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A discrete-time-delay differential mathematical model that describedHIV infection of CD4+ T cells with drugs therapy is analyzed.
The stability of the two equilibria and the existence ofHopf bifurcation at the positive equilibrium are investigated. Using the normal
form theory and center manifold argument, the explicit formulas which determine the stability, the direction, and the period of
bifurcating periodic solutions are derived. Numerical simulations are carried out to explain the mathematical conclusions.

1. Introduction

Recently there has been a substantial effort in the mathemat-
ical modelling of virus dynamics [1–8]. These models focus
on uninfected target cells, infected cells that are producing
virus, and virus. A basic mathematical model describing HIV
infection dynamic model is of the following form which has
been studied in [5, 9]:

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉 (𝑡) − 𝛿𝐼 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑁𝛿𝐼 (𝑡) − 𝑐𝑉 (𝑡) .

(1)

In system (1), the following variables are includes: 𝑇(𝑡)
uninfected cells at time 𝑡 (unit is cells mm−3), 𝐼(𝑡) infected
cells at time 𝑡 (unit is cells mm−3), and 𝑉(𝑡) virus at time 𝑡
(unit is virions mm−3). Parameters 𝜇

1
, 𝛿, and 𝑐 are the death

rates of the uninfected 𝑇 cells, the infected 𝑇 cells, and the
virus particles, respectively. 𝑘 is the contact rate between
uninfected 𝑇 cells and the virus particles. 𝑁 is the average
number of virus particles produced by an infected 𝑇 cell.

Reverse transcriptase inhibitors (RTIs) are a class of
antiretroviral drugs used to treat HIV infection. RTIs

inhibitors work by inhibiting the action of reverse tran-
scriptase. RTIs inhibit the activity of reverse transcriptase,
a viral DNA polymerase enzyme that retroviruses need to
reproduce. In [10], Srivastava et al. developed a mathematical
model for primary infection with RTIs. They subdivided the
infected cells class in two subclasses: pre-RT (denoted by
𝐼
1
(𝑡)) and post-RT (denoted by 𝐼

2
(𝑡)). They assumed that a

virus enters a resting CD4+ T cell, the viral RNA may not be
completely reverse transcribed into DNA, the unintegrated
virus may decay with time and partial DNA transcripts are
labile and degrade quickly [11, 12]. And they also assumed
that a fraction of cells 𝜂𝑎𝐼

1
(𝑡) in pre-RT class reverts back

to uninfected class and the remaining (1 − 𝜂)𝑎𝐼
1
(𝑡) proceeds

to post-RT class and becomes productively infected due to
presence of RT inhibitors. The model of Srivastava et al. is as
follows

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉 (𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉 (𝑡) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉 (𝑡) ,

(2)
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where 0 < 𝜂 < 1 is the efficacy of reverse transcriptase
inhibitors (RTIs), 𝑎 is the transition rate from pre-RT (i.e.,
𝐼
1
(𝑡)) infected CD4+ T cells class to productively post-RT

(i.e., 𝐼
2
(𝑡)) which is a productively infected class, and 𝑏 is

the reverting rate of infected cells to uninfected class due to
noncompletion of reverse transcription [11, 12].

Protease inhibitors (PIs) are a class of drugs used to treat
or prevent infection by viruses, including HIV and hepatitis
C. PIs prevent viral replication by inhibiting the activity of
HIV-1 protease, an enzyme used by the viruses to cleave
nascent proteins for final assembly of new virus. The new
virous are noninfectious. Virions that were created prior to
drug treatment remain infectious. Thus, in the presence of a
protease inhibitor, two types of virus particles (i.e., infectious
virions and noninfectious virions) should be considered [5].
We need the drug to be highly effective if we use single drug
to treat. Hence, combination anti-HIV therapy is now the
standard of care for people with HIV. So far as we know, there
are fewmathematicalmodels about the effects of combination
anti-HIV therapy [7, 13].Therefore, considering the effects of
both RTIs and PIs, model (2) can be modified to

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉

1
(𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡) 𝑉

1
(𝑡) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

1
(𝑡) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

2
(𝑡) ,

(3)

where variables 𝑉
1
(𝑡) and 𝑉

2
(𝑡) denote infectious and non-

infectious virus at time 𝑡, respectively. And 𝑉(𝑡) = 𝑉
1
(𝑡) +

𝑉
2
(𝑡) is the total virus concentration at time 𝑡. Parameter 𝑝 ∈

[0, 1] denotes the effectiveness of PIs with𝑝 = 1meaning that
the therapy with PIs is 100% effective and no newly infectious
virus particles will be produced [5].

In the real situation, there may be a delay between the
time target cells which are contacted by the virus particles
and the time the contacted cells become actively affected
meaning that the contacting virions enter cells. Hence, time
delays of one type or another have been incorporated into
viral dynamical models by many authors. The first model
that included this type “intracellular” delay was developed by
Herz et al. [14] and assumed that cells became productively
infected time units after HIV initial infection. Nelson et al.
[15] extend the development of delaymodels ofHIV infection
and treatment to the general case of combination antiviral
therapy that is less than completely efficacious. Recently, in
studying the viral clearance rates, Perelson et al. [9] assumed
that there are two types of delays that occur between the
administration of drug and the observed decline in viral load:
a pharmacological delay that occurs between the ingestion of
drug and its appearancewithin cells and an intracellular delay
that is between initial infection of a cell byHIVand the release

of new virions. Furthermore, the growth of CD4+ T cells in
humans is not well understood.

Recently, studies in various fields such as biology, control,
economy, chemistry, and electrodynamics have shown that
delay differential equations play an important role in explain-
ing many different phenomena [16–20]. Srivastava et al. [10]
proposed and analyzed amathematicalmodel for the effect of
RTIs on the dynamics of HIV. In [21], Culshaw andRuan have
considered that the basic model of HIV infection in host was
extended to incorporate logistic growth and an intracellular
delay. However, none of these models have incorporated
antiretroviral therapy, logistic growth of the CD4+ T cell,
and intracellular delay. Here, we build on the basic model of
HIV pathogenesis in host, adding the effects of antiretroviral
therapy, logistic growth of the CD4+ T cell, and intracellular
delay. Hence, we can obtain the following model:

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 + 𝑟𝑇 (𝑡) (1 −

𝑇 (𝑡)

𝑇max
) − 𝜇

1
𝑇 (𝑡)

− 𝑘𝑇 (𝑡) 𝑉
1
(𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡 − 𝜏)𝑉

1
(𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

1
(𝑡) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

2
(𝑡) .

(4)

In model (4), 𝑇(𝑡), 𝐼
1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡), and 𝑉

2
(𝑡) represent the

density of susceptible CD4+ T cells, infected CD4+ T cells
before reverse transcription (i.e., those infected cells which
are in pre-RT class), infected CD4+ T cells in which reverse
transcription is completed (post-RT class), infectious virus,
and noninfectious virus at time 𝑡, respectively. The meaning
of the parameters are as follows: 𝑠 is the source term for
uninfected CD4+ T cell, 𝑘 is the rate at which CD4+ T cell
becomes infected with virus, 𝜇

1
is the death rate of healthy

CD4+ T cell, 𝜂 is the efficacy of RTIs, 𝑎 is the transition rate
from pre-RT infected CD4+ T cells to productively post-RT,
𝑏 is the reverting rate of infected cells to uninfected class, 𝑑 is
the death rate of infected 𝑇 cells, 𝛿 is the death rate of actively
infected 𝑇 cells 𝐼

2
, 𝑁 is the number of virions produced by

infected CD4+ T cells, 𝑐 is the clearance rate of virus, 𝑟 is
the maximum proliferation rate, 𝑇max is the 𝑇 cell population
density at which proliferation shuts off, 𝑝 is the efficacy of
protease inhibitor, and 𝜏 is the “intracellular” delay.

Note that the non-infectious HIV virus 𝑉
2
(𝑡) does not

appear in the first four equations of system (4). Thus, we can
consider the following subsystem of system (4):

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑠 + 𝑟𝑇 (𝑡) (1 −

𝑇 (𝑡)

𝑇max
) − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇 (𝑡) 𝑉

1
(𝑡)

+ (𝜂𝑎 + 𝑏) 𝐼
1
(𝑡) ,
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𝑑𝐼
1
(𝑡)

𝑑𝑡
= 𝑘𝑇 (𝑡 − 𝜏)𝑉

1
(𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡) ,

𝑑𝐼
2
(𝑡)

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
(𝑡) − 𝛿𝐼

2
(𝑡) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
(𝑡) − 𝑐𝑉

1
(𝑡) .

