviors.

To illustrate the chaotic behavior, the parameter 𝐺 is
chosen as 𝐺 = 1. The corresponding phase portrait of
chaotic attractor is shown in Figure 6(a) and its spectrum is
continuous as shown in Figure 6(b). FromFigure 6,model (1)
has chaotic state. Next, the topological horseshoe will be used
to study chaos in model (1).The topological horseshoe is well
recognized as one of the most rigorous approaches to study
chaos with computer. It has been successfully applied inmany
chaotic systems and hyperchaotic systems [32–40]. As a basic
and striking result in chaotic dynamics, topological horse-
shoe provides a powerful tool in the rigorous study of chaos
and dynamical systems obtaining the topological entropy,
verifying the existence of chaos, showing the structure of
chaotic attractors, revealing the mechanism inside chaotic
phenomena, and so on. Some definitions and properties
about the topological horseshoe [33–36] are given at first.

Let 𝐷 be a compact connected region of 𝑅𝑛, and let 𝐷
𝑖
,

𝑖 = 1, 2, . . . , 𝑚 be disjoint compact connected subsets of 𝐷
homeomorphic to the unit square. Let 𝑓 : 𝐷 → 𝑅𝑛 be
a piecewise continuous map which is a diffeomorphism on
each compact set𝐷

𝑖
.

Definition 9 (see [33, 36]). For each 𝐷
𝑖
, 1 ≤ 𝑖 ≤ 𝑚, let 𝐷1

𝑖

and𝐷2
𝑖
be two fixed disjoint compact subsets of𝐷

𝑖
contained

in the boundary 𝜕𝐷
𝑖
. A connected subset 𝑙 of 𝐷

𝑖
is said to

connect𝐷1
𝑖
and𝐷2

𝑖
, if 𝑙 ∩ 𝐷1

𝑖
̸= ⌀ and 𝑙 ∩ 𝐷2

𝑖
̸= ⌀.

Definition 10 (see [33, 36]). Let 𝑙 ⊂ 𝐷
𝑖
be a connection of

𝐷
1

𝑖
and 𝐷2

𝑖
. We say that 𝑓(𝑙) is acrossing 𝐷

𝑗
, if 𝑙 contains a

connected subset 𝑙 such that𝑓(𝑙) ⊂ 𝐷
𝑗
is a connection of𝐷1

𝑗

and𝐷2
𝑗
. In this case, we denote it by 𝑓 → 𝐷

𝑗
. Furthermore, if
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Table 1: The dynamic behaviors of model (1) about the parameters 𝐺, 𝑏, 𝑎, and 𝐹.

The parameter 𝐺 Dynamic behaviors The parameter 𝑏 Dynamic behaviors
(𝑎 = 0.25, 𝑏 = 4 and 𝐹 = 8) (𝑎 = 0.25, 𝐹 = 8 and 𝐺 = 1)
0 < 𝐺 < 0.277 Limit cycle 0 < 𝑏 < 1.07 Limit point
0.277 ≤ 𝐺 < 0.797 Limit cycle period 2 1.07 ≤ 𝑏 < 1.73 Limit cycle
0.797 ≤ 𝐺 < 0.801 Limit cycle period 4 1.73 ≤ 𝑏 < 2.53 Chaos
0.801 ≤ 𝐺 < 0.819 Limit cycle period 2 2.53 ≤ 𝑏 < 3.93 Limit cycle
0.819 ≤ 𝐺 < 0.831 Limit cycle period 4 3.93 ≤ 𝑏 < 4.16 Chaos
0.831 ≤ 𝐺 < 1.188 Chaos 4.16 ≤ 𝑏 < 5.53 Limit cycle
1.188 ≤ 𝐺 < 1.212 Limit cycle period 4 5.53 ≤ 𝑏 < 5.9 Chaos
1.212 ≤ 𝐺 < 1.352 Chaos 5.9 ≤ 𝑏 < 8.53 Limit cycle
1.352 ≤ 𝐺 < 1.364 Limit cycle period 2 8.53 ≤ 𝑏 < 8.60 Chaos
1.364 ≤ 𝐺 < 1.85 Limit point 8.60 ≤ 𝑏 < 10 Limit cycle
The parameter 𝑎 Dynamic behaviors The parameter 𝐹 Dynamic behaviors
(𝑏 = 4, 𝐹 = 8 and 𝐺 = 1) (𝑎 = 0.25, 𝑏 = 4 and 𝐺 = 1)
0 < 𝑎 < 0.134 Limit point 0 < 𝐹 < 4.313 Limit point
0.134 ≤ 𝑎 < 0.152 Chaos 4.313 ≤ 𝐹 < 4.518 Limit cycle
0.152 ≤ 𝑎 < 0.207 Limit cycle 4.518 ≤ 𝐹 < 5.159 Chaos
0.207 ≤ 𝑎 < 0.240 Chaos 5.159 ≤ 𝐹 < 6.948 Limit cycle
0.240 ≤ 𝑎 < 0.243 Limit cycle 6.948 ≤ 𝐹 < 8.763 Chaos
0.243 ≤ 𝑎 < 0.280 Chaos 8.763 ≤ 𝐹 < 15 Limit cycle
0.280 ≤ 𝑎 < 0.3 Limit cycle
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Figure 1: (a) The curve of 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2. (b) Phase plane of system (1) with the parameter 𝐺 = 3.

