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The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo
derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and
Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.

1. Introduction

The tool of the fractional calculus started to be successfully
applied inmanyfields of science and engineering (see, e.g., [1–
12] and the references therein). Fractals and its connection to
local fractional vector calculus represents another interesting
field of application (see, e.g., [13, 14] and the references
therein). Several definitions of the fractional differentiation
and integration exist in the literature. The most commonly
used are the Riemann-Liouville and the Caputo derivatives.
The Riemann-Liouville derivative of a constant is not zero
while Caputo’s derivative of a constant is zero. This property
makes the Caputo definition more suitable in all problems
involving the fractional differential geometry [15, 16]. The
Caputo differential operator of fractional calculus is defined
as [1–8]
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where Γ(⋅) is the Gamma function and 𝑥 > 𝑎. In this work, we
consider the case 𝑎 = 0, 𝑛−1 < 𝛼 ≤ 𝑛. For the power function
𝑥
𝑝, 𝑝 ∈ 𝑅, the Caputo fractional derivative satisfies
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(2)

The role played by Killing and Killing-Yano tensors for the
geodesic motion of the particle and the superparticle in a
curved backgroundwas a topic subjected to an intense debate
during the last decades [17–26]. In [27] a generalization
of exterior calculus was presented. Besides, the quadratic
Lagrangians are introduced by adding surface terms to a free-
particle Lagrangian in [28].

Motivated by the above mentioned results in differential
geometry, we discuss in this paper the hidden symmetries
corresponding to the fractional Killing vectors and Killing-
Yano tensors on curved spaces deeply related to physical
systems.
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The Caputo partial differential operator of fractional
order 𝛼 is defined as
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Again in this work we consider the case 𝑎 = 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,
and we drop the term 𝑎 in the notation.

2. The Main Results

In the following, we present the Killing vectors and Killing-
Yano tensors corresponding to some curved spaceswith some
physical significance.

2.1. One-Dimensional Case. Consider the one-dimensional
free Lagrangian, admitting a constant of motion; that is,
momentum [28]
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where we consider the Caputo fractional derivative.
We generalize the Christoffel symbols in the fractional

case, of order 𝑛 − 1 < 𝑞 < 𝑛, as
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where the partial derivatives of order 𝑞 are defined in the
fractional case.

We notice that because the metric is constant, all the
Christoffel symbols vanish,
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2.1.1. Fractional Killing Vectors and Killing-Yano Tensors.
The Killing vectors can be calculated from the generalized
equations, namely,
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Because all the Christoffel symbols vanish, it is easy to show
that
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For 0 < 𝑞 ≤ 1, a solution of the above equations is 𝑉
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where 𝑐, 𝑎
𝑘
, 𝑏
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, 𝑏
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are constants.

The fractional Killing-Yano antisymmetric tensor 𝑞𝑓
𝜇]

can be calculated using the condition
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Killing-Yano tensor 𝑞𝑓
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where 𝑎
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are constants.

2.2. Two-Dimensional Case. Below we consider the classical
free Lagrangian, in two dimensions, admitting a constant of
motion; that is, angular momentum [28]
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The inverse matrix of the metric is
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We generalize the Christoffel symbols in the fractional
case, of order 𝑛 − 1 < 𝑞 < 𝑛, as
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2.2.1. Fractional Killing Vectors. The Killing vectors can be
calculated from the generalized equations
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fractional order 𝑞, that is, 𝑛 − 1 < 𝑞 < 𝑛, namely,
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In this case a general solution is obtained as
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2.2.2. Fractional Killing-Yano Tensors. The fractional anti-
symmetric Killing-Yano tensors can be derived using the
condition that

𝑞

𝑓
𝜇];𝜆+
𝑞

𝑓
𝜆];𝜇 = 0, (30)

where 𝑞𝑓
𝜇];𝜆 is the fractional covariant derivative of the

Killing-Yano tensor 𝑞𝑓
𝜇] defined as

𝑞

𝑓
𝜇];𝜆 = 𝜕

𝑞

𝜆
𝑓
𝜇] − 𝑓

𝛼]
𝑞

Γ
𝛼

𝜆𝜇
− 𝑓
𝜇𝛼

𝑞

Γ
𝛼

𝜆] . (31)

For the fractional order 0 < 𝑞 < 1, it is difficult to find an
analytic solution.However, for the order 𝑞 > 1, theChristoffel
symbols vanish; we find that
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3. Conclusion

In this work, we investigate the existence of fractional Killing
vectors and Killing-Yano tensors for the geometry induced
by fractionalizing the classical free Lagrangian admitting a
constant of motion. We discuss the cases of one-dimensional
and two-dimensional curved space. We use the Caputo defi-
nition of the fractional derivative to calculate the fractional
Christoffel symbols and consequently we provide explicit
solution to the fractional Killing vectors and Killing-Yano
tensors.
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