(5)

In this paper, we will discuss the dynamics of model
(5). This paper is organized as follows. In Section 2, we
present some preliminaries about system (5), for example,
the positivity of solutions and the expression of equilibria.
We discuss the local stability of the uninfected equilibrium
in Section 3. In Section 4, we discuss the local stability and
Hopf bifurcation at the infected equilibrium. In Section 5,
the direction and stability of the local Hopf bifurcation are
established. In Section 6, some numerical simulations are
performed to illustrate the analytical results found. A brief
discussion is presented in the last section.

2. Preliminaries

System (5) is a system of delay differential equations. For
such a system, initial functions need to be specified and well-
posedness needs to be addressed.We denote byC the Banach
space of continuous functions 𝜑 : [−𝜏, 0] → R4 with norm

𝜑
 = sup

−𝜏≤𝜍≤0

{
𝜑1 (𝜍)

 ,
𝜑2 (𝜍)

 ,
𝜑3 (𝜍)

 ,
𝜑4 (𝜍)

} , (6)

where 𝜑 = (𝜑
1
, 𝜑

2
, 𝜑

3
, 𝜑

4
). As usual, the initial condition of

(5) is given as

𝑇 (𝜍) = 𝜑
1
(𝜍) , 𝐼

1
(0) = 𝜑

2
(0) , 𝐼

2
(0) = 𝜑

3
(0) ,

𝑉
1
(𝜍) = 𝜑

4
(𝜍) , 𝜍 ∈ [−𝜏, 0] ,

(7)

where the initial function 𝜑 = (𝜑
1
, 𝜑

2
, 𝜑

3
, 𝜑

4
) belongs to the

Banach space C = C([−𝜏, 0],R4
) of continuous functions

mapping the initial [−𝜏, 0] intoR4. For biological reasons, the
initial functions are assumed as

𝑇 (𝜍) = 𝜑
1
(𝜍) ≥ 0,

𝜍 ∈ [−𝜏, 0] , 𝜑
1
(0) > 0;

𝐼
1
(0) = 𝜑

2
(0) > 0;

𝐼
2
(0) = 𝜑

3
(0) > 0;

𝑉
1
(𝜍) = 𝜑

4
(𝜍) ≥ 0, 𝜍 ∈ [−𝜏, 0] , 𝜑

4
(0) > 0.

(8)

In this paper, we will discuss the dynamical behavior of sys-
tem (5) with the initial conditions in (8). By the fundamental
theory of functional differential equations [22], we know that
there is a unique solution (𝑇(𝑡), 𝐼

1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡)) to system

(5) with initial conditions (8).
Firstly, we present the positivity of the solutions. System

(5) can be put into the matrix form

�̇� (𝑡) = 𝐺 (𝑋 (𝑡)) , (9)

where 𝑋(𝑡) = (𝑇(𝑡), 𝐼
1
(𝑡), 𝐼

2
(𝑡), 𝑉

1
(𝑡))

⊤

∈ R4 and 𝐺(𝑋(𝑡)) is
given by

𝐺 (𝑋 (𝑡))

= (

𝐺
1
(𝑋 (𝑡))

𝐺
2
(𝑋 (𝑡))

𝐺
3
(𝑋 (𝑡))

𝐺
4
(𝑋 (𝑡))

)

= (

𝑠 + 𝑟𝑇 (𝑡) (1 −

𝑇(𝑡)

𝑇max
) − 𝜇

1
𝑇 (𝑡) − 𝑘𝑇(𝑡)𝑉

1
(𝑡) + (𝜂𝑎 + 𝑏) 𝐼

1
(𝑡)

𝑘𝑇 (𝑡 − 𝜏)𝑉
1
(𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
(𝑡)

(1 − 𝜂) 𝑎𝐼
1
(𝑡) − 𝛿𝐼

2
(𝑡)

(1 − 𝑝)𝑁𝛿𝐼
2
(𝑡) − 𝑐𝑉

1
(𝑡)

).

(10)

Let R4

+
= [0, +∞) × [0, +∞) × [0, +∞) × [0, +∞) be the

nonnegative octant in R4; 𝐺 : R4+1

+
→ R4, 𝐺 ∈ C∞

(R4
)

(where 𝐺 is a function of the variable 𝑋(𝑡) ∈ R4

+
) is locally

Lipschitz and satisfies the condition

𝐺
𝑖
(𝑋 (𝑡))

𝑥𝑖(𝑡)=0,𝑋(𝑡)∈R
4

+

≥ 0, (11)

where 𝑥
1
(𝑡) = 𝑇(𝑡), 𝑥

2
(𝑡) = 𝐼

1
(𝑡), 𝑥

3
(𝑡) = 𝐼

2
(𝑡), and 𝑥

4
(𝑡) =

𝑉
1
(𝑡).
Due to lemma in [23] any solution of (9) with𝑋(𝜍) ∈ C

+
,

say𝑋(𝑡) = 𝑋(𝑡, 𝑋(𝜍)), is such that𝑋(𝑡) ∈ R4

+
for all 𝑡 ≥ 0.

System (5) has an uninfected (boundary) equilibrium and
an infected (positive) steady state. The uninfected equilib-
rium is 𝐸

0
(𝑇

0
, 0, 0, 0), where

𝑇
0
=
𝑇max
2𝑟

[𝑟 − 𝜇
1
+ √(𝑟 − 𝜇

1
)
2

+
4𝑟𝑠

𝑇max
] . (12)

The infected equilibrium is 𝐸∗(𝑇∗
, 𝐼

∗

1
, 𝐼

∗

2
, 𝑉

∗

1
), where

𝑇
∗

=
𝑐 (𝑑 + 𝑎 + 𝑏)

(1 − 𝑝) (1 − 𝜂) 𝑘𝑁𝑎
,

𝐼
∗

1
=

1

𝑑 + (1 − 𝜂) 𝑎
[𝑠 − 𝑑𝑇

∗

+ 𝑟𝑇
∗

(1 −
𝑇
∗

𝑇max
)] ,

𝐼
∗

2
=

(1 − 𝜂) 𝑎

𝛿 [𝑑 + (1 − 𝜂) 𝑎]
[𝑠 − 𝑑𝑇

∗

+ 𝑟𝑇
∗

(1 −
𝑇
∗

𝑇max
)] ,

𝑉
∗

1
=
(1 − 𝑝) (1 − 𝜂)𝑁𝑎

𝑐 [𝑑 + (1 − 𝜂) 𝑎]
[𝑠 − 𝑑𝑇

∗

+ 𝑟𝑇
∗

(1 −
𝑇
∗

𝑇max
)] .

(13)

The basic reproductive number is given as R
0
= 𝑇

0
/𝑇

∗.
The basic reproductive number R

0
measures the average

number virus-producing target cells produced by an single
virus-producing target cell during its entire infectious period
in an entirely uninfected targeT cell population [24, 25]. It is
easy to see that R

0
> 1 ensures the existence of the infected

equilibrium 𝐸
∗.

3. Stability of Uninfected Equilibrium 𝐸
0

In this section, we will discuss the stability of the uninfected
equilibrium 𝐸

0
(𝑇

0
, 0, 0, 0).
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Let 𝐸(𝑇, 𝐼
1
, 𝐼

2
, 𝑉

1
) be any arbitrary equilibrium. To study

the stability of the steady state 𝐸, let us define

𝑥 (𝑡) = 𝑇 (𝑡) − 𝑇, 𝑦
1
(𝑡) = 𝐼

1
(𝑡) − 𝐼

1
,

𝑦
2
(𝑡) = 𝐼

2
(𝑡) − 𝐼

2
, 𝑧 (𝑡) = 𝑉

1
(𝑡) − 𝑉

1
.

(14)

Then, the linearized system of (5) around the equilibrium 𝐸

is given by

𝑑

𝑑𝑡
(

𝑥 (𝑡)

𝑦
1
(𝑡)

𝑦
2
(𝑡)

𝑧 (𝑡)

) = 𝐴
1
(

𝑥(𝑡)

𝑦
1
(𝑡)

𝑦
2
(𝑡)

𝑧 (𝑡)

) + 𝐴
2
(

𝑥(𝑡 − 𝜏)

𝑦
1
(𝑡 − 𝜏)

𝑦
2
(𝑡 − 𝜏)

𝑧 (𝑡 − 𝜏)

) , (15)

where 𝐴
1
and 𝐴

2
are 4 × 4matrices given by

𝐴
1
= (

−𝜇
1
+ 𝑟 −

2𝑟𝑇

𝑇max
− 𝑘𝑉

1
𝜂𝑎 + 𝑏 0 −𝑘𝑇

0 −𝑎 − 𝑏 − 𝑑 0 0

0 (1 − 𝜂) 𝑎 −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

),

𝐴
2
= (

0 0 0 0

𝑘𝑉
1
0 0 𝑘𝑇

0 0 0 0

0 0 0 0

) .