𝑓 → 𝐷
𝑗
holds true for every connection 𝑙 of𝐷1

𝑖
and𝐷2

𝑖
, then

𝑓(𝐷
𝑖
) is said to be acrossing𝐷

𝑗
and is denoted by𝑓(𝐷

𝑖
) ⊂ 𝐷

𝑗

with respect to two pairs, (𝐷1
𝑖
, 𝐷
2

𝑖
) and (𝐷1

𝑗
, 𝐷
2

𝑗
).

Theorem 11 (see [34–36]). If the relation𝑓(𝐷
𝑖
) ⊂ 𝐷

𝑗
holds for

every pair with 𝑖, 𝑗, taken from 1 ≤ 𝑖, 𝑗 ≤ 𝑚, then there exists a
compact invariant set𝐾 ⊂ 𝐷, such that 𝑓 | 𝐾 is semiconjugate
to the full 𝑚-shift dynamics 𝜎 | ∑

𝑚
and topological entropy

𝑒𝑛𝑡(𝑓) ≥ log𝑚.

Here, the 𝑚-shift is also called the Bernoulli 𝑚-shif.
The symbolic series space ∑

𝑚
is compact, totally discon-

nected, and perfect. More definitions and properties about
the topological horseshoe can be found in [32–40]. To find

horseshoes in model (1), we use the method proposed in
[34] with an efficient and powerful toolbox in MATLAB
called “A toolbox for finding horseshoes in 2D map” (Li Q D.
HSTOOL-A MATLAB toolbox for finding horseshoes in 2D
maps, 2007–2011. http://www.mathworks.cn/matlabcentral/
fileexchange/14075). When 𝐺 = 1, according to the Matlab
toolbox, we can get Poincaré map of model (1) at the 𝑧 = 0
(Figure 7(a)). We numerically find two quadrilateral 𝐷

1
and

𝐷
2
in the 𝑥−𝑦 (Poincaré map) plane.The four vertices of𝐷

1

are
(0.727230483, 1.444887781) , (0.666821561, 1.360099751) ,

(0.843401487, 1.245386534) , (0.913104089, 1.330174564) ,

(39)
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Figure 2: (a) The curve of 𝑎(𝐹 − 𝑥)(1 − 𝑥)2 = 𝐺2. (b) Phase plane of of system (1) with the parameter 𝐺 = 3.
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Figure 3: (a) Phase plane of system (1) with parameter 𝐺 = 1.9. (b) Phase plane of system (1) with parameters 𝐺 = 2.1.
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Figure 4: Lyapunov exponents about 𝐺 for the parameter 𝐹 = 8.

and the four vertices of𝐷
2
are

(1.029275093, 1.245386534) , (0.964219331, 1.165586035) ,

(1.085037175, 1.040897756) , (1.164033457, 1.130673317) .

