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By use of the loop algebra ̃𝐺, integrable coupling of C-KdV hierarchy and its bi-Hamiltonian structures are obtained by Tu scheme
and the quadratic-form identity. The method can be used to produce the integrable coupling and its Hamiltonian structures to the
other integrable systems.

1. Introduction

Integrable coupling is a new topic of the Soliton theory;
especially, looking for the newHamiltonian structure of inte-
grable coupling is more important. The integrable coupling
of some known integrable hierarchies is obtained. But their
Hamiltonian structure has not been presented because there
exists a limitation in trace identity till the quadratic-form
identity [1] and the variational identity [2] are proposed. In
this paper, a higher-dimensional Lie algebra 𝐺 and the loop
algebra ̃𝐺 are constructed [3, 4]. With the help of Tu scheme
[5] and the quadratic-form identity, the integrable coupling
of C-KdV hierarchy as well as its bi-Hamiltonian structures
is produced.

2. Basic Principle of the Semidirect Sum
of Lie Algebras

Let G be a linear space over real or complex number field 𝐹
together with multiplication, for any 𝑥, 𝑦, 𝑧 ∈ G, 𝑐 ∈ 𝐹, if G
satisfy

(1) distributive law

(𝑥 + 𝑦) 𝑧 = 𝑥𝑧 + 𝑦𝑧, 𝑧 (𝑥 + 𝑦) = 𝑧𝑥 + 𝑧𝑦; (1)

(2) multiplication commutativity

𝑐 (𝑥𝑦) = (𝑐𝑥) 𝑦 = 𝑥 (𝑐𝑦) . (2)

Then, G is called algebra.
Lie algebra G is an algebra over number field 𝐹, if its

multiplication satisfies the following:

(1) bilinearity

[𝑐𝑥 + 𝑐


𝑦, 𝑧] = 𝑐 [𝑥, 𝑧] + 𝑐


[𝑦, 𝑧] ;

[𝑧, 𝑐𝑥 + 𝑐


𝑦] = 𝑐 [𝑧, 𝑥] + 𝑐


[𝑧, 𝑦] ;

(3)

(2) anticommutative

[𝑥, 𝑦] = − [𝑦, 𝑥] ; (4)

(3) the Jacobi identity

[[𝑥, 𝑦] , 𝑧] + [[𝑦, 𝑧] , 𝑥] + [[𝑧, 𝑥] , 𝑦] = 0, (5)

where [⋅, ⋅] denote the multiplication of G, 𝑥, 𝑦, 𝑧 ∈

G, 𝑐, 𝑐 ∈ 𝐾. The multiplication of Lie algebra is called Lie
product. One kind of the most important Lie algebras on
integrable systems is 𝐴

𝑛−1
= {𝑀

𝑛×𝑛
| tr𝑀

𝑛×𝑛
= 0}, where

𝑀

𝑛×𝑛
denote matrix order 𝑛 over number field 𝐾.
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𝐼 satisfies [𝐼, 𝐴] ⊆ 𝐼 for arbitrary Lie algebra 𝐴; then 𝐼 is
called Lie ideal.

Lie algebra 𝐴 is called simple Lie algebra if 𝐴 has 𝐴 and
0 as Lie ideal and without other Lie ideal. Semisimple Lie
algebra 𝑅 can be written as

𝑅 = ⨁

𝑖

𝐴

𝑖
, (6)

where 𝐴

𝑖
is simple Lie algebra. We have already known

that 𝐴
𝑛
, 𝐵

𝑛
, 𝐶

𝑛
, 𝐷

𝑛
, 𝐸
6,7,8

, 𝐹

4
, and 𝐺

2
are all semisimple Lie

algebras which has been studied by Cartan long ago [5]. We
also know that Lie algebra 𝑅 can be written as

𝑅 = 𝑅

1
z𝑅

2
, (7)

where 𝑅
1
is semisimple Lie algebras and 𝑅

2
is solvable Lie

algebras [3, 6, 7] and z denote the semidirect sum. So we
can apply the above basic principle to integrable coupling
systems.

