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Visual quality measure is one of the fundamental and important issues to numerous applications of image and video processing. In
this paper, based on the assumption that human visual system is sensitive to image structures (edges) and image local luminance
(light stimulation), we propose a new perceptual image quality assessment (PIQA) measure based on total variation (TV) model
(TVPIQA) in spatial domain.The proposed measure compares TVs between a distorted image and its reference image to represent
the loss of image structural information. Because of the good performance of TVmodel in describing edges, the proposed TVPIQA
measure can illustrate image structure information very well. In addition, the energy of enclosed regions in a difference image
between the reference image and its distorted image is used to measure the missing luminance information which is sensitive
to human visual system. Finally, we validate the performance of TVPIQA measure with Cornell-A57, IVC, TID2008, and CSIQ
databases and show that TVPIQA measure outperforms recent state-of-the-art image quality assessment measures.

1. Introduction

Visual quality evaluation has numerous uses in practice and
also plays a central role in shaping many visual processing
algorithms and systems, as well as their implementation,
optimization, and testing. As human being is end receiver of
images, one straightforward way for evaluating image quality
is subjective testing. The mean opinion score (MOS), sub-
jective quality measurement, has been used for many years.
However, it is very expensive and time consuming, which
makes it impractical for image processing applications.These
drawbacks lead to the development of perceptual image
quality assessment (PIQA) metrics that can automatically
evaluate the image perceptual quality.

An objective measurement of perceptual quality plays a
very important role in many image processing tasks, such
as image compression and enhancement. It can be used
to dynamically monitor and adjust image quality, optimize
algorithms, and benchmark image processing systems [1]. In

recent years, a great deal of effort has been made to develop
objective image quality metrics that correlate with human
visual behaviors in evaluating image quality [1–4].

Depending upon the availability of a “perfect quality” ref-
erence image, the image quality assessment (IQA)metrics are
classified into full-reference (FR), reduced-reference (RR),
and no-reference (NR) [4]. FR metrics are those that need
access to an original reference image to produce a quality
score that predicts the subjective judgment of a distorted
image. NR metrics only require distorted images to predict
quality scores. RR metrics are between FR metrics and NR
metrics, which require only partial information about the
reference image [3]. In this paper, we focus on FR image
quality assessment.

Generally, FRmetricsmeasure the distance between a dis-
torted image and its original image in a perceptually mean-
ingful way. FR metrics can also be designed in two ways.
One is modeling HVS, which has been regarded as the
most appropriate way to measure and predict the perceptual
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image quality. The underlying assumption is that HVS is
sensitive to the differences of visual signals in some respects,
such as brightness, contrast, and frequency content. Under
this assumption, the strength of the difference between
a distorted and its reference image reflects the different
perceived sensitivities of HVS. The other way explores signal
fidelity criteria that is not based on assumptions about HVS
model but is motivated instead by the need to capture the
loss of signal structure that HVS hypothetically extracts for
cognitive understanding [5].

In this paper, we propose a new framework for PIQA
based on TVmodel in spatial domain. In the proposed PIQA
metric, two human visual sensitivity factors, image structures
and luminance changes in enclosed regions, are considered.
As far as natural image signal is concerned, an evaluation
metric needs to consider the characteristics of the image
itself, such as image structure and content, to reflect the
image visual complexity. On the other hand, from HVS
perspective, another important factor to be considered is
luminance change of smooth and enclosed regions, as HVS
is very sensitive to luminance change. Based on these ideas,
we propose a TVPIQA metric in spatial domain, in which
we use TV to describe the image structure and the energy
of enclosed regions in the difference image to measure
luminance changes. Then, TVPIQA is represented by the
weighted sum of these two factors.

To successfully assess the image quality, there are two
major contributions of the proposed metric. First, we intro-
duce TV model to assess image’s structure. The TV compar-
ison between a distorted image and its reference image is
applied tomeasure the distance of an image structural charac-
teristic. Because of the good performance of TV in describing
the edges, the proposed TVPIQA metric can describe the
image structure information very well. Second, the lumi-
nance changes in enclosed regions are also considered in
TVPIQA. The energy of enclosed regions in a difference
image is used to measure the missing luminance information
that is sensitive to human visual system. In addition, in
order to make TVPIQA metric closer to perceptual feelings,
isolated pixels’ energy in difference image is removed based
on the idea of just noticeable distortion (JND), and a
fast approximation method of calculating difference image’s
energy is also proposed.