(16)

Hence, the characteristic equation of system (5) at 𝐸 is given
by

det (𝐴 + 𝐵𝑒
−𝜆𝜏

− 𝜆I) = 0, (17)

whereI is a 4 × 4 identity matrix that is,



−𝜇
1
+ 𝑟 −

2𝑟𝑇

𝑇max
− 𝑘𝑉

1
− 𝜆 𝜂𝑎 + 𝑏 0 −𝑘𝑇

𝑘𝑉
1
𝑒
−𝜆𝜏

−𝑎 − 𝑏 − 𝑑 − 𝜆 0 𝑘𝑇𝑒
−𝜆𝜏

0 (1 − 𝜂) 𝑎 −𝛿 − 𝜆 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐 − 𝜆



= 0.

(18)

Theorem 1. (1) If R
0
< 1, 𝐸

0
is locally asymptotically stable

for any time delay 𝜏 ≥ 0. (2) IfR
0
> 1, 𝐸

0
is unstable for any

time delay 𝜏 ≥ 0. (3) IfR
0
= 1, it is a critical case.

Proof. For uninfected equilibrium 𝐸
0
, (18) reduces to

(𝑟 − 𝜇
1
−
2𝑟𝑇

0

𝑇max
− 𝜆) [𝜆

3

+ 𝑏
1
𝜆
2

+ 𝑏
2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

] = 0,

(19)

where

𝑏
1
= 𝑎 + 𝑏 + 𝑑 + 𝛿 + 𝑐,

𝑏
2
= (𝑎 + 𝑏 + 𝑑) (𝑐 + 𝛿) + 𝑐𝛿,

𝑏
3
= (𝑎 + 𝑏 + 𝑑) 𝑐𝛿,

𝑐
3
= − (1 − 𝑝) (1 − 𝜂) 𝑎𝑘𝑁𝛿𝑇

0
.

(20)

It is clear that (19) has the characteristic root 𝜆
1
= 𝑟−𝜇

1
−

(2𝑟𝑇
0
/𝑇max) = −√(𝑟 − 𝜇

1
)
2

+ 4𝑟𝑠/𝑇max < 0.
Next, we will consider the transcendental polynomial

𝜆
3

+ 𝑏
1
𝜆
2

+ 𝑏
2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

= 0. (21)

For 𝜏 = 0, we have that

𝜆
3

+ 𝑏
1
𝜆
2

+ 𝑏
2
𝜆 + 𝑏

3
+ 𝑐

3
= 0. (22)

Obviously, 𝑏
1
> 0, 𝑏

2
> 0, and 𝑏

3
+ 𝑐

3
> 0 since R

0
< 1. We

also get

𝑏
1
𝑏
2
− (𝑏

3
+ 𝑐

3
) = (𝑎 + 𝑏 + 𝑑)

2

(𝑐 + 𝛿)

+ (𝑎 + 𝑏 + 𝑑) (𝑐 + 𝛿)
2

+ 𝑐𝛿 (𝑐 + 𝛿)

+ (1 − 𝑝) (1 − 𝜂) 𝑎𝑘𝑁𝛿𝑇
0
> 0.

(23)

This shows that all the roots of (22) have negative real parts
for 𝜏 = 0 by using Routh-Hurwitz theorem.

In the following, we investigate the existence of purely
imaginary roots 𝜆 = 𝑖𝜔, 𝜔 > 0, of (21). If 𝜏 > 0 and 𝜆 = 𝑖𝜔

with 𝜔 > 0 is a solution of (21), then separating the real and
imaginary parts gives

𝜔
3

− 𝑏
2
𝜔 = −𝑐

3
sin (𝜔𝜏) ,

𝑏
1
𝜔
2

− 𝑏
3
= 𝑐

3
cos (𝜔𝜏) .

(24)

Squaring and adding both equations of (24) yields

𝑓 (𝜔, 𝜏) = 𝜔
6

+ 𝑚
1
𝜔
4

+ 𝑚
2
𝜔
2

+ 𝑏
2

3
− 𝑐

2

3
= 0, (25)

where

𝑚
1
= (𝑎 + 𝑏 + 𝑑)

2

+ 𝑐
2

+ 𝛿
2

> 0,

𝑚
2
= (𝑎 + 𝑏 + 𝑑)

2

(𝑐
2

+ 𝛿
2

) + (𝑎 + 𝑏 + 𝑑)
2

𝑐𝛿

+ (𝑐𝛿)
2

+ 𝑐𝛿 (𝑐 + 𝛿) (𝑎 + 𝑏 + 𝑑) > 0.

(26)

Letting 𝑦 = 𝜔
2 yields

𝑦
3

+ 𝑚
1
𝑦
2

+ 𝑚
2
𝑦 + 𝑏

2

3
− 𝑐

2

3
= 0. (27)

If R
0
< 1, then 𝑏

2

3
− 𝑐

2

3
> 0. Therefore, by claim 1 in

[21], it is evident that (27) has no positive real roots. This
shows that (21) cannot have a purely imaginary root for any
𝜏 > 0. Therefore, the uninfected equilibrium 𝐸

0
is locally

asymptotically stable for any 𝜏 ≥ 0 provided thatR
0
< 1.

IfR
0
= 1, the transcendental polynomial (21) becomes

𝜆
3

+ 𝑏
1
𝜆
2

+ 𝑏
2
𝜆 + 𝑏

3
− 𝑏

3
𝑒
−𝜆𝜏

= 0. (28)

It is clear that 𝜆 = 0 is a simple root of (28). We further show
that any root of (28)must have negative real part except𝜆 = 0.

In fact, if (28) has imaginary root 𝑢 ± 𝑖𝜔 for some 𝑢 ≥ 0,
𝜔 ≥ 0, and 𝜏 ≥ 0, from (28) we have

𝑢
3

− 3𝑢𝜔
2

+ 𝑏
1
𝑢
2

− 𝑏
1
𝜔
2

+ 𝑏
2
𝑢 + 𝑏

3
= 𝑏

3
𝑒
−𝑢𝜏 cos (𝜔𝜏) ,

−𝜔
3

+ 3𝑢
2

𝜔 + 𝑏
2
𝜔 + 2𝑏

1
𝑢𝜔 = −𝑏

3
𝑒
−𝑢𝜏 sin (𝜔𝜏) ,

(29)
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which, together with 𝑢 ≥ 0, implies that

[𝑢
3

− 3𝑢𝜔
2

+ 𝑏
1
𝑢
2

− 𝑏
1
𝜔
2

+ 𝑏
2
𝑢 + 𝑏

3
]
2

+ [−𝜔
3

+ 3𝑢
2

𝜔 + 𝑏
2
𝜔 + 2𝑏

1
𝑢𝜔]

2

= 𝑏
2

3
𝑒
−2𝑢𝜏

≤ 𝑏
2

3
.

(30)

However, it is easy to check that the previous inequality is not
true. Hence, it shows that any root of (28) has negative real
part except 𝜆 = 0, which implies that the trivial solution of
(5) is stable for any time delay 𝜏 ≥ 0.

IfR
0
> 1, let

𝑓 (𝜆) = 𝜆
3

+ 𝑏
1
𝜆
2

+ 𝑏
2
𝜆 + 𝑏

3
+ 𝑐

3
𝑒
−𝜆𝜏

= 0. (31)

Note that𝑓(0) = 𝑏
3
+𝑐

3
< 0 since𝑅

0
> 1 and lim

𝜆→+∞
𝑓(𝜆) =

+∞. It follows from the continuity of the function 𝑓(𝜆) on
(−∞, +∞) that equation 𝑓(𝜆) = 0 has at least one positive
root. Hence, characteristic equation (19) has at least one
positive. Thus, 𝐸

0
is unstable. Therefore, our results in this

theorem are proved.

4. Dynamical Behavior of
Endemic Equilibrium 𝐸

∗

In general, the nonlinear delay system will undergo a Hopf
bifurcation when the delay passes through a critical value
of the delay, for which the stability of the existing equi-
librium changes from stable status to unstable status and
a self-excited limit cycle emerges at this moment. Under
certain conditions, the existence of a Hopf bifurcation can be
determined from linear stability analysis; it requires that at
the bifurcation point, the characteristic function has exactly
one pair of conjugate roots on the imaginary axis, and as
the delay passes through the bifurcation point, this pair of
characteristic roots cross from the left-half complex plane
to the right-half complex plane or vice verse [19, 26]. The
crossing direction is the same as that mentioned previously
in linear stability analysis. Thus, the determination of the
crossing direction is very important for both stability analysis
and Hopf bifurcation. In this section, we will consider
the dynamical behavior of endemic equilibrium 𝐸

∗. Some
conditions for Hopf bifurcation around equilibrium 𝐸

∗ to
occur are obtained by using the time delay 𝜏 as a bifurcation
parameter.