3. C-KdV Hierarchy

Firstly, let us recall the construction of the C-KdV hierarchy
[8, 9]. Consider the basis of 𝐺

𝑒

1
= (

1 0

0 −1

) , 𝑒

2
= (

0 1

0 0

) , 𝑒

3
= (

0 0

1 0

) . (8)

The loop algebra ̃𝐺 is presented as 𝑒
𝑖
(𝑛) = 𝑒

𝑖
𝜆

𝑛.
The C-KdV spectral problem reads as

𝜓

𝑥
= 𝑈𝜓, 𝜆

𝑡
= 0

𝑈 = (

𝑞 − 𝜆

2

−𝑟

1

−𝑞 + 𝜆

2

) , 𝑢 = (

𝑞

𝑟

) .

(9)

Upon setting 𝑉 = Σ

𝑚≥0
(𝑎

𝑚
𝑒

1
(−𝑚) + 𝑏

𝑚
𝑒

2
(−𝑚) + 𝑐

𝑚
𝑒

3
(−𝑚)),

solving the stationary zero curvature equation,

𝑉

𝑥
= [𝑈,𝑉] , (10)

engenders

𝑎

𝑛𝑥
= − 𝑟𝑐

𝑚
− 𝑏

𝑚
,

𝑏

𝑚𝑥
= − 𝑏

𝑚+1
+ 𝑞𝑏

𝑚
+ 2𝑟𝑎

𝑚
,

𝑐

𝑚𝑥
= 𝑐

𝑚+1
− 𝑞𝑐

𝑚
+ 2𝑎

𝑚
,

𝑎

0
=

1

2

, 𝑏

0
= 𝑐

0
= 0,

𝑎

1
= 0, 𝑏

1
= 𝑟, 𝑐

1
= −1.

(11)

The compatibility conditions of the spectral problems

𝜓

𝑥
= 𝑈𝜓, 𝜓

𝑡
= 𝑉

(𝑛)
𝜓;

𝑉

(𝑛)
= (𝜆

𝑛
𝑉)

+
+

1

2

𝑐

𝑛+1
𝑒

1
(0) , 𝑛 ≥ 0,

(12)

determine the C-KdV hierarchy of Soliton equations

𝑢

𝑡
= (

𝑞

𝑟

)

𝑡

= (

0 −𝜕

−𝜕 0

)(

𝑎

𝑛+1

−𝑐

𝑛+1

) = 𝐽

𝛿𝐻

𝑛

𝛿𝑢

, (13)

where

𝐻

𝑛
=

𝑎

𝑛+1

𝑛

, (𝑛 ≥ 1) ,

𝐻

1
= 𝑟, 𝐻

2
=

1

2

(−𝑟

𝑥
+ 2𝑞𝑟) .

(14)

4. A New Integrable Coupling of
the C-KdV Hierarchy

In what follows, we expand Lie algebra 𝐺 into a bigger one as
the following Lie algebra 𝐺:

ℎ

1
= (

𝑒

1
0

0 𝑒

1

) , ℎ

2
= (

𝑒

2
0

0 𝑒

2

) , ℎ

3
= (

𝑒

3
0

0 𝑒

3

) ,

ℎ

4
= (

0 𝑒

1

0 0

) , ℎ

5
= (

0 𝑒

2

0 0

) , ℎ

6
= (

0 𝑒

3

0 0

) .

(15)

We do this along with the following commutative relations:

[ℎ

1
, ℎ

2
] = 2ℎ

2
, [ℎ

1
, ℎ

3
] = −2ℎ

3
, [ℎ

1
, ℎ

5
] = 2ℎ

5
,

[ℎ

1
, ℎ

6
] = −2ℎ

6
, [ℎ

2
, ℎ

3
] = ℎ

1
, [ℎ

2
, ℎ

4
] = −2ℎ

5
,

[ℎ

2
, ℎ

6
] = ℎ

4
, [ℎ

3
, ℎ

4
] = 2ℎ

6
, [ℎ

3
, ℎ

5
] = −ℎ

4
,

[ℎ

1
, ℎ

4
] = [ℎ

2
, ℎ

5
] = [ℎ

3
, ℎ

6
] = [ℎ

4
, ℎ

5
]

= [ℎ

4
, ℎ

6
] = [ℎ

5
, ℎ

6
] = 0.