We demonstrate our TVPIQA metric by presenting
performance results with extensive subjective databases
(Cornell-A57 [6, 7], IVC [8, 9], TID2008 [10, 11], and CSIQ
[12, 13]) and comparisons to seven often-used image metrics
(PSNR, SSIM [1], IW-PSNR [4], IW-SSIM [4], MS-SSIM [14],
VSNR [7], and VIF [5]). Experimental results demonstrate
that the performance of TVPIQA metric outperforms other
state-of-the-art metrics. It is worth noting that the proposed
metric is easy to compute in spatial domain and does not need
any other additional information.

The rest of paper is organized as follows. Section 2
presents some related work. The PIQA metric based on TV
model is given in Section 3, and the implementation details
of TVPIQA metric are also provided in this section. The
characteristics of TVPIQA metric are analyzed in Section 4

and its performance is evaluated and discussed in Section 5.
We conclude the paper in Section 6.

2. Related Work

According to different methodologies being considered,
PIQA metrics can be divided into two categories: HVS
features based modeling and signal driven approach [15]. For
HVS features based modeling, PIQA metrics are developed
based upon systematical modeling of relevant psychophysical
properties and physiological knowledge, including tempo-
ral/spatial/color decomposition, contrast sensitivity function
(CSF), luminance adaptation, and various masking effects
[15]. A number of HVS based methods have been proposed
in the literature [16–19]. Some have also considered JND
model [20, 21]. HVS based methods extrapolate the vision
models that have been proposed in the visual psychology
literature to PIQA. However, HVS features based methods
involve expensive computation and difficulties due to the gap
between the knowledge for vision research and the need for
engineering modeling [15].

Recently, a lot of research efforts have been concentrated
on signal driven PIQA metrics, which are designed from the
viewpoint of signal extraction and analysis, such as statistical
features, structural distortion, and so forth [1, 4, 22, 23]. Signal
driven methods do not attempt to build a comprehensive
HVS model regarding quality evaluation. These metrics look
at how to represent image features to estimate overall quality,
and they often consider psychophysical effects as well, usually
based on image content and distortion analysis. However,
although some signal fidelity metrics reflect picture quality
change, they fail to predict HVS perception because of some
problems [15]. For example, not every image change is notice-
able and leads to distortion.Therefore, signal drivenmethods
need HVS features to help tackle these problems, so that they
can better approximate perceptual quality evaluation.

Variational methods have been extremely successful in
wide various fields in image processing and computer vision
during last decades [24, 25]. TV model is first introduced by
Rudin, Osher, and Fatemi (ROF) in their pioneering work
on edge preserving [26]. For an image 𝑢, its TV can be
formulated by

TV (𝑢) = ∫

Ω

|∇𝑢| , (1)

whereΩ denotes the image domain and∇means the gradient
operator.

Many research results have shown that the proper norm
for an image is the total variation norm, which is essentially
𝐿
1
norm of derivative and is more appropriate for image

estimation and description in discontinuities [24, 25]. The
advantages of TV norm led us to consider using it to measure
image structure change, which is the distance between a dis-
torted image and its original image. The proposed TVPIQA
metric will focus on two human visual sensitivity factors,
that is, image structures and luminance changes in enclosed
regions. A significant difference betweenTVPIQAmetric and
other PIQA metrics is that TV model is introduced to assess
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Figure 1: Comparison of “Lena” images with different types of distortions. (a) Original image (512 × 512, 8 bits/pixel). (b) Blurring. (c) Gaus-
sian noise contamination. (d) Impulsive noise contamination.

image structures in spatial domain. Moreover, luminance
changes in enclosed regions are also considered.

3. PIQA Metric Based on TV Model

Many signal driven PIQA metrics have been investigated
based on the assumption that the loss of perceptual quality
is related to the visibility of error signals. Generally, the mean
squared error (MSE) or the peak signal-to-noise ratio (PSNR)
has been a popular and usualmetric to evaluate image quality.
But MSE measure exhibits weak performance in assessing
perceptual image quality [1]. FromFigure 1 where the original
“Lena” image is degraded with different distortions, we can
see that MSE cannot reflect an image PIQ. The motivation of

the paper is to design an appropriate measure for some HVS
characteristics, especially image structures and luminance,
and develop a novel PIQA metric.

