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Themodels explore the effects of resource and temperature on competition between insect species. A systemof differential equations
is proposed and analysed qualitatively using stability theory. A local study of the models is performed around axial, planar, and
interior equilibrium points to successively estimate the effect of (i) one species interacting with a resource, (ii) two competing
species for a single resource, and (iii) three competing species for a single resource. The local stability analysis of the equilibrium is
discussed using Routh-Hurwitz criteria. Numerical simulation of the models is performed to investigate the sensitivity of certain
key parameters. The models are used to predict population dynamics in the selected cases studied. The results show that when a
single species interacts with a resource, the species will be able to establish and sustain a stable population. However, in competing
situation, it is observed that the combinations of three parameters (half-saturation, growth rate, andmortality rate) determinewhich
species wins for any given resource. Moreover, our results indicate that each species is the superior competitor for the resource for
the range of temperature for which it has the lowest equilibrium resource.

1. Introduction

During the past decades the theory of competition has
played an increasingly important role in both development
of general ecological theory and the interpretation of field
data [1]. Competition is one of the primary biotic factors
that shape patterns of distribution, abundance, and diversity
in ecological communities [2]. The prominent status of
competition in modern ecology is undoubtedly linked to
views of pioneers in ecology. They strongly advocate the
central role of competitive interactions between species [3–
5]. The term “species” in the present study represents insect.
Plant-feeding insects have become focal organisms for studies
on population dynamics and community diversity because
competition is deeply ingrained in their activities. It became
accepted as a factor organizing insect assemblages, despite

the fact that empirical evidence supporting competition was
mostly derived from plant, vertebrate, and marine systems
[6, 7]. In this circumstance the importance of interspecific
competition is a highly controversial and unresolved issue
for community ecology in general and for phytophagous
insect in particular. Many theoretical studies of interspecific
competition have dealt with the dependence of competition
on the resource utilization abilities of each species [8–11].
The models used in these studies usually belong to two
groups; the first group uses the classical theory of ecological
competition between two or more species [12–14] that is
attributed to Lotka [15] and Volterra [16]. These models are
often “phenomenological” because the competition param-
eters are not independently derived values that can allow
direct prediction of coexistence [17]. The second group
employs resource-based theory in ecological competition; it
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considers the dynamic of the resource explicitly as well as
the population dynamics of the competing species [8, 9, 17,
18]. The simplest form of resource-based competition occurs
in laboratory apparatus, called a chemostat or continuous
culture [3, 11]. In comparison with the classical models,
the resource-based models may be less general and more
difficult to analyse [8, 19, 20]. However, the resource-based
models are often more predictive because the parameters can
be measured on species alone [21]. Although competition
among species is often cited as a major determinant of
natural distributional patterns, there have been few studies in
which knowledge of themechanism of competition is used to
predict these patterns [17].Themanybiotic and abiotic factors
that influence competition and possible interactions among
them make such prediction difficult.

Climate, especially temperature, has a strong and direct
effect on insect development, reproduction, and survival
[22, 23]. This abiotic factor can be used to define ecological
suitability of insect species and can thus dictate composition
of pest communities in different agroecological regions. It
affects life histories, insect distributions, interactions with
host-plants, and their antagonists [22, 23]. However, this
important parameter (temperature) has notmuchbeen incor-
porated in the theoretical studies relating resource and insect
competition. Therefore, the objective of the present work
is to determine and analyse the stability of the equilibrium
points of insect species competing for a single resource while
accounting for temperature through qualitatively analysis.
We analyse the system as a combination of three submodels:
(i) a single species with a single resource, (ii) two species
competing for one resource, and (iii) three species competing
for one resource.

2. Model Formulation

To formulate the model, the following assumptions are taken
into consideration.

(i) The growth of the insect species is limited by a single
resource.

(ii) All insect species require the same resource to survive
and reproduce.

(iii) The resource availability depends on the rate of
resource supply.

(iv) No biological control measure is applied; that is, no
parasitoid is applied.

(v) The dynamic is assumed to follow “Monod’s” type
function.

(vi) All values of the competition coefficient are nonneg-
ative.

(vii) The growth rate is a function of both resource and
temperature.

Taking into account the above considerations, then we
have the schematic flow charts (Figure 1).

From the flow charts, three systems of ordinary differen-
tial equations governing the growth and the dependence of
the species to the resource were deduced.