(16)

Taking 𝐺
1
= span{ℎ

1
, ℎ

2
, ℎ

3
} and 𝐺

2
= span{ℎ

4
, ℎ

5
, ℎ

6
}, it is

easy to verify that

𝐺 = 𝐺

1
z𝐺

2
, 𝐺 ≅ 𝐺

1
, [𝐺

1
, 𝐺

2
] ⊆ 𝐺

2
, (17)

where 𝐺
1
is semisimple Lie algebras and 𝐺

2
is solvable Lie

algebras [3, 6, 7].
In terms of the Lie algebra 𝐺, we constructed the loop

algebra ̃

𝐺 as follows ℎ
𝑘
(𝑖, 𝑛) = ℎ

𝑘
𝜆

2𝑛+𝑖 [4, 10], with the
following commutative relations:

[ℎ

1
(𝑖, 𝑚) , ℎ

2
(𝑗, 𝑛)] = 2ℎ

2
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

1
(𝑖, 𝑚) , ℎ

3
(𝑗, 𝑛)] = −2ℎ

3
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

1
(𝑖, 𝑚) , ℎ

5
(𝑗, 𝑛)] = 2ℎ

5
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)
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[ℎ

1
(𝑖, 𝑚) , ℎ

6
(𝑗, 𝑛)] = −2ℎ

6
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

2
(𝑖, 𝑚) , ℎ

3
(𝑗, 𝑛)] = ℎ

1
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

2
(𝑖, 𝑚) , ℎ

4
(𝑗, 𝑛)] = −2ℎ

5
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

2
(𝑖, 𝑚) , ℎ

4
(𝑗, 𝑛)] = −2ℎ

5
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

2
(𝑖, 𝑚) , ℎ

4
(𝑗, 𝑛)] = −2ℎ

5
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

2
(𝑖, 𝑚) , ℎ

6
(𝑗, 𝑛)] = ℎ

4
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

3
(𝑖, 𝑚) , ℎ

4
(𝑗, 𝑛)] = 2ℎ

6
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

3
(𝑖, 𝑚) , ℎ

5
(𝑗, 𝑛)] = −ℎ

4
(𝛿

𝑖𝑗
, 𝑚 + 𝑛 + 𝜌

𝑖𝑗
)

[ℎ

1
(𝑖, 𝑚) , ℎ

4
(𝑗, 𝑛)] = [ℎ

2
(𝑖, 𝑚) , ℎ

5
(𝑗, 𝑛)] = 0

[ℎ

3
(𝑖, 𝑚) , ℎ

6
(𝑗, 𝑛)] = [ℎ

4
(𝑖, 𝑚) , ℎ

5
(𝑗, 𝑛)] = 0

[ℎ

4
(𝑖, 𝑚) , ℎ

6
(𝑗, 𝑛)] = [ℎ

5
(𝑖, 𝑚) , ℎ

6
(𝑗, 𝑛)] = 0.

(18)

𝛿

𝑖𝑗
= 𝑖 + 𝑗, 𝜌

𝑖𝑗
= 0, when 𝑖 + 𝑗 < 2, and 𝛿

𝑖𝑗
= 0, 𝜌

𝑖𝑗
= 1, when

𝑖 + 𝑗 = 2. With the help of above equations, we consider an
isospectral problem:

𝜓

𝑥
= 𝑈𝜓, 𝜆

𝑡
= 0.

𝑈 = −

1

2

ℎ

1
(1, 0) +

𝑞

2

ℎ

1
(0, 0) − 𝑟ℎ

2
(0, 0)

+ ℎ

3
(0, 0) + 𝑢

1
ℎ

4
(0, 0) + 𝑢

2
ℎ

5
(0, 0)

(19)

Set

𝑉 = ∑

𝑚≥0

1

∑

𝑖=0

(𝑎 (𝑖, 𝑚) ℎ

1
(𝑖, −𝑚) + 𝑏 (𝑖, 𝑚) ℎ

2
(𝑖, −𝑚)

+ 𝑐 (𝑖, 𝑚) ℎ

3
(𝑖, −𝑚) + 𝑑 (𝑖, 𝑚) ℎ

4
(𝑖, −𝑚)

+ 𝑒 (𝑖, 𝑚) ℎ

5
(𝑖, −𝑚) + 𝑓 (𝑖, 𝑚) ℎ

6
(𝑖, −𝑚)) .