3.1. Framework of Proposed TVPIQA Metric. When a natu-
ral image is observed through HVS, the subjective quality
measure is affected by many factors. Because human eyes are
sensitive to changes of image edges, especially the edge loca-
tion information, and changes of luminance contrast [27],
there are two main factors worthy of attention. One is image
edge (structure) information, and the other is luminance
information.Therefore, we propose a new TVPIQAmetric to
measure these two factors and provide a good approximation
to perceived image distortion.
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Figure 2: Framework of the proposed TVPIQA metric.

Figure 2 shows the framework of the proposed TVPIQA
metric, which is separated into two parts: structure part
and local region luminance part. In the structure part, the
normalized TV comparison between the distorted image and
the reference image, denoted by 𝜇

1
, is applied to represent the

image structure changes. On the other hand, the energy of the
enclosed regions in a difference image is used to measure the
luminance changes, which is also normalized and denoted by
𝜇
2
. Then, the proposed TVPIQA metric is the mean of these

two parts as follows:

TVPIQA =

𝜇
1
+ 𝜇
2

2

. (2)

3.2. TV Based Structure Measure 𝜇
1
. Let 𝑢 and 𝑢

0
represent

the degraded image and its reference image, respectively.
Because TVnorm is very appropriate for image description in
discontinuities, the structure’s change is measured by the TV
difference between a reference image and its degraded image

TVstruct =
󵄩
󵄩
󵄩
󵄩
TV (𝑢) − TV (𝑢

0
)
󵄩
󵄩
󵄩
󵄩1
, (3)

where ‖ ⋅ ‖
1
represents 𝐿

1
norm and TV(𝑢) denotes the total

variation of the image 𝑢, expressed in discrete form

TV (𝑢) = ∑

(𝑖,𝑗)∈Ω

(√(𝑢
𝑖,𝑗
− 𝑢
𝑖+1,𝑗

)

2

+ (𝑢
𝑖,𝑗
− 𝑢
𝑖,𝑗+1

)

2

) , (4)

where 𝑢
𝑖,𝑗
represents the intensity value at pixel (𝑖, 𝑗).

Although the above measurement can work to assess
the structure change, it is not a normalized measure
and cannot be used as an evaluation to describe subjec-
tive feelings about image’s quality. Therefore, according to

‖TV(𝑢) − TV(𝑢
0
)‖
2

1
≥ 0, the normalized perceptual distance

for image structure is derived and defined by

𝜇
1
=

1

𝑁

∑((2√(𝑢
𝑖,𝑗
− 𝑢
𝑖+1,𝑗

)

2

+ (𝑢
𝑖,𝑗
− 𝑢
𝑖,𝑗+1

)

2

× √(𝑢
0𝑖,𝑗

− 𝑢
0𝑖+1,𝑗

)

2

+ (𝑢
0𝑖,𝑗

− 𝑢
0𝑖,𝑗+1

)

2

+ 𝑐)

× ((𝑢
𝑖,𝑗
− 𝑢
𝑖+1,𝑗

)

2

+ (𝑢
𝑖,𝑗
− 𝑢
𝑖,𝑗+1

)

2

+(𝑢
0𝑖,𝑗

− 𝑢
0𝑖+1,𝑗

)

2

+ (𝑢
0𝑖,𝑗

− 𝑢
0𝑖,𝑗+1

)

2

+ 𝑐)

−1

) ,

(5)

where 𝑁 is the image size and 𝑐 is a constant and set to 75
according to our experiments. It is obvious that 𝜇

1
∈ (0, 1].