(40)

Based on the theoretical result [32–40] andTheorem 11.

Theorem 12. There exists a compact invariant set 𝐾 ⊂ 𝐷
1
∪

𝐷
2
, such that𝐻5 | 𝐾 is semiconjugate to 2-shift dynamics and

the topological entropy of𝐻 is 𝑒𝑛𝑡(𝐻) ≥ (1/5) log 2.

Proof. According to Theorem 11, we need to show that the
relations

𝐻
5
(𝐷
1
) → 𝐷

1
, 𝐻

5
(𝐷
1
) → 𝐷

2
,

𝐻
5
(𝐷
2
) → 𝐷

1
, 𝐻

5
(𝐷
2
) → 𝐷

2

(41)

hold true. For the above four relations, it is easy to see from
Figure 7(b). Furthermore, it also follows from Theorem 11
that the topological entropy of 𝐻 is ent(𝐻) ≥ (1/5) log 2.
Clearly, ent(𝐻) > 0, which means that model (1) is chaotic
indeed when 𝐺 = 1. The proof is completed.

In [17], when the parameters 𝑎 and 𝑏 are, respectively,
chosen as 𝑎 = 0.25 and 𝑏 = 4, Lorenz pointed out that
𝐹 and 𝐺 should be allowed to vary periodically during one
year. In particular, 𝐹 should be larger in winter than in
summer. In the numerical study of [17], the author pointed
that (𝐹, 𝐺) = (6, 1) and (𝐹, 𝐺) = (8, 1) represent the summer
conditions and the winter conditions, respectively. With the
winter conditions (𝐹, 𝐺) = (8, 1), model (1) has chaotic



Journal of Applied Mathematics 11

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1
−1 −0.5 0 0.5 1

G

x

(a)

2.6

2.4

2.2

2

1.8

1.6

1.2

1.4

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

G

x

(b)

Figure 5: The bifurcation diagram about 𝐺.
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Figure 6: (a) Phase portraits of the chaos attractor. (b) Spectrum of 𝑥.
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Figure 8: Lyapunov exponents about 𝐺.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

b

Ly
ap

un
ov

 ex
po

ne
nt

s

−0.8

−0.6

−0.4

−0.2

Figure 9: Lyapunov exponents about 𝑏.

0

0.5

1

1.5

2

2.5

3

3.5

4

x

b

−10 −8 −6 −4 −2 0 2 4 6 8 10

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

b

2 4 6 81 3 5 7

(b)

Figure 10: The bifurcation diagram about 𝑏.



Journal of Applied Mathematics 13

0.1 0.15 0.2 0.25 0.3

0

0.5

a

Ly
ap

un
ov

 ex
po

ne
nt

s

−0.5

−1

−1.5

−2

(a)

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

0

0.2

0.4

F

Ly
ap

un
ov

 ex
po

ne
nt

s

−0.2

−0.4

−0.6

−0.8

−1

−1.2

(b)

Figure 11: (a) Lyapunov exponents about 𝑎. (b) Lyapunov exponents about 𝐹.
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Figure 12: (a) The bifurcation diagram about 𝑎. (b) The bifurcation diagram about 𝐹.

behavior. In this paper, 𝑎 and 𝑏 are, respectively, chosen as
0.25 and 4, and 𝐹 is chosen as 6, 7, 8, 9, and 10, respectively.
According to the numerical study, model (1) appears to be of
more complex dynamics behavior when𝐹 = 8 thanwhen𝐹 =
6, 7, 9, 10 by varying parameter 𝐺. Moreover, model (1) has
been found to be chaotic over more wider range of parameter
𝐺 when 𝐹 = 8 than when 𝐹 = 6, 7, 9, 10, respectively. When
𝐹 = 8, the Lyapunov exponent spectra have been already
shown in Figure 4. In the following, we consider the cases of
𝐹 = 6 and 𝐹 = 10, respectively. The cases of 𝐹 = 7 and 𝐹 = 9
are similar to the cases of 𝐹 = 6 and 𝐹 = 10, therefore, they
are omitted here. When the parameter 𝐹 = 6 and 𝐹 = 10,
the Lyapunov exponents about 𝐺 are shown in Figures 8(a)
and 8(b), respectively. It is shown that from Figure 8(a) that
model (1) has no chaotic behavior when 𝐹 = 6. And from

Figure 8(b), when𝐹 = 10, model (1) has the chaotic behaviors
with 1.473 ≤ 𝐺 < 1.538.