(20)

Solving the stationary zero curvature equation (10) permits
that

𝑎

𝑥
(0, 𝑚) = − 𝑟𝑐 (0,𝑚) − 𝑏 (0,𝑚) ,

𝑎

𝑥
(1, 𝑚) = − 𝑟𝑐 (1,𝑚) − 𝑏 (1,𝑚) ,

𝑏

𝑥
(0, 𝑚) = −𝑏 (1,𝑚 + 1) + 𝑞𝑏 (0,𝑚)

+ 2𝑟𝑎 (0,𝑚) ,

𝑏

𝑥
(1, 𝑚) = − 𝑏 (0,𝑚) + 𝑞𝑏 (1,𝑚) + 2𝑟𝑎 (1,𝑚) ,

𝑐

𝑥
(0, 𝑚) = 𝑐 (1,𝑚 + 1) − 𝑞𝑐 (0,𝑚) + 2𝑎 (0,𝑚) ,

𝑐

𝑥
(1, 𝑚) = 𝑐 (0,𝑚) − 𝑞𝑐 (1,𝑚) + 2𝑎 (1,𝑚) ,

𝑑

𝑥
(0, 𝑚) = − 𝑟𝑓 (0,𝑚) − 𝑒 (0,𝑚) + 𝑢

2
𝑐 (0, 𝑚) ,

𝑑

𝑥
(1, 𝑚) = − 𝑟𝑓 (1,𝑚) − 𝑒 (1,𝑚) + 𝑢

2
𝑐 (1, 𝑚) ,

𝑒

𝑥
(0, 𝑚) = −𝑒 (1,𝑚 + 1) + 𝑞𝑒 (0,𝑚)

+ 2𝑟𝑑 (0,𝑚) + 2𝑢

1
𝑏 (0,𝑚)

− 2𝑢

2
𝑎 (0,𝑚) ,

𝑒

𝑥
(1, 𝑚) = −𝑒 (0,𝑚) + 𝑞𝑒 (1,𝑚) + 2𝑟𝑑 (1,𝑚)

+ 2𝑢

1
𝑏 (1,𝑚) − 2𝑢

2
𝑎 (1,𝑚) ,

𝑓

𝑥
(0, 𝑚) = 𝑓 (1,𝑚 + 1) − 𝑞𝑓 (0,𝑚)

+ 2𝑑 (0,𝑚) − 2𝑢

1
𝑐 (0,𝑚) ,

𝑓

𝑥
(1, 𝑚) = 𝑓 (0,𝑚) − 𝑞𝑓 (1,𝑚)

+ 2𝑑 (1,𝑚) − 2𝑢

1
𝑐 (1,𝑚) ,

𝑎 (0, 0) = V
1
, 𝑑 (0, 0) = V

2
,

𝑏 (0, 0) = 𝑐 (0, 0) = 𝑒 (0, 0) = 𝑓 (0, 0) = 0,

𝑎 (1, 0) = 𝑏 (1, 0) = 𝑐 (1, 0) = 𝑑 (1, 0)

= 𝑒 (1, 0) = 𝑓 (1, 0) = 0,

𝑎 (0, 1) = 2V
1
𝑟,

𝑏 (0, 1) = 2V
1
𝑞𝑟 + 2V

3
𝑟 − 2V

1
𝑟

𝑥
,

𝑐 (0, 1) = − 2V
1
𝑞 − 2V

3
,

𝑑 (0, 1) = 2V
2
𝑟 − 2V

1
𝑢

2
,

𝑒 (0, 1) = 2V
2
𝑞𝑟 − 2V

1
𝑢

2
𝑞 + 2V

4
𝑟 + 4V

1
𝑟𝑢

1

− 2V
3
𝑢

2
− 2V
2
𝑟

𝑥
+ 2V
1
𝑢

2𝑥
,

𝑓 (0, 1) = − 2V
2
𝑞 − 2V

4
− 4V
1
𝑢

1
, 𝑎 (1, 1) = V

3
,

𝑏 (1, 1) = 2V
1
𝑟, 𝑐 (1, 1) = −2V

1
,

(21)

𝑑 (1, 1) = V
4
, 𝑒 (1, 1) = 2V

2
𝑟 − 2V

1
𝑢

2
,

𝑓 (1, 1) = −2V
2
,

(22)

where V
1
, V
2
, V
3
, and V

4
are nonzero constants.