3.3. Local Region Luminance Measure 𝜇
2
. A difference image

represents the information loss in a distorted image and is
defined by the difference between a reference image and its
distorted image; that is, 𝑟 = 𝑢

0
− 𝑢. Because HVS is also

sensitive to luminance changes when observing an image,
the energy of a difference image is used to measure the
missing luminance information. Furthermore, based on the
idea of JND modeling, that is, not every change in an image
is noticeable [15], the isolated pixels’ energy in a difference
image is filtered out.The energymeasure of a difference image
𝐸
𝑟
, which measures the luminance loss of a distorted image,

is defined by

𝐸
𝑟
=

1

𝑁

∑

(𝑖,𝑗)∈Ω
󸀠

𝑟
2

𝑖,𝑗
, (6)

where Ω
󸀠 represents the enclosed regions in a difference

image and 𝑟
𝑖,𝑗
is the intensity value at pixel (𝑖, 𝑗) in difference

image. To compute the energy measure 𝐸
𝑟
efficiently and
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Figure 3: Comparison of 𝐸
𝑟
and 𝐸󸀠

𝑟
for TID2008. (a) 𝐸󸀠

𝑟
-𝐸
𝑟
curve. The correlation coefficient value between 𝐸󸀠

𝑟
and 𝐸

𝑟
is 0.9988. (b) 𝐸

𝑟
and

𝐸
󸀠

𝑟
curves for different distorted images.

avoid the judgment of the enclosed regions, we proposed an
approximation of the difference image’s energy 𝐸󸀠

𝑟
defined as

𝐸
󸀠

𝑟
=

1

𝑁

∑

(𝑖,𝑗)∈Ω

(𝑟
𝑖,𝑗
𝑟
𝑖+1,𝑗

+ 𝑟
𝑖,𝑗
𝑟
𝑖,𝑗+1

) , (7)

whereΩ represents the whole regions in a difference image.
To test the relationship between 𝐸

𝑟
and 𝐸

󸀠

𝑟
, we applied

these two functions toTID2008 image database [10, 11], which
includes 1700 distorted images generated from 25 reference
images with 17 distortion types at four distortion levels.
Figure 3(a) shows the relationship between 𝐸

󸀠

𝑟
and 𝐸

𝑟
. The

value of correlation coefficient is 0.9988, indicating that 𝐸󸀠
𝑟

is highly related to 𝐸
𝑟
. In Figure 3(b), the horizontal axis

indicates the image number and the vertical axis indicates
the energy value. Figure 3(b) shows the change curves of
𝐸
󸀠

𝑟
and 𝐸

𝑟
plotted by all distorted images in TID2008. From

Figure 3(b), we can see that 𝐸󸀠
𝑟
and 𝐸

𝑟
almost have the same

change trend. Therefore, we can use 𝐸󸀠
𝑟
, instead of 𝐸

𝑟
, to

measure the energy of a difference image.
Considering that human perception is more sensitive to

luminance contrast rather than to absolute luminance, we
adjust 𝐸󸀠

𝑟
according to the mean intensity of a difference

image

𝐸
󸀠

𝑟
=

1

𝑁

∑

(𝑖,𝑗)∈Ω

((𝑟
𝑖,𝑗
− 𝑟) (𝑟

𝑖+1,𝑗
− 𝑟) + (𝑟

𝑖,𝑗
− 𝑟) (𝑟

𝑖,𝑗+1
− 𝑟)) ,

(8)

where 𝑟 represents the mean intensity of a difference image;
that is, 𝑟 = (1/𝑁)∑

(𝑖,𝑗)∈Ω
𝑟
𝑖,𝑗
.

In order to obtain the normalized measure for luminance
change, we need to find the maximum difference image’s
energy according to the reference image. In the case of

consistency of the overall image energy, we assume that the
distorted image, in which intensity values in all pixels are
the same and equal to the mean intensity of the reference
image, corresponds to the maximum luminance change.
Based on this assumption, the maximum difference image
is denoted by 𝑟max = 𝑢

0
− 𝑢
0
. It describes the maximum

loss of luminance information in an original reference image.
Then, the normalized perceptual distance measure for image
luminance change is defined by

𝜇
2
= 1 − √

𝐸
󸀠

𝑟

𝐸
󸀠

𝑟max

, (9)

where 𝐸󸀠
𝑟max

, computed by (8), represents the energy measure
of themaximumdifference image 𝑟max. Obviously,𝜇2 ∈ (0, 1].
The higher the value of 𝜇

2
is, the less luminance information

lose.

4. Analysis of the Proposed TVPIQA Measure

This section analyzes some properties of the proposed
TVPIQA measure, such as symmetry, boundedness, and
unique maximum. Meanwhile, the difference of TVPIQA
measure is also discussed in evaluating different types (con-
trast change, noise contamination, and blurring) of distorted
images in this section.