For endemic equilibrium 𝐸
∗
(𝑇

∗
, 𝐼

∗

1
, 𝐼

∗

2
, 𝑉

∗

1
), (18) reduces

to


−𝜇1 + 𝑟 −

2𝑟𝑇
∗

𝑇max
− 𝑘𝑉
∗

1
− 𝜆 𝜂𝑎 + 𝑏 0 −𝑘𝑇

∗

𝑘𝑉
∗

1
𝑒
−𝜆𝜏

−𝑎 − 𝑏 − 𝑑 − 𝜆 0 𝑘𝑇
∗
𝑒
−𝜆𝜏

0 𝑎 (1 − 𝜂) −𝛿 − 𝜆 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐 − 𝜆



= 0;

(32)

that is,

𝜆
4

+ 𝑝
1
𝜆
3

+ 𝑝
2
𝜆
2

+ 𝑝
3
𝜆 + 𝑝

4
− (𝑞

2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞

4
) 𝑒

−𝜆𝜏

= 0,

(33)

where
𝑝
1
= 𝑎 + 𝑏 + 𝑑 + 𝑐 + 𝛿 − Ω,

𝑝
2
= −Ω (𝑎 + 𝑏 + 𝑑) + (𝑐 + 𝛿) (𝑎 + 𝑏 + 𝑑 − Ω) + 𝑐𝛿,

𝑝
3
= − (𝑐 + 𝛿)Ω (𝑎 + 𝑏 + 𝑑) + 𝑐𝛿 (𝑎 + 𝑏 + 𝑑 − Ω) ,

𝑝
4
= −𝑐𝛿Ω (𝑎 + 𝑏 + 𝑑) ,

𝑞
2
= (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
,

𝑞
3
= (𝑐 + 𝛿) (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
+ (1 − 𝑝) (1 − 𝜂)𝑁𝛿𝑎𝑘𝑇

∗

,

𝑞
4
= 𝑐𝛿 (𝜂𝑎 + 𝑏) 𝑘𝑉

∗

1
− (1 − 𝑝) (1 − 𝜂)𝑁𝛿𝑎𝑘𝑇

∗

(Ω + 𝑘𝑉
∗

1
) ,

Ω = −𝜇
1
+ 𝑟 −

2𝑟𝑇
∗

𝑇max
− 𝑘𝑉

∗

1
< 0.

(34)

Obviously, 𝑝
1
> 0. In addition, in view of Routh-Hurwitz

criteria, we can easily know that all roots of (33) with 𝜏 = 0

have negative real parts if the following condition holds:

(H) : 𝑝
4
− 𝑞

4
> 0, 𝑝

3
− 𝑞

3
> 0,

𝑝
1
[(𝑝

3
− 𝑞

3
) (𝑝

2
− 𝑞

2
) − 𝑝

1
(𝑝

4
− 𝑞

4
)] > (𝑝

1
− 𝑞

3
)
2

.

(35)

Let us consider 𝜏 ̸= 0 and assume 𝜆(𝜏) = 𝜙(𝜏) + 𝑖𝜓(𝜏),
where 𝜙(𝜏), 𝜓(𝜏) ∈ 𝑅. Substituting 𝜆(𝜏) = 𝜙(𝜏) + 𝑖𝜓(𝜏) and
rewriting (33) in terms of its real and imaginary parts, we
obtain

𝜐
4

+ 𝜔
4

− 6𝜐
2

𝜔
2

+ 𝑝
1
(𝜐

3

− 3𝜐𝜔
2

) + 𝑝
2
(𝜐

2

− 𝜔
2

) + 𝑝
3
𝜐 + 𝑝

4

= 𝑒
−𝜏𝜐

{𝑞
2
[(𝜐

2

− 𝜔
2

) cos (𝜏𝜔) + 2𝜐𝜔 sin (𝜏𝜔)]

+𝑞
3
[𝜐 cos (𝜏𝜔) + 𝜔 sin (𝜏𝜔)] + 𝑞

4
cos (𝜏𝜔) } ,

(36a)

4𝜐𝜔 (𝜐
2

− 𝜔
2

) + 𝑝
1
(3𝜐

2

𝜔 − 𝜔
3

) + 𝑝
2
(2𝜐𝜔) + 𝑝

3
𝜔

= 𝑒
−𝜏𝜐

{𝑞
2
[(−𝜐

2

+ 𝜔
2

) sin (𝜏𝜔) + 2𝜐𝜔 cos (𝜏𝜔)]

+𝑞
3
[−𝜐 sin (𝜏𝜔) + 𝜔 cos (𝜏𝜔)] + 𝑞

4
[− sin (𝜏𝜔)] } .

(36b)

Let 𝜏∗
1
be such that 𝜐(𝜏∗

1
) = 0 and 𝜔(𝜏

∗

1
) = 𝜔(𝜏

∗
); then

(36a) and (36b) reduce to

𝜔
∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
= (−𝑞

2
𝜔
∗2

1
+ 𝑞

4
) cos (𝜏∗

1
𝜔
∗

1
)

+ 𝑞
3
𝜔
∗

1
sin (𝜏∗

1
𝜔
∗

1
) ,

(37a)

−𝑝
1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
= 𝑞

3
𝜔
∗

1
cos (𝜏∗

1
𝜔
∗

1
)

+ (𝑞
2
𝜔
∗2

1
− 𝑞

4
) sin (𝜏∗

1
𝜔
∗

1
) .

(37b)

Eliminating 𝜏, we have

𝜔
∗8

1
+ (𝑝

2

1
− 2𝑝

2
) 𝜔

∗6

1
+ (𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
) 𝜔

∗4

1

+ (𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
) 𝜔

∗2

1
+ (𝑝

2

4
− 𝑞

2

4
) = 0.

(38)
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Suppose that𝜔∗

1
is the last positive simple root of (38).We

will now show that, with this value of 𝜔∗

1
, there is a 𝜏∗

1
such

that 𝜐(𝜏∗
1
) = 0 and𝜔(𝜏∗

1
) = 𝜔

∗

1
. Given𝜔∗

1
, (37a) and (37b) can

be written as

𝑈 = Φ cos (𝜏∗
1
𝜔
∗

1
) + Ψ sin (𝜏∗

1
𝜔
∗

1
) , (39a)

𝑉 = Ψ cos (𝜏∗
1
𝜔
∗

1
) − Φ sin (𝜏∗

1
𝜔
∗

1
) , (39b)

where

Φ = −𝑞
2
𝜔
∗2

1
+ 𝑞

4
, Ψ = 𝑞

3
𝜔
∗

1
,

𝑈 = 𝜔
∗4

1
− 𝑝

2
𝜔
∗2

1
, 𝑉 = −𝑝

1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
,

Φ
2

+ Ψ
2

= 𝑈
2

+ 𝑉
2

= 𝐻
2

,

(40)

where𝐻 > 0.
Equations

Φ = 𝐻 cos 𝜃, Ψ = 𝐻 sin 𝜃 (41)

determine a unique 𝜃 ∈ [0, 2𝜋). With this value of 𝜃,

𝐻 cos (𝜏∗
1
𝜔
∗

1
) cos 𝜃 + 𝐻 sin (𝜏∗

1
𝜔
∗

1
) sin 𝜃 = 𝑈, (42a)

𝐻 cos (𝜏∗
1
𝜔
∗

1
) sin 𝜃 − 𝐻 sin (𝜏∗

1
𝜔
∗

1
) cos 𝜃 = 𝑉. (42b)

Hence,

𝐻 cos (𝜏∗
1
𝜔
∗

1
− 𝜃) = 𝑈, (43a)

𝐻 sin (𝜏∗
1
𝜔
∗

1
− 𝜃) = −𝑉. (43b)

Equations (43a) and (43b) determine 𝜏∗
1
𝜔
∗

1
− 𝜃 uniquely in

[0, 2𝜋) and hence 𝜏∗
1
uniquely in [𝜃/𝜔∗

1
, (𝜃+2𝜋)/𝜔

∗

1
). To apply

the Hopf bifurcation theorem as stated in [27], we state the
following lemma.