Assume that 𝑉(𝑛)
+

= ∑

𝑛

𝑚=0
∑

1

𝑖=0
(𝑎(𝑖, 𝑚)ℎ

1
(𝑖, 𝑛 − 𝑚) +

𝑏(𝑖, 𝑚)ℎ

2
(𝑖, 𝑛 −𝑚) + 𝑐(𝑖, 𝑚)ℎ

3
(𝑖, 𝑛 −𝑚) + 𝑑(𝑖, 𝑚)ℎ

4
(𝑖, 𝑛 −𝑚) +

𝑒(𝑖, 𝑚)ℎ

5
(𝑖, 𝑛 − 𝑚) + 𝑓(𝑖, 𝑚)ℎ

6
(𝑖, 𝑛 − 𝑚)) = 𝜆

2𝑛
𝑉 − 𝑉

(𝑛)

−
; then

(10) may be written as

−𝑉

(𝑛)

+𝑥
+ [𝑈,𝑉

(𝑛)

+
] = 𝑉

(𝑛)

−𝑥
− [𝑈,𝑉

(𝑛)

−
] . (23)
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A direct calculation reads

− 𝑉

(𝑛)

+𝑥
+ [𝑈,𝑉

(𝑛)

+
]

= 𝑏 (1, 𝑛 + 1) ℎ

2
(0, 0) − 𝑐 (1, 𝑛 + 1) ℎ

3
(0, 0)

+ 𝑒 (1, 𝑛 + 1) ℎ

5
(0, 0) − 𝑓 (1, 𝑛 + 1) ℎ

6
(0, 0) .

(24)

Take𝑉(𝑛) = 𝑉

(𝑛)

+
+1/2𝑐(1, 𝑛+1)ℎ

1
(0, 0)+1/2𝑓(1, 𝑛+1)ℎ

4
(0, 0);

then the zero curvature equation

𝑈

𝑡
− 𝑉

(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
] = 0 (25)

is equivalent to

𝑢

𝑡
= (

𝑞

𝑟

𝑢

1

𝑢

2

)

𝑡

=

(

(

0 0 0 𝜕

0 0 −

1

2

𝜕 0

0 −

1

2

𝜕 0 −

1

2

𝜕

𝜕 0 −

1

2

𝜕 0

)

)

⋅(

𝑎 (1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

−𝑐 (1, 𝑛 + 1) − 𝑓 (1, 𝑛 + 1)

2𝑎 (1, 𝑛 + 1)

𝑐 (1, 𝑛 + 1)

)

= 𝐽

1
(

𝑎(1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

−𝑐 (1, 𝑛 + 1) − 𝑓 (1, 𝑛 + 1)

2𝑎 (1, 𝑛 + 1)

𝑐 (1, 𝑛 + 1)

)

=

(

(

0 0 −𝜕 𝜕

2
+ 𝜕𝑞

0 0

1

2

(𝜕

2
− 𝑞𝜕) 𝑟𝜕 + 𝜕𝑟

−𝜕 −

1

2

(𝜕

2
+ 𝜕𝑞)

1

2

𝜕 −

1

2

(𝜕

2
+ 𝜕𝑞) + 𝜕𝑢

1

−𝜕

2
+ 𝑞𝜕 𝑟𝜕 + 𝜕𝑟

1

2

(𝜕

2
− 𝑞𝜕) + 𝑢

1
𝜕 𝑟𝜕 + 𝜕𝑟 + 𝑢

2
𝜕 + 𝜕𝑢

2

)

)

⋅(

𝑎 (0, 𝑛) + 𝑑 (0, 𝑛)

−𝑐 (0, 𝑛) − 𝑓 (0, 𝑛)

2𝑎 (0, 𝑛)

𝑐 (0, 𝑛)

) = 𝐽

2
(

𝑎(0, 𝑛) + 𝑑 (0, 𝑛)

−𝑐 (0, 𝑛) − 𝑓 (0, 𝑛)

2𝑎 (0, 𝑛)

𝑐 (0, 𝑛)

) ,

(26)

where 𝐽
1
and 𝐽
2
are Hamiltonian operators.