4.1. Properties of TVPIQA Measure

(1) Symmetry. Because the structure measure function 𝜇
1
(𝑥,

𝑦) is derived by ‖TV(𝑢) − TV(𝑢
0
)‖
2

1
≥ 0, 𝜇

1
(𝑥, 𝑦) = 𝜇

1
(𝑦, 𝑥)

is obvious. On the other hand, the energy function satisfies
the symmetry; that is, 𝐸󸀠

𝑟
(𝑥, 𝑦) = 𝐸

󸀠

𝑟
(𝑦, 𝑥), and the energy
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Distortion level 1

TVPIQA = 0.8843

SSIM = 0.0147

𝜇1 = 1

𝜇2 = 0.7686

(b)

Distortion level 2

TVPIQA = 0.7666

SSIM = 0.0079

𝜇1 = 0.9998

𝜇2 = 0.5333

(c)

Distortion level 3

TVPIQA = 0.5309

SSIM = 0.0021

𝜇1 = 0.9991

𝜇2 = 0.0627

(d)

Figure 4: Contrast change distortion analysis in frequency domain.Thefirst row images are the reference image and contrast change distorted
images. The second row images are Fourier spectrums of the first row images. (a) Reference image. Background is black with a white square.
The gray values of the background and the square are 0 and 255, respectively. (b) Contrast change distortion level 1. Background is 30, and
square is 226. (c) Contrast change distortion level 2. Background is 60, and square is 196. (d) Contrast change distortion level 3. Background
is 120, and square is 136.

measure function 𝜇
2
(𝑥, 𝑦) = 1−√𝐸

󸀠

𝑟
(𝑥, 𝑦)/𝐸

󸀠

𝑟max
also satisfies

the symmetry. Therefore, the proposed TVPIQA measure,
TVPIQA(𝑥, 𝑦) = (𝜇

1
(𝑥, 𝑦) + 𝜇

2
(𝑥, 𝑦))/2, is symmetric.

(2) Boundedness and Unique Maximum. According to the
definition of 𝜇

1
(𝑥, 𝑦) and 𝜇

2
(𝑥, 𝑦) in Section 3, measure

𝜇
1
(𝑥, 𝑦) ∈ (0, 1] and measure 𝜇

2
(𝑥, 𝑦) ∈ (0, 1]. So, TVPIQA

metric is bounded; that is, TVPIQA(𝑥, 𝑦) ∈ (0, 1]. Only
when a distorted image is the same as its reference image,
the structure measure 𝜇

1
(𝑥, 𝑦) = 1 and energy measure

𝜇
2
(𝑥, 𝑦) = 1; that is, if and only if 𝑥 = 𝑦, TVPIQA(𝑥, 𝑦) = 1.

4.2. TVPIQA Measure for Different Types of Distortions. Due
to the limited considered factors in designing PIQA metric
and limited understanding of HVS, it is impossible for any
PIQA metric to measure all kinds of distortions in the same
measurement scale. To some distortions, a PIQA metric may
be gentle, while being critical to other distortions. In our
extensive experiments, the proposed TVPIQAmetric is more
critical in evaluating contrast distortions, compared with
evaluating other distortions. This performance of TVPIQA
exactly reflects HVS contrast sensitivity characteristic.

Figure 4 shows different levels of contrast distortions
for an artificial image. In Figure 4, 𝜇

1
measures structure

changes in the distorted images, and 𝜇
2
measures luminance

changes. TVPIQA and SSIM measure the distances from

distorted images to the reference image. From Figure 4, we
can see that structure measure in the distorted images, 𝜇

1
,

changes extremely slowly. However, the energy measure in
the distorted images, 𝜇

2
, declines rapidly. The Fourier spec-

trums of the distorted images also show the same changes.
Figure 5 shows another example, and the test image is “1600”
images in CSIQ database.The same situation can be observed
from Figures 5(b), 5(c), and 5(d) that 𝜇

1
changes slowly and

𝜇
2
drops dramatically. For the same distortion level with

different distortion types, shown in Figures 5(d), 5(e), and
5(f), the contrast distortion has the largest drop between
luminance measure and structure measure.