Lemma 2 (see [28]). Suppose (38) has at least one simple
positive root and 𝜔

∗

1
is the last such root. Then, 𝑖𝜔(𝜏∗

1
) = 𝑖𝜔

∗

1

is a simple root of (33) and 𝜐(𝜏) + 𝑖𝜔(𝜏) is differentiable with
respect to 𝜏 in a neighbourhood of 𝜏 = 𝜏

∗

1
.

Next, to establish Hopf bifurcation at 𝜏
1
= 𝜏

∗

1
, we need to

verify the transversality condition

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

̸= 0. (44)

Differentiating equations (36a) and (36b) with respect to 𝜏,
setting 𝜐 = 0 and 𝜔 = 𝜔

∗

1
, solving for 𝑑𝜐/𝑑𝜏|

𝜏=𝜏
∗

1

and
𝑑𝜔/𝑑𝜏|

𝜏=𝜏
∗

1

, and using (37a) and (37b), we obtain

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

=
1

Γ2
1
+ Γ2

2

{𝜔
∗2

1
[4𝜔

∗6

1
+ 3𝜔

∗4

1
(𝑝

2

1
− 2𝑝

2
)

+ 2𝜔
∗2

1
(𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
)

+ 𝑝
2

3
− 𝑞

2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
]} .

(45)

Here,

Γ
1
= −4𝜔

∗3

1
+ 2𝑝

2
𝜔
∗

1
+ 𝜏

∗

1
(−𝑝

1
𝜔
∗3

1
+ 𝑝

3
𝜔
∗

1
)

+ 𝑞
3
sin (𝜏∗

1
𝜔
∗

1
) − 2𝑞

2
𝜔
∗

1
cos (𝜏∗

1
𝜔
∗

1
) ,

Γ
2
= −3𝑝

1
𝜔
∗2

1
+ 𝑝

3
+ 𝜏

∗

1
(𝜔

∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
)

+ (−2𝑞
2
𝜔
∗

1
) sin (𝜏∗

1
𝜔
∗

1
) − 𝑞

3
cos (𝜏∗

1
𝜔
∗

1
) ,

Γ
2

1
+ Γ

2

2
> 0,

(46)

as 𝑖𝜔(𝜏∗
1
) is a simple root of (33). Let 𝜍 = 𝜔

∗2

1
; then (38) reduces

to ](𝜍) = 0, where

] (𝜍) = 𝜍
4

+ (𝑝
2

1
− 2𝑝

2
) 𝜍

3

+ (𝑝
2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
) 𝜍

2

+ (𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
) 𝜍 + (𝑝

2

4
− 𝑞

2

4
) .

(47)

Hence,

𝑑]
𝑑𝜍

= 4𝜍
3

+ 3𝜍
2

(𝑝
2

1
− 2𝑝

2
) + 2𝜍 (𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
)

+ (𝑝
2

3
− 𝑞

2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
) .

(48)

If 𝜔∗2

1
is the first positive simple root of (38), then

𝑑]
𝑑𝜍

𝜍=𝜔∗2
1

> 0. (49)

Hence, using (45) and (48) we deduce that

𝑑𝜐

𝑑𝜏

𝜏=𝜏∗
1

> 0. (50)

Theorem 3. Suppose that (38) has at least one simple positive
root and 𝜔

∗

1
is the last such root. Then, there is a Hopf

bifurcation for the system (5) as 𝜏 passes upwards through 𝜏
∗

1

leading to a periodic solution that bifurcates from 𝐸
∗.

Next, we will give the sensible conditions that the Hopf
bifurcation occurs around equilibrium 𝐸

∗. Firstly, we need
the following important lemma.

Define 𝑓
1
= 𝑝

2

1
− 2𝑝

2
, 𝑓

2
= 𝑝

2

2
+ 2𝑝

4
− 2𝑝

1
𝑝
3
− 𝑞

2

2
, 𝑓

3
=

𝑝
2

3
− 2𝑝

2
𝑝
4
+ 2𝑞

2
𝑞
4
− 𝑞

2

3
, 𝑓

4
= 𝑝

2

4
− 𝑞

2

4
, and 𝜍 = 𝜔

∗2

1
, then (38)

becomes

𝜍
4

+ 𝑓
1
𝜍
3

+ 𝑓
2
𝜍
2

+ 𝑓
3
𝜍 + 𝑓

4
= 0. (51)

Lemma 4 (see [28]). If 𝑓
4
< 0, then the quartic equation

] (𝜍) = 𝜍
4

+ 𝑓
1
𝜍
3

+ 𝑓
2
𝜍
2

+ 𝑓
3
𝜍 + 𝑓

4
= 0 (52)

has a strictly positive triple root 𝑘
1
if and only if

(1) 3𝑓2

1
≥ 8𝑓

2
;

(2) 𝑓
1
< 0 or 𝑓

2
< 0;
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(3) 𝛽
1
satisfies the equation 6𝛽

2
+ 3𝑓

1
𝛽 + 𝑓

2
= 0;

(4) 𝑓
3
= 𝛽

2

1
(3𝑓

1
+ 8𝛽

1
);

(5) 𝑓
4
= 𝛽

3

1
(−𝑓

1
− 3𝛽

1
).

We also need the following mild condition.

Condition 1. Either

(i) 8𝑓
2
> 3𝑓

2

1
;

(ii) 𝑓
1
≥ 0 and 𝑓

2
≥ 0;

(iii) or if 3𝑓2

1
≥ 8𝑓

2
and also either 𝑓

1
< 0 or 𝑓

2
< 0,

then if 𝛽
1
is a strictly positive root of the quadratic

equation, 6𝛽2+3𝑓
1
𝛽+𝑓

2
= 0; either𝑓

3
̸= 𝛽
2

1
(3𝑓

1
+8𝛽

1
)

or 𝑓
4

̸= 𝛽
3

1
(−𝑓

1
− 3𝛽

1
).

Equation (38) has at least one positive real root for 𝜔∗2

1
if

|𝑝
4
| < |𝑞

4
|. By Lemma 2, this is a simple root if Condition

1 is satisfied.Thus, from Lemma 2 andTheorem 3, we can get
the following theorem.

Theorem 5. Suppose that

(i) R
0
> 1 and the unique endemic equilibrium 𝐸

∗ exists;
and

(ii) Condition 1 holds and |𝑝
4
| < |𝑞

4
| so 𝑓

4
< 0.

Then, there is a Hopf bifurcation for the system (5) as 𝜏
passes upwards through 𝜏

∗

1
leading to a periodic solution that

bifurcates from 𝐸
∗.

Remark 6. If (38) has a positive root𝜔∗

1
, from (37a) and (37b)

we can obtain

𝜏
∗

𝑗
=

1

𝜔∗

1

arcsin [ ( (−𝑞
3
𝜔
∗

1
(𝜔

∗4

1
− 𝑝

2
𝜔
∗2

1
+ 𝑝

4
)

+ (𝑝
1
𝜔
∗3

1
− 𝑝

3
𝜔
∗

1
) (𝑞

2
𝜔
∗2

1
− 𝑞

4
))

× ((𝑞
∗4

3
𝜔
∗

1
)
2

+ (𝑞
2
𝜔
∗2

1
− 𝑞

4
)
2

)
−1

)

+2𝑗𝜋] , 𝑗 = 0, 1, 2, . . . .

(53)

5. Direction and Stability of
the Hopf Bifurcation

In the previous section, we obtain the conditions underwhich
a family of periodic solutions bifurcates from the positive
equilibrium 𝐸

∗ at the critical value of 𝜏∗
1
. As pointed out in

Hassard et al. [29], it is interesting to determine the direction,
stability, and period of the periodic solutions bifurcating from
the positive equilibrium 𝐸

∗. Following the ideas of Hassard
et al., we derive the explicit formulas for determining the
properties of the Hopf bifurcation at the critical value of 𝜏∗

1

by using the normal form and the center manifold theory.
Throughout this section, we always assume that system (5)
undergoes Hopf bifurcation at the positive equilibrium 𝐸

∗

for 𝜏 = 𝜏
∗

1
, and then ±𝑖𝜔

∗

1
is corresponding purely imaginary

roots of the characteristic equation at the positive equilibrium
𝐸
∗. In the this section, for convenience, we use 𝜏

∗ and 𝜔
∗

instead of 𝜏∗
1
and 𝜔

∗

1
, respectively.