From (22), a recurrence operator 𝐿 is obtained, which
satisfies

(

𝑎(1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

−𝑐 (1, 𝑛 + 1) − 𝑓 (1, 𝑛 + 1)

2𝑎 (1, 𝑛 + 1)

𝑐 (1, 𝑛 + 1)

) = 𝐿(

𝑎 (0, 𝑛) + 𝑑 (0, 𝑛)

−𝑐 (0, 𝑛) − 𝑓 (0, 𝑛)

2𝑎 (0, 𝑛)

𝑐 (0, 𝑛)

) ,

(27)

where

𝐿

= (

−𝜕 + 𝜕

−1
𝑞𝜕 𝜕

−1
𝑟𝜕 + 𝑟 𝜕

−1
𝑢

1
𝜕 𝜕

−1
𝑢

2
𝜕 + 𝑢

2

2 𝑞 + 𝜕 0 −2𝑢

1

0 0 −𝜕 − 𝜕

−1
𝑞𝜕 −2𝜕

−1
𝑟𝜕 − 2𝑟

0 0 −1 𝜕 + 𝑞

) .

(28)

It is easy to verify that

𝐽

1
𝐿 = 𝐿

∗
𝐽

1
= 𝐽

2
. (29)

Therefore, the hierarchy (26) is Liouville integrable. Taking
𝑞 = 𝑟 = 0, 𝑢

1
= 𝑞/2, and 𝑢

2
= −𝑟, (26) reduces

to (13). According to the integrable theory, the hierarchy
(26) is the integrable coupling of the C-KdV hierarchy.

Furthermore, in the following part wewill point out that there
exist bi-Hamiltonian structures from constructing of Lie loop
algebras.

5. The Bi-Hamiltonian Structures of
the Hierarchy (26)

Let

𝑎 =

6

∑

𝑖=1

𝑎

𝑖
ℎ

𝑖
, 𝑏 =

6

∑

𝑖=1

𝑏

𝑖
ℎ

𝑖
. (30)

Wehave [𝑎, 𝑏] = (𝑎

2
𝑏

3
−𝑎

3
𝑏

2
, 2𝑎

1
𝑏

2
−2𝑎

2
𝑏

1
, 2𝑎

3
𝑏

1
−2𝑎

1
𝑏

3
, 𝑎

2
𝑏

6
−

𝑎

6
𝑏

2
+𝑎

5
𝑏

3
−𝑎

3
𝑏

5
, 2𝑎

1
𝑏

5
−2𝑎

5
𝑏

1
+2𝑎

4
𝑏

2
−2𝑎

2
𝑏

4
, 2𝑎

3
𝑏

4
−2𝑎

1
𝑏

6
+

2𝑎

6
𝑏

1
− 2𝑎

4
𝑏

3
)

𝑇.
In what follows, from [𝑎, 𝑏]

𝑇
= 𝑎

𝑇
𝑅(𝑏), we get

𝑅 (𝑏) =

(

(

(

(

0 2𝑏

2
−2𝑏

3
0 2𝑏

5
−2𝑏

6

𝑏

3
−2𝑏

1
0 𝑏

6
− 2𝑏

4
0

−𝑏

2
0 2𝑏

1
−𝑏

5
0 2𝑏

4

0 0 0 0 2𝑏

2
−2𝑏

3

0 0 0 𝑏

3
−2𝑏

1
0

0 0 0 −𝑏

2
0 2𝑏

1

)

)

)

)

. (31)
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Solving the matrix equation 𝑅(𝑏)𝐹 = −(𝑅(𝑏)𝐹)

𝑇 for 𝐹 gives
rise to

𝐹 =

(

(

(

(

2 0 0 2 0 0

0 0 1 0 0 1

0 1 0 0 1 0

2 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

)

)

)

)

. (32)

So we have {𝑎, 𝑏} = 𝑎

𝑇
𝐹𝑏 = (2𝑎

1
+ 2𝑎

4
)𝑏

1
+ (𝑎

3
+ 𝑎

6
)𝑏

2
+ (𝑎

2
+

𝑎

5
)𝑏

3
+ 2𝑎

1
𝑏

4
+ 𝑎

3
𝑏

5
+ 𝑎

2
𝑏

6
.

A direct calculation reads

{𝑉,

𝜕𝑈

𝜕𝜆

} = − 𝑎 (0) − 𝑎 (1) − 𝑑 (0) − 𝑑 (1)

{𝑉,

𝜕𝑈

𝜕𝑞

} = 𝑎 (0) + 𝑎 (1) + 𝑑 (0) + 𝑑 (1)

{𝑉,

𝜕𝑈

𝜕𝑟

} = − 𝑐 (0) − 𝑐 (1) − 𝑓 (0) − 𝑓 (1)

{𝑉,

𝜕𝑈

𝜕𝑢

1

} = 2𝑎 (0) + 2𝑎 (1)

{𝑉,

𝜕𝑈

𝜕𝑢

2

} = 𝑐 (0) + 𝑐 (1) ,

(33)

where 𝑎(0) = ∑

𝑚≥0
𝑎(0,𝑚)𝜆

−2𝑚 and 𝑎(1) = ∑

𝑚≥0
𝑎(1,𝑚)

𝜆

−2𝑚+1
⋅ ⋅ ⋅ .