According to Figures 4 and 5, TVPIQA measure shows
different measure scales for contrast distortions and other
distortions, such as noise contamination and blurring. How-
ever, this does not mean that the performance of TVPIQA
measure is not good, because, for HVS perception, not
every change yields the same extent of perceptual effect with
the same magnitude of change [15]. Therefore, to evaluate
TVPIQA measure performance, the contrast distortion will
be discussed separately in the next section.

5. Experimental Results

In this section, we validate the performance of the proposed
TVPIQA measure and compare it with other seven IQA
measures, that is, PSNR, SSIM [1], IW-PSNR [4], IW-SSIM
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𝜇1 = 0.8984

𝜇2 = 0.5233

Contrast level 3

TVPIQA = 0.7109
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Figure 5: TVPIQA measure comparison for different type distortions. The test image is the “1600” images in CSIQ database. (a) Reference
image. (b) Contrast change distortion level 1. (c) Contrast change distortion level 2. (d) Contrast change distortion level 3. (e) Additive
Gaussian pink noise contamination level 3. (f) Blurring level 3.

[4], MS-SSIM [14], VSNR [7], and VIF [5]. PSNR is widely
used in the image processing field and is also a useful baseline
comparison. SSIM, MS-SSIM, visual signal-to-noise ratio
(VSNR), and VIF are state-of-the-art measures that have
demonstrated competitive performance. The information
content weighted PSNR (IW-PSNR) and information content
weighted SSIM (IW-SSIM) measures have been confirmed
having the best overall performance compared with the
previousmeasures. So, IW-PSNR and IW-SSIM are also good
benchmarks to evaluate the new TVPIQA measure.

The proposed TVPIQA measure and other seven mea-
sures are evaluated on four publicly available subjective image
databases that are widely recognized in the IQA research
community, that is, Cornell-A57 [6, 7], IVC [8, 9], TID2008
[10, 11], and CSIQ [12, 13]. Two different types of subjective

quality scores have been used: MOS and differential MOS
(DMOS) in these image databases.

The Cornell-A57 database [6, 7] was created at Cornell
University. It contains 54 distorted images with six types of
distortions including quantization distortion, noise contami-
nation, and blurring.The IVCdatabase [8, 9] includes 185 dis-
torted images generated from ten original images. There are
four types of distortions that are (a) JPEG compression, (b)
JPEG2000 compression, (c) local adaptive resolution (LAR)
coding, and (d) blurring. The Tampere Image Database 2008
(TID2008), introduced in the previous section, is intended
to evaluate full-reference image visual quality assessment
metrics. It has 17 types of distortions, such as noise distortion,
blur distortion, and contrast change. The categorical image
quality (CSIQ) database [12, 13] was developed at Oklahoma
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State University. It consists of 30 original images and 866
distorted images using six different types of distortions at
four to five different levels of distortion. The distortion
types include JPEG compression, JPEG2000 compression,
global contrast decrements, additive pinkGaussian noise, and
Gaussian blurring.

The performance of any objective visual quality assess-
ment metric is evaluated by measuring its correlation with
human perception. In order to do so, the objective quality
scores of IQA metrics are correlated with subjective scores
using a variety of statistical measures such as the correla-
tion coefficient (CC), Spearman’s rank correlation coefficient
(SRCC), and Kendall’s rank correlation coefficient (KRCC).
To compare performance of different IQA measures, three
evaluation metrics, that is, CC, SRCC, and KRCC, are used
in experiments as shown in the following.

Correlation coefficients evaluate the prediction accuracy
and measure linear dependence between the subjective and
the objective scores. CC is defined as

CC =

∑
𝑁

𝑖=1
(𝑠
𝑖
− 𝑠) ⋅ (𝑜

𝑖
− 𝑜)

√∑
𝑁

𝑖=1
(𝑠
𝑖
− 𝑠)
2
√∑
𝑁

𝑖=1
(𝑜
𝑖
− 𝑜)
2

, (10)

where 𝑠 is the mean value of subjective scores 𝑠
𝑖
, 𝑖 = 1, . . . , 𝑁

and 𝑜 is the mean value of objective scores 𝑜
𝑖
.