Let 𝑥
1
(𝑡) = 𝑇(𝑡)−𝑇

∗, 𝑥
2
(𝑡) = 𝐼

1
(𝑡)−𝐼

∗

1
, 𝑥

3
(𝑡) = 𝐼

2
(𝑡)−𝐼

∗

2
,

𝑥
4
(𝑡) = 𝑉

1
(𝑡) − 𝑉

∗

1
, 𝑥

𝑖
(𝑡) = 𝑥

𝑖
(𝜏𝑡), (𝑖 = 1, 2, 3, 4), and 𝜏 =

𝜏
∗
+𝜇; system (5) is transformed into an functional differential

equation (FDE) in C = C([−1, 0],R4
) as

𝑑𝑥

𝑑𝑡
= 𝐿

𝜇
(𝑥

𝑡
) + 𝑓 (𝜇, 𝑥

𝑡
) , (54)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑥

3
(𝑡), 𝑥

4
(𝑡))

⊤

∈ R4 and 𝐿𝜇 : C →

R,𝑓 : R × C → R are given, respectively, by

𝐿
𝜇
(𝜙) = (𝜏

∗

+ 𝜇)

×(

Ω 𝜂𝑎 + 𝑏 0 −𝑘𝑇
∗

0 −𝑎 − 𝑏 − 𝑑 0 0

0 𝑎 (1 − 𝜂) −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

)

×(

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

𝜙
4
(0)

)

+ (𝜏
∗

+ 𝜇)(

0 0 0 0

𝑘𝑉
∗

1
0 0 𝑘𝑇

∗

0 0 0 0

0 0 0 0

)(

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

𝜙
4
(−1)

) ,

(55)

𝑓 (𝜇, 𝜙) = (𝜏
∗

+ 𝜇)(

−
𝑟

𝑇max
𝜙
2

1
(0) − 𝑘𝜙

1
(0) 𝜙

4
(0)

𝑘𝜙
1
(−1) 𝜙

4
(−1)

0

0

) .

(56)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 0) 𝜙 (𝜃) , (57)

for 𝜙 ∈ C.
In fact, we can choose

𝜂 (𝜃, 𝜇)

= (𝜏
∗

+ 𝜇)(

Ω 𝜂𝑎 + 𝑏 0 −𝑘𝑇
∗

0 −𝑎 − 𝑏 − 𝑑 0 0

0 𝑎 (1 − 𝜂) −𝛿 0

0 0 (1 − 𝑝)𝑁𝛿 −𝑐

)𝛿 (𝜃)



8 Abstract and Applied Analysis

− (𝜏
∗

+ 𝜇)(

0 0 0 0

𝑘𝑉
∗

1
0 0 𝑘𝑇

∗

0 0 0 0

0 0 0 0

)𝛿 (𝜃 + 1) ,

(58)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ C
([−1, 0],R4

),
define

𝐴 (𝜇) 𝜙 =

{{{

{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫
0

−1
𝑑𝜂 (𝜇, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(59)

Then, system (54) is equivalent to
�̇�
𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (60)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜓 ∈ C1
([−1, 0], (R4

)
∗

), define

𝐴
∗

𝜓 (𝑠) =
{

{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫
0

−1
𝑑𝜂

𝑇

(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(61)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−1

∫

𝜃

𝜁−𝜃

𝜓 (𝜁 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜁) 𝑑𝜁,

(62)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then, 𝐴(0) and 𝐴
∗ are adjoint oper-

ators. By the discussion in Section 4, we know that ±𝑖𝜔∗
𝜏
∗

are eigenvalues of 𝐴(0). Thus, they are also eigenvalues of
𝐴
∗. We first need to compute the eigenvector of 𝐴(0) and 𝐴∗

corresponding to +𝑖𝜔∗
𝜏
∗ and −𝑖𝜔

∗
𝜏
∗, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑎, 𝛽, 𝛾)
⊤

𝑒
𝑖𝜔
∗
𝜏
∗
𝜃 is the eigen-

vector of 𝐴(0) corresponding to +𝑖𝜔
∗
𝜏
∗; then 𝐴(0)𝑞(𝜃) =

𝑖𝜔
∗
𝜏
∗
𝑞(𝜃). It follows from the definition of 𝐴(0) and (55),

(57), and (58) that

𝜏
∗

(

𝑖𝜔
∗

− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑒
−𝑖𝜔
∗
𝜏
∗

𝑖𝜔
∗

+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇
∗

𝑒
−𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 𝑖𝜔
∗

+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑖𝜔
∗

+ 𝑐

)

× 𝑞 (0) = (

0

0

0

0

) .

(63)

Thus, we can easily obtain 𝑞(0) = (1, 𝛼, 𝛽, 𝛾)
⊤, where

𝛼 =
(𝑖𝜔

∗
− Ω − 𝑘𝑉

∗

1
) 𝑒

−𝑖𝜔
∗
𝜏
∗

(𝜂𝑎 + 𝑏) 𝑒−𝑖𝜔
∗
𝜏
∗

− (𝑖𝜔∗ + 𝑎 + 𝑏 + 𝑑)
,

𝛾 =
1

𝑘𝑇∗
[(𝜂𝑎 + 𝑏) 𝛼 − 𝑖𝜔

∗

+ Ω] , 𝛽 =
(𝑖𝜔

∗
+ 𝑐) 𝛾

(1 − 𝑝)𝑁𝛿
.

(64)

Similarly, let 𝑞
∗
(𝑠) = 𝐷(1, 𝛼

∗
, 𝛽

∗
, 𝛾

∗
)𝑒
𝑖𝜔
∗
𝜏
∗
𝑠 be the

eigenvector of𝐴∗ corresponding to −𝑖𝜔∗
𝜏
∗. By the definition

of 𝐴∗ and (55)–(57), we can compute

𝛼
∗

=
𝑖𝜔

∗
− Ω

𝑘𝑉∗

1
𝑒−𝑖𝜔
∗
𝜏
∗ ,

𝛽
∗

=
−𝜂𝑎 − 𝑏 + (𝑖𝜔

∗
+ 𝑎 + 𝑏 + 𝑑) 𝛼

∗

𝑎 (1 − 𝜂)
,

𝛾
∗

=
𝛼
∗
𝑘𝑇

∗
𝑒
−𝑖𝜔
∗
𝜏
∗

− 𝑘𝑇
∗

𝑖𝜔∗ + 𝑐
.

(65)

In order to assure ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to determine
the value of𝐷. From (62), we have
⟨𝑞

∗

(𝑠) , 𝑞 (𝜃)⟩

= 𝐷(1, 𝛼
∗
, 𝛽

∗
, 𝛾

∗
) (1, 𝛼, 𝛽, 𝛾)

⊤

−∫

0

−1

∫

𝜃

𝜁=0

𝐷(1, 𝛼∗, 𝛽∗, 𝛾∗) 𝑒
−𝑖𝜔
∗
𝜏
∗
(𝜁−𝜃)

𝑑𝜂 (𝜃) (1, 𝛼, 𝛽, 𝛾)
⊤
𝑒
𝑖𝜔
∗
𝜏
∗
𝜁
𝑑𝜁

= 𝐷{1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗

− ∫

0

−1

(1, 𝛼∗, 𝛽∗, 𝛾∗) 𝜃𝑒
𝑖𝜔
∗
𝜏
∗
𝜃
𝑑𝜂 (𝜃) (1, 𝛼, 𝛽, 𝛾)

⊤
}

= 𝐷{1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗ + 𝜏
∗
𝑒
−𝑖𝜔
∗
𝜏
∗

(𝛼
∗
𝑘𝑉
∗

1
+ 𝛼
∗
𝑘𝑇
∗
𝛾)} .

(66)
Thus, we can choose𝐷 as

𝐷 =
1

1 + 𝛼𝛼∗ + 𝛽𝛽∗ + 𝛾𝛾∗ + 𝜏∗𝑒𝑖𝜔
∗
𝜏
∗

(𝑘𝑉∗

1
𝛼∗ + 𝑘𝑇∗𝛼∗𝛾)

.

(67)

In the remainder of this section, we use the same nota-
tions as in [29]; we first compute the coordinates to describe
the center manifoldC

0
at 𝜇 = 0. Let 𝑥

𝑡
be the solution of (60)

when 𝜇 = 0. Define
𝑍 (𝑡) = ⟨𝑞

∗

, 𝑥
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑥

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(68)

On the center manifold C
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (69)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20
(𝜃)

𝑧
2

2
+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6
+ ⋅ ⋅ ⋅ ,

(70)

𝑧 and 𝑧 are local coordinates for center manifold C
0
in the

direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑥
𝑡
is real. We

only consider real solutions. For solution 𝑥
𝑡
∈ C

0
of (60),

since 𝜇 = 0, we have

�̇� (𝑡) = 𝑖𝜔
∗

𝜏
∗

𝑧 + 𝑞∗ (0) 𝑓 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧𝑞 (𝜃)})

= 𝑖𝜔
∗

𝜏
∗

𝑧 + 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧) .

(71)
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We rewrite this equation as

�̇� (𝑡) = 𝑖𝜔
∗

𝜏
∗

𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (72)

where

𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔

21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(73)

It follows from (68) and (70) that

𝑥
𝑡
(𝜃)

= 𝑊 (𝑡, 𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝑡)}

= 𝑊
20
(𝜃)

𝑧
2

2
+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+ (1, 𝛼, 𝛽, 𝛾)
𝑇

𝑒
𝑖𝜔
∗
𝜏
∗
𝜃

𝑧 + (1, 𝛼, 𝛽, 𝛾)
𝑇

𝑒
−𝑖𝜔
∗
𝜏
∗
𝜃

𝑧 + ⋅ ⋅ ⋅ .

(74)

It follows together with (56) that

𝑔 (𝑧, 𝑧)

= 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧)

= 𝑞∗ (0) 𝑓 (0, 𝑥
𝑡
)

= 𝜏
𝑘
𝐷(1, 𝛼∗, 𝛽∗, 𝛾∗)(

−
𝑟

𝑇max
𝜙
2

1
(0) − 𝑘𝜙

1
(0) 𝜙

4
(0)

𝑘𝜙
1
(−1) 𝜙

4
(−1)

0

0

)

= −𝜏
∗

𝐷
𝑟

𝑇max
[𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2
+ 𝑜 (


(𝑧, 𝑧)

3
)]

2

− 𝜏
∗

𝐷𝑘[𝑧 + 𝑧 +𝑊
(1)

20
(0)

𝑧
2

2
+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (


(𝑧, 𝑧)

3
)]

× [𝛾𝑧 + 𝛾𝑧 +𝑊
(4)

20
(0)

𝑧
2

2

+𝑊
(4)

11
(0) 𝑧𝑧 +𝑊

(4)

02
(0)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3

)]

+ 𝜏
∗

𝐷𝛼
∗

𝑘 [𝑒
−𝑖𝜔
∗
𝜏
∗

𝑧 + 𝑒
𝑖𝜔
∗
𝜏
∗

𝑧 +𝑊
(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3

)]

× [𝛾𝑒
−𝑖𝜔
∗
𝜏
∗

𝑧 + 𝛾𝑒
𝑖𝜔
∗
𝜏
∗

𝑧 +𝑊
(4)

20
(−1)

𝑧
2

2

+𝑊
(4)

11
(−1) 𝑧𝑧 +𝑊

(4)

02
(−1)

𝑧
2

2
+ 𝑜 (|𝑧, 𝑧|

3

)] .

(75)
Comparing the coefficients with (73), we have

𝑔
20

= 2𝜏
∗

𝐷[−
𝑟

𝑇max
− 𝑘𝛾 + 𝑘𝛼

∗

𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

] ,

𝑔
11

= 2𝜏
∗

𝐷[−
𝑟

𝑇max
− 𝑘Re 𝛾 + 𝑘𝛼

∗ Re 𝛾] ,

𝑔
02

= 2𝜏
∗

𝐷[−
𝑟

𝑇max
− 𝑘𝛾 + 𝑘𝛼

∗

𝛾𝑒
2𝑖𝜔
∗
𝜏
∗

] ,

𝑔
21

= 𝜏
∗

𝐷𝑘𝛼
∗

× [−
𝑟

𝑇max
(4𝑊

(1)

11
(0) + 2𝑊

(1)

20
(0))

− 𝑘 (2𝑊
(4)

11
(0) + 𝑊

(4)

20
(0) + 𝛾𝑊

(1)

20
(0) + 2𝛾𝑊

(1)

11
(0))

+ 𝑘𝛼
∗

(2𝑒
−𝑖𝜔
∗
𝜏
∗

𝑊
(4)

11
(−1) + 𝑒

𝑖𝜔
∗
𝜏
∗

𝑊
(4)

20
(−1)

+𝛾𝑒
𝑖𝜔
∗
𝜏
∗

𝑊
(1)

20
(−1) + 2𝛾𝑒

−𝑖𝜔
∗
𝜏
∗

𝑊
(1)

11
(−1)) ] .

(76)
Since there are𝑊

20
(𝜃) and𝑊

11
(𝜃) in 𝑔

21
, we still need to

compute them. From (60) and (68), we have

�̇� = �̇�
𝑡
− �̇�𝑞 − �̇� 𝑞

= {
𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓

0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} + 𝑓

0
, 𝜃 = 0,

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(77)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2
+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(78)

Substituting the corresponding series into (77) and compar-
ing the coefficients, we obtain
(𝐴 − 2𝑖𝜔

∗

𝜏
∗

)𝑊
20
(𝜃) = −𝐻

20
, 𝐴𝑊

11
(𝜃) = −𝐻

11
, . . . .

(79)

From (77), we know that for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗ (0) 𝑓
0
𝑞 (𝜃) − 𝑞

∗

(0) 𝑓
0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(80)
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Comparing the coefficients with (78) gives

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , (81)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) . (82)

From (79), (81), and the definition of 𝐴, it follows that

�̇�
20

= 2𝑖𝜔
∗

𝜏
∗

𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (83)

Notice that 𝑞(𝜃) = (1, 𝛼, 𝛽, 𝛾)
⊤

𝑒
𝑖𝜔
∗
𝜏
∗
𝜃; hence,

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃

+
𝑖𝑔

02

3𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃

,

(84)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
, 𝐸

(3)

1
, 𝐸

(4)

1
) ∈ R4 is a constant vector.

Similarly, from (79) and (82), we obtain

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔∗𝜏∗
𝑞 (0) 𝑒

𝑖𝜔
∗
𝜏
∗
𝜃

+
𝑖𝑔

11

𝜔∗𝜏∗
𝑞 (0) 𝑒

−𝑖𝜔
∗
𝜏
∗
𝜃

+ 𝐸
2
,

(85)

where 𝐸
2

= (𝐸
(1)

2
, 𝐸

(2)

2
, 𝐸

(3)

2
, 𝐸

(4)

2
) ∈ R4 is also a constant

vector.
In what follows, we will seek appropriate 𝐸

1
and 𝐸

2
. From

the definition of 𝐴 and (79), we obtain

∫

0

−1

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝜔

∗

𝜏
∗

𝑊
20
(𝜃) − 𝐻

20
(𝜃) , (86)

∫

0

−1

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(𝜃) , (87)

where 𝜂(𝜃) = 𝜂(0, 𝜃). By (77), we have

𝐻
20
(𝜃) = −𝑔

20
𝑞 (0) − 𝑔

20
𝑞 (0) + 2𝜏

∗

(

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

),

(88)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + 2𝜏

∗

(

−
𝑟

𝑇max
− 𝑘Re 𝛾

𝑘Re 𝛾
0

0

) .

(89)

Substituting (83) and (88) into (86), we obtain

(2𝜔
∗

𝜏
∗

𝐼 − ∫

0

−1

𝑒
2𝑖𝜔
∗
𝜏
∗
𝜃

𝑑𝜂 (𝜃))𝐸
1
= 2𝜏

∗

(

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

),

(90)

which leads to

(

2𝑖𝜔
∗

− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗

+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇
∗

𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗

+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗

+ 𝑐

)

× 𝐸
1
= 2 (

−
𝑟

𝑇max
− 𝑘𝛾

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0

0

).

(91)

It follows that

𝐸
(1)

1

=
2

Δ



−

𝑟

𝑇max
− 𝑘𝛾 −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(2)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −

𝑟

𝑇max
− 𝑘𝛾 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

𝑘𝛾𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑘𝑇
∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(3)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 −

𝑟

𝑇max
− 𝑘𝛾 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 𝑘𝛾𝑒

−2𝑖𝜔
∗
𝜏
∗

−𝑘𝑇
∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 0 𝛿 0

0 0 0 2𝑖𝜔
∗
+ 𝑐



,

𝐸
(4)

1

=
2

Δ



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 −

𝑟

𝑇max
− 𝑘𝛾

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 𝑘𝛾𝑒

−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 0



,

(92)

where

Δ =



2𝑖𝜔
∗
− Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑒
−2𝑖𝜔
∗
𝜏
∗

2𝑖𝜔
∗
+ 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗
𝑒
−2𝑖𝜔
∗
𝜏
∗

0 −𝑎 (1 − 𝜂) 2𝑖𝜔
∗
+ 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 2𝑖𝜔
∗
+ 𝑐



.