Substituting the above formulas into the quadratic-form
identity yields

𝛿

𝛿𝑢

(−𝑎 (0) − 𝑎 (1) − 𝑑 (0) − 𝑑 (1))

= 𝜆

−𝛾 𝜕

𝜕𝜆

𝜆

𝛾
(

𝑎(0) + 𝑎 (1) + 𝑑 (0) + 𝑑 (1)

−𝑐 (0) − 𝑐 (1) − 𝑓 (0) − 𝑓 (1)

2𝑎 (0) + 2𝑎 (1)

𝑐 (0) + 𝑐 (1)

) .

(34)

Comparison of coefficients of𝜆−2𝑛−2 of both sides of the above
equations leads to

𝛿

𝛿𝑢

(−𝑎 (0, 𝑛 + 1) − 𝑑 (0, 𝑛 + 1))

= (−2𝑛 − 1 + 𝛾)(

𝑎 (1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

−𝑐 (1, 𝑛 + 1) − 𝑓 (1, 𝑛 + 1)

2𝑎 (1, 𝑛 + 1)

𝑐 (1, 𝑛 + 1)

) .

(35)

To fix the 𝛾 we take 𝑛 = 0 into the above equation and find
𝛾 = 1.

So

(

𝑎(1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

−𝑐 (1, 𝑛 + 1) − 𝑓 (1, 𝑛 + 1)

2𝑎 (1, 𝑛 + 1)

𝑐 (1, 𝑛 + 1)

) =

𝛿𝐻 (1, 𝑛)

𝛿𝑢

,

𝐻 (1, 𝑛) =

𝑎 (0, 𝑛 + 1) + 𝑑 (0, 𝑛 + 1)

2𝑛

.

(36)

Comparison of coefficients of𝜆−2𝑛−1 of both sides of the above
equations gives

𝛿

𝛿𝑢

(−𝑎 (1, 𝑛 + 1) − 𝑑 (1, 𝑛 + 1))

= (−2𝑛 + 𝛾)(

𝑎 (0, 𝑛) + 𝑑 (0, 𝑛)

−𝑐 (0, 𝑛) − 𝑓 (0, 𝑛)

2𝑎 (0, 𝑛)

𝑐 (0, 𝑛)

) .

(37)

In this situation, we have 𝛾 = 0.
So

(

𝑎(0, 𝑛) + 𝑑 (0, 𝑛)

−𝑐 (0, 𝑛) − 𝑓 (0, 𝑛)

2𝑎 (0, 𝑛)

𝑐 (0, 𝑛)

) =

𝛿𝐻 (2, 𝑛)

𝛿𝑢

, (38)

𝐻(2, 𝑛) =

𝑎 (1, 𝑛 + 1) + 𝑑 (1, 𝑛 + 1)

2𝑛

.
(39)

Thus the bi-Hamiltonian structures of the system (26) are
given by

𝑢

𝑡
= 𝐽

1

𝛿𝐻 (1, 𝑛)

𝛿𝑢

= 𝐽

2

𝛿𝐻 (2, 𝑛)

𝛿𝑢

.
(40)

From the system (26), we easily give the following equations:

𝑞

𝑡
= −2V

1
𝑞

𝑥𝑥
− 4V
1
𝑞𝑞

𝑥
− 2V
3
𝑞

𝑥
− 4V
1
𝑟

𝑥
,

𝑟

𝑡
= −4V

1
(𝑞𝑟)

𝑥𝑥
− 2V
3
𝑟

𝑥
− 2V
1
𝑟

𝑥𝑥
.

(41)

6. Conclusion

On the one hand, we obtain a new integrable coupling of
C-KdV hierarchy by expanding a bigger Lie algebra. On the
other hand, the bi-Hamiltonian structures of the integrable
coupling of C-KdV hierarchy are observed by use of the
quadratic-form identity.
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