Spearman’s rank correlation coefficients measure the
prediction of monotonicity [28]. SRCC is given by

SRCC = 1 −

6∑
𝑁

𝑖=1
𝑑
2

𝑖

𝑁(𝑁
2
− 1)

,

𝑑
𝑖
= 𝑅
𝑠
𝑖

− 𝑅
𝑜
𝑖

,

(11)

where 𝑅
𝑠
𝑖

and 𝑅
𝑜
𝑖

are the 𝑖th image’s ranks in subjective and
objective evaluations, respectively. SRCC is a nonparametric
rank-based correlation metric, independent of any mono-
tonic nonlinear mapping between subjective and objective
scores [4].

Kendall’s rank correlation coefficient (KRCC) is another
nonparametric rank correlation metric computed by

KRCC =

𝑁
𝑐
− 𝑁
𝑑

𝑁(𝑁 − 1) /2

, (12)

where𝑁
𝑐
and𝑁

𝑑
are the numbers of concordant and discor-

dant pairs in the data set, respectively.
According to the above definitions, larger CC, SRCC,

and KRCC values, close to 1, indicate that the objective and
subjective scores correlate better, that is to say, a better perfor-
mance of IQA metric. In our performance comparisons, CC,
SRCC, and KRCC of seven metrics are either computed or
referenced from some research works [29–31]. Among these
metrics, PSNR, IW-PSNR, SSIM, MS-SSIM, and IW-SSIM
are referred to Zhou Wang’s research [29], while VSNR and
VIF are referred to Lin Zhang’s research [30, 31].

Table 1 shows our test results of eight IQA metrics
using four databases. As analyzed in Section 4, the contrast
distorted images in TID2008 and CSIQ databases are dis-
cussed separately. For each evaluation metric in each test, we

Table 1: Performance comparisons of eight IQA metrics on four
publicly available image databases.

Metric CC SRCC KRCC
Cornell-A57 database (54 images) [6, 7]

PSNR 0.6346 0.6189 0.4309
SSIM [1] 0.7531 0.8066 0.6058
TVPIQA 0.8797 0.8328 0.6510
IW-PSNR [4] 0.8752 0.8759 0.6967
IW-SSIM [4] 0.8918 0.8709 0.6842
MS-SSIM [14] 0.8396 0.8414 0.6478
VSNR [7] 0.9147 0.9355 0.8031
VIF [5] 0.6141 0.6223 0.4589

IVC database (185 images) [8, 9]
PSNR 0.6705 0.6884 0.5218
SSIM [1] 0.8092 0.9018 0.7223
TVPIQA 0.8551 0.9043 0.7242
IW-PSNR [4] 0.8900 0.8998 0.7165
IW-SSIM [4] 0.7943 0.9125 0.7339
MS-SSIM [14] 0.7854 0.8980 0.7203
VSNR [7] 0.7824 0.7993 0.6053
VIF [5] 0.8800 0.8964 0.7158

TID2008 database without contrast distortion (1600 images)
[10, 11]

PSNR 0.5599 0.5974 0.4394
SSIM [1] 0.7519 0.7912 0.5912
TVPIQA 0.8592 0.8772 0.6869
IW-PSNR [4] 0.6353 0.7855 0.6074
IW-SSIM [4] 0.8217 0.8748 0.6868
MS-SSIM [14] 0.8031 0.8742 0.6798
VSNR [7] 0.3238 0.7992 0.6096
VIF [5] 0.7622 0.7383 0.5777

TID2008 database with only contrast distortion (100 images)
[10, 11]

PSNR 0.5770 0.5830 0.4178
SSIM [1] 0.5061 0.5204 0.3891
TVPIQA 0.6210 0.6054 0.4421
IW-PSNR [4] 0.5691 0.5627 0.4000
IW-SSIM [4] 0.7605 0.6251 0.4675
MS-SSIM [14] 0.7556 0.6379 0.4793
VSNR [7] 0.4048 0.4090 0.2686
VIF [5] 0.8706 0.8094 0.5678
CSIQ database without contrast distortion (750 images) [12, 13]

PSNR 0.8544 0.9061 0.7237
SSIM [1] 0.8475 0.9247 0.7534
TVPIQA 0.9040 0.9583 0.8170
IW-PSNR [4] 0.9267 0.9523 0.8069
IW-SSIM [4] 0.8292 0.9544 0.8096
MS-SSIM [14] 0.8481 0.9506 0.7984
VSNR [7] 0.8471 0.9266 0.7575
VIF [5] 0.9137 0.9181 0.7561
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Table 1: Continued.