(93)

Similarly, substituting (85) and (89) into (87), we can get

(

−Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐

)𝐸
2

= (

−
𝑟

𝑇max
− 𝑘Re 𝛾

𝑘Re 𝛾
0

0

) ,

(94)
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Figure 1: When 𝜏 = 0.8 < 𝜏
∗, the positive equilibrium 𝐸

∗ is stable.

and hence

𝐸
(1)

2
=

2

Δ
1

×



−
𝑟

𝑇max
− 𝑘Re 𝛾 −𝜂𝑎 − 𝑏 0 𝑘𝑇

∗

𝑘Re 𝛾 𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇
∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



,

𝐸
(2)

2
=

2

Δ
1



−Ω −
𝑟

𝑇max
− 𝑘Re 𝛾 0 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑘Re 𝛾 0 −𝑘𝑇

∗

0 0 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



,

𝐸
(3)

2
=

2

Δ
1



−Ω −𝜂𝑎 − 𝑏 −
𝑟

𝑇max
− 𝑘Re 𝛾 𝑘𝑇

∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 𝑘Re 𝛾 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 0 0

0 0 0 𝑐



,

𝐸
(4)

2
=

2

Δ
1



−Ω −𝜂𝑎 − 𝑏 0 −
𝑟

𝑇max
− 𝑘Re 𝛾

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 𝑘Re 𝛾

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 0



,

(95)

where

Δ
1
=



−Ω −𝜂𝑎 − 𝑏 0 𝑘𝑇
∗

−𝑘𝑉
∗

1
𝑎 + 𝑏 + 𝑑 0 −𝑘𝑇

∗

0 −𝑎 (1 − 𝜂) 𝛿 0

0 0 − (1 − 𝑝)𝑁𝛿 𝑐



. (96)

Thus, we can determine 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (83)

and (85). Furthermore, 𝑔
21

in (75) can be expressed by the
parameters and delay. Then, we can compute the following
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Figure 2: When 𝜏 = 2.4 > 𝜏
∗, the positive equilibrium 𝐸

∗ losses its stability and periodic solution occurs.

values:

𝑐
1
(0) =

𝑖

2𝜔∗𝜏∗
(𝑔

20
𝑔
11
− 2

𝑔11

2

−

𝑔02

2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏∗)}
,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆


(𝜏

∗
)}

𝜔∗𝜏∗
.

(97)

By the result of Hassard et al. [29], we have the following.

Theorem 7. In (97), the sign of 𝜇
2
determined the direction of

Hopf bifurcation: if𝜇
2
> 0 (𝜇

2
< 0), then theHopf bifurcation is

supercritical (subcritical) and the bifurcating periodic solution

exists for 𝜏 > 𝜏
∗ (𝜏 < 𝜏

∗). 𝛽
2
determines the stability of the

bifurcating periodic solution: the bifurcating periodic solution
is stable (unstable) if 𝛽

2
< 0 (𝛽

2
> 0), and 𝑇

2
determines the

period of the bifurcating periodic solution: the period increases
(decreases) if 𝑇

2
> 0 (𝑇

2
< 0).

6. Numerical Simulation

In the previous sections, we introduced the analytical tools
proposed and used for a qualitative analysis of the system
obtaining some results about the dynamics of the system. In
this section, we perform a numerical analysis of the model
based on the previous results.

Our model involves 13 parameters, including the delay
𝜏. In the following, we choose a set of parameters in
Table 1. Correspondingly, R

0
= 17.68614487 > 1 and

𝐸
∗
(72.94117647, 167.1814866, 94.73617573, 21315.63954).
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Table 1: Variables and parameters for viral spread.

Variables and meaning parameters Values

𝑇
Uninfected CD4+ T-cell population
size 1000mm−3

𝐼
1

Pre-RT 0mm−3

𝐼
2

Post-RT 0mm−3

𝑉
1

Infectious virus 10−3 mm−3

𝑠
Source term for uninfected CD4+
T-cell 5 day −1 mm−3

𝑘
Rate at which CD4+ T-cell becomes
infected with virus 0.00005mm3 day−1

𝜇
1

Death rate of healthy CD4+ T-cell 0.01 day−1

𝜂 Efficacy of RTIs 0.15

𝑎
Transition rate from pre-RT infected
CD4+ T cells to productively post-RT 0.4 day−1

𝑏
Reverting rate of infected cells to
uninfected class 0.05 day−1

𝑑 Death rate of infected T-cells 0.015 day−1

𝛿 Death rate of actively infected T-cells𝐼
2

0.6 day−1

𝑁
Number of virions produced by
infected CD4+ T-cells 1000 virions cell−1

𝑐 Clearance rate of virus 2.4 day−1

𝑟 Growth rate of T-cells 0.8 day−1

𝑇max Carrying capacity of T-cells 1300mm3

𝑝 Protease inhibitor efficacy 0.1

We can compute that 𝜔
∗

= 0.3205862054, and 𝜏
∗

=

1.201514430. By Theorem 5, equilibrium 𝐸
∗ is locally

asymptotically stable when 𝜏 < 𝜏
∗ (see Figure 1), and

Hopf bifurcation occurs at 𝜏 = 𝜏
∗; a periodic solution

exists when 𝜏 > 𝜏
∗ (see Figure 2). Furthermore, we

compute 𝑐
1
(0) = −13.62874664 − 2.28357223𝑖. Therefore,

Re(𝑐
1
(0)) < 0. By Theorem 7, we know that the Hopf

bifurcation is supercritical: the bifurcating periodic solutions
exist for 𝜏 > 𝜏

∗ and they are orbitally asymptotically stable.
The ranges of time delay 𝜏 are reported in [30, 31], are

between 0 and 2 days. By the theory of Hopf bifurcation,
we have shown that sustained oscillations are possible in
the realistic parameter space. This shows that our model is
reasonable.

7. Discussion

We have considered a mathematical model for drugs therapy
to the infection of CD4+ T cells in vivo by HIV. The model
incorporates the effects of antiretroviral therapy, logistic
growth of the CD4+ T cell, and intracellular delay. We
have carried out a rigorous mathematical analysis of global
dynamics of the model and have shown that the time delay
can destabilize the positive equilibrium and lead to periodic
solutions through Hopf bifurcation.

If we cannot consider the effect of “intracellular” delay,
the viral oscillation will not occur [10]. Intracellular delay
can induce rich dynamics in the viral system. Moreover, in
system (5), we used a logistic term to model the generation

and death of target cells. In fact, we can find the logistic term
to model the generation by using simulation. And Li and Su
have studied that both the “intracellular” delay and target cell
can proliferate on virus dynamics [32]. All in all, based on
the analytic and simulation results, we can conclude that both
the “intracellular” delay and logistic termmay give rise to the
viral oscillation in the host. Hence, the oscillation behaviors
of virus population can be understood in these ways. We will
discuss the effect of the “intracellular” delay and logistic term
in theory in the future.

It is well to know that current treatment regimens cannot
eradicate the virus. And the single drug may be highly effec-
tive. From the expression of the basic reproductive number
R

0
= 𝑇

0
/𝑇

∗
= (𝑇max[𝑟−𝜇1+√(𝑟 − 𝜇

1
)
2

+ 4𝑟𝑠/𝑇max]/2𝑟)((1−

𝑝)(1−𝜂)𝑘𝑁𝑎/𝑐(𝑑+𝑎+𝑏)), we can find thatR
0
is a decreasing

function for 𝑝. The value ofR
0
is smaller for a larger 𝑝. That

is to say, PIs are positive for the treatment of HIV. Hence, our
results show that we need a combination therapy to obtain the
better results of drug therapy.

Finally, if we assume a constant death rate 𝑚 for infected
but not yet virus-producing cells, the probability of surviving
from time 𝑡 − 𝜏 to time 𝑡 is just 𝑒−𝑚𝜏 [14]. Thus the refined
model can be rewritten as (4). Hence, we have the following
system:

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝑟𝑇(1 −

𝑇

𝑇max
) − 𝜇

1
𝑇 − 𝑘𝑇𝑉

1
+ (𝜂𝑎 + 𝑏) 𝐼

1
,

𝑑𝐼
1

𝑑𝑡
= 𝑘𝑒

−𝑚𝜏

𝑇 (𝑡 − 𝜏)𝑉
1
(𝑡 − 𝜏) − (𝑑 + 𝑎 + 𝑏) 𝐼

1
,

𝑑𝐼
2

𝑑𝑡
= (1 − 𝜂) 𝑎𝐼

1
− 𝛿𝐼

2
,

𝑑𝑉
1

𝑑𝑡
= (1 − 𝑝)𝑁𝛿𝐼

2
− 𝑐𝑉

1
,

𝑑𝑉
2

𝑑𝑡
= 𝑝𝑁𝛿𝐼

2
− 𝑐𝑉

2
.

(98)

It is easy to obtain that the characteristic equation about
the positive equilibrium of model (98) is delay dependent
coefficients. We can deduce that the stability switches around
the positive equilibrium may occur. We leave it in the future.
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