Dynamical behaviors of model (1) by varying parameters
𝑏 are also considered. When parameters 𝑎 = 0.25, 𝐹 = 8, and
𝐺 = 1 are fixed, let the parameter 𝑏 vary in interval [0, 10].
Similarly, the Lyapunov exponents spectrum is shown in
Figure 9. It is shown from Figure 9 that when 𝑏 ∈ [1.73, 2.53],
𝑏 ∈ [3.93, 4.16], 𝑏 ∈ [5.53, 5.90], and 𝑏 ∈ [8.53, 8.60],
the max Lyapunov exponents are greater than zero; that
is to say, model (1) has chaotic state. The corresponding
bifurcation diagram is displayed in Figure 10. It is shown from
Figure 10(a) that the dynamical behaviors of model (1) have
the symmetry for the parameter 𝑏;, that is, to say, when the
parameter 𝑏 > 0 and 𝑏 < 0, model (1) has the same dynamical
behaviors. Figure 10(b) shows the part of Figure 10(a) with
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𝑏 > 0. This is similar to the parameter 𝐺, and the dynamical
behaviors of model (1) about parameter 𝑏 are more keenly
aware of the change than the parameter 𝐺.

3.2. Dynamical Behaviors of Model (1) by Varying Parameters
𝑎 and 𝐹. This section mainly focuses on the dynamical
behaviors of model (1) by varying parameters 𝑎 and 𝐹,
respectively.The dynamical behaviors ofmodel (1) by varying
parameters 𝑎 and 𝐹 are also listed in Table 1. Dynamical
behaviors of model (1) by varying parameters 𝑎 are first
considered. When parameters 𝑏 = 4, 𝐹 = 8, and 𝐺 = 1
are fixed, let the parameter 𝑎 varies in interval [0.1, 0.3], the
Lyapunov exponents spectrum is shown in Figure 11(a). It
is shown from Figure 11(a) that when 𝑎 ∈ [0.1345, 0.1526],
𝑎 ∈ [0.207, 0.2406], and 𝑎 ∈ [0.2435, 0.2806] and the
max Lyapunov exponents are greater than zero, model (1)
has chaotic state. The corresponding bifurcation diagram is
displayed in Figure 12(a).

Similarly, when parameters 𝑎 = 0.25, 𝑏 = 4, and𝐺 = 1 are
fixed, let the parameter 𝐹 vary in interval [4, 9], the Lyapunov
exponents spectrum is shown in Figure 11(b). When 𝐹 ∈
[4.518, 5.159] and 𝐹 ∈ [6.948, 8.763], the max Lyapunov
exponents are greater than zero, and model (1) has chaotic
state. Figure 12(b) shows the bifurcation diagram of model
(1) about the parameter 𝐹. From the Lyapunov exponents
spectrum and the bifurcation diagram, shown in Figures 11
and 12, the dynamical behaviors of model (1) about 𝑎 and 𝐹
are very similar.

4. Conclusion

In this paper, the stability and local bifurcation of the Lorenz-
84 model have been investigated. The stability and local
bifurcation of model (1) with 𝐺 ̸= 0 have been discussed.
The conditions of the supercritical Hopf bifurcation have also
been derived. In addition, the chaotic behaviors of Lorenz-
84 model have been researched. The bifurcation diagrams
and Lyapunov exponents spectrums for every parameter
have been discussed and the parameter interval range of
limit cycle and chaotic attractor of every parameter have
also been calculated. Especially, a computer-assisted proof of
the chaoticity of the Lorenz-84 model has been presented
by a topological horseshoe theory. Future work will focus
on multistability and high codimension bifurcations of the
Lorenz-84 model.
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