Metric CC SRCC KRCC
CSIQ database with only contrast distortion (116 images) [12, 13]
PSNR 0.8887 0.8621 0.6449
SSIM [1] 0.7666 0.7922 0.5779
TVPIQA 0.9491 0.9543 0.8162
IW-PSNR [4] 0.9125 0.9230 0.7508
IW-SSIM [4] 0.9098 0.9539 0.8168
MS-SSIM [14] 0.9003 0.9526 0.8123
VSNR [7] 0.8680 0.8795 0.7022
VIF [5] 0.9336 0.9404 0.7901

Table 2: Average performance over four databases.

Metric CC SRCC KRCC
Database size-weighted average without contrast distortion

PSNR 0.6547 0.6938 0.5275
SSIM [1] 0.7837 0.8381 0.6479
TVPIQA 0.8723 0.9017 0.7265
IW-PSNR [4] 0.7429 0.8439 0.6748
IW-SSIM [4] 0.8234 0.9005 0.7257
MS-SSIM [14] 0.8156 0.8973 0.7164
VSNR [7] 0.5205 0.8389 0.6562
VIF [5] 0.8114 0.7993 0.6368

Database size-weighted average with all distorted images
PSNR 0.6616 0.6968 0.5284
SSIM [1] 0.7731 0.8249 0.6358
TVPIQA 0.8666 0.8933 0.7201
IW-PSNR [4] 0.7437 0.8371 0.6682
IW-SSIM [4] 0.8247 0.8929 0.7203
MS-SSIM [14] 0.8170 0.8904 0.7119
VSNR [7] 0.5307 0.8253 0.6442
VIF [5] 0.8186 0.8055 0.6406

highlight our proposed TVPIQAmetric and the best of other
seven metrics with boldface.

From the experimental results in Table 1, we have two
major observations. TVPIQAmetric has similar performance
to IW-SSIM on Cornell-A57 and IVC databases. Without
considering the contrast distortion, the proposed TVPIQA
metric has the best performance on TID2008 and CSIQ
databases. On the other hand, TVPIQA metric has the high-
est SRCC value in evaluating the contrast distortion in
CSIQ database. However, many metrics do not work well
on the contrast distortion in TID2008 database. The main
reason is that contrast enhancement images in TID2008
have high subjective scores for HVS perception, while they
are measured as the distortion by some objective evaluation
metrics.

To evaluate the overall performance of IQA metrics
under comparison, Table 2 presents the average CC, SRCC,
and KRCC results over four databases, where the average

values are computed in two cases. In the first case, without
considering the contrast distortion, the correlation scores are
computed by the size weighted average method. Different
weights are given to different databases, depending upon
their sizes (measured as the numbers of images, i.e., 54 for
Cornell-A57, 185 for IVC, 1600 for TID2008, and 750 for CSIQ
databases), while in the second case, the contrast distortions
inTID2008 andCSIQ are also considered, and the correlation
scores are still averaged according to the numbers of images,
100 for TID2008 contrast distortion and 116 for CSIQ contrast
distortion.

From Table 2, it can be observed that our proposed
TVPIQA metric has better overall performance than other
IQA metrics. Although IW-SSIM and TVPIQA nearly have
the same performance from test results, it is worth men-
tioning that, from the view point of computation complexity,
TVPIQA metric achieves this excellent performance only by
computing the image structure and energy information in
spatial domain, which does not need any preprocessing, such
as image transformoperation, extra image analysis operation,
and so forth. However, IW-SSIM needs more computation
time to information content weights.

6. Conclusions

In this paper, we propose a new framework for TV based per-
ceptual image quality assessment measure in spatial domain.
TheproposedTVPIQAmeasure focuses on twohuman visual
sensitivity factors, image structures and luminance changes.
A significant difference between TVPIQAmeasure and other
IQAmeasures is that TVmodel is introduced to assess image
structures. Meanwhile, the energy of enclosed regions in a
difference image is used to measure the missing luminance
information which is also sensitive to human visual system.
Extensive experimental results with four publicly available
independent image databases demonstrate that the proposed
TVPIQA measure achieves the best overall performance
when compared with other seven popular IQA measures.
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