2.1. Case 1: One Species and One Resource Model. Consider
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2.2. Case 2: Two Species and One Resource Model. Consider
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2.3. Case 3: Three Species and One Resource Model. Consider
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systems.
The Michaelis-Menten equation 𝑅/(𝑘

𝑖
+ 𝑅) is employed

to describe the relationship between cellular metabolism and
resource. For every large value of the resource, this equation
gives approximately a value of 1. For a resource equal to 𝑘

𝑖
,

it gives approximately a value of 1/2, which justifies why 𝑘
𝑖
is

referred to as the half-saturation constant. To be biologically
relevant, the following conditions must be satisfied: 𝑅(0) >
0 and 𝑁

𝑖
(0) > 0. The variables and parameters used in the

models are described in Abbreviation Section.
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Figure 1: Flow charts summarizing the conceptual framework of the formulated models; the boxes represent state variables, which describe
the state or condition of the system components. The arrows illustrate relationships among state variables as the movement of ecological
interactions; (a) shows one species and one resource interactions, (b) represents two species competing for one resource, and (c) illustrates
three species competing for one resource.

3. Models Analysis

The mathematical models equations (1)–(3) are analysed
qualitatively. An elaborative analysis of the equilibrium is
performed and conditions for existence of the proposed
systems are provided.The stability analysis of the equilibrium
is studied by computing the variational matrices for each
equilibrium point. However, the local stability is established
through Jacobian matrix of the systems using the Routh-
Hurwitz criteria. For linearized systems, the Jacobian matrix
is given by
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This is associated with the characteristic equation:
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(5)

In general, the characteristic equation is a polynomial expres-
sion with degree 𝑛 equal to the number of species competing,
𝜆 is the eigenvalues of the linearized system, and I is the
identity matrix.

Theorem 1 (Routh-Hurwitz criteria). Given the polynomial
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all of the roots of the polynomial 𝑃(𝜆) are negative or have
negative real parts if and only if the determinants of all Hurwitz
matrices are positive. For polynomial of degree 𝑛 = 2, 3 and 4,
the Hurwitz criteria are summarized as follows: Re(𝜆
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Theorem 2. For an 𝑛×𝑛matrixA the determinant is given by
the explicit formula det(𝐴) = ∑

𝜎∈𝑆
𝑛

sgn(𝜎)∏𝑛
𝑖=1
𝐴
𝑖
, 𝜎
𝑖
, where

𝑠
𝑛
is the permutation group, sgn(𝜎) is the signum function

of permutation in the permutation group, which returns +1
and −1 for even and odd permutation, respectively, and 𝜎

𝑖

represents the value in 𝑖th position after the reordering.

3.1. Models Implementation and Population Size Predictions.
The calculations are carried out with computer program
written in 𝑅. In the program, model equations are solved
using the 4th order Runge-Kutta algorithm with step size
of 0.01. Once the models equations are solved, graphs are
generated displaying predictions of future species population
size at fixed initial number of the resource. For a random
selection of species, initial population size, the models are
used to estimate the values of species at a given time interval;
thatmay be day, week, ormonth depending on the species life
cycle.

3.2. Qualitative Analysis of the Developed Models

3.2.1. One Species and One Resource. The model for this case
has atmost two equilibrium points, namely, axial equilibrium
point 𝐸
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The asterisk on 𝑁∗ and 𝑅∗ indicates that this is a nonzero
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points are obtained when 𝑑𝑁

𝑖
/𝑑𝑡 = 0, 𝑖 = 1, 2, 3, and

𝑑𝑅/𝑑𝑡 = 0. The local stability of each equilibrium point of
model system (1) is ascertained by the following theorem.
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3.2.2. Two Species One Resource. Model (2) has three equilib-
rium points, which are
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Theorem 4. Through Routh-Hurwitz criteria, the equilibrium
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for the polynomial degree 𝑛 = 3, the equilibrium points
can be determined without explicitly solving the characteristic
polynomial 𝜆3 + 𝜓
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3.2.3. Three Species One Resource. For this case, the system of
ordinary differential equations has four equilibrium points:
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Theorem 5. The equilibrium point 𝐸
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Applying the Routh-Hurwitz criterion applied on a 4-by-4
matrix, 𝐸
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) are locally asymptoti-

cally stable if (i) Ω
1
> 0, (ii) Ω

3
> 0, (iii) Ω

4
> 0, and (iv)

Ω
1
Ω
2
Ω
3
> Ω
2

3
+ Ω
2

1
Ω
4
.

Proof. The Jacobian matrix at 𝐸
2
(𝑁
∗

1
, 0, 0, 𝑅

∗

1
) is given by

J
𝐸
2

=
[
[
[

[

𝐴
11

0 0 𝐴
41

0 𝐴
22

0 0

0 0 𝐴
33

0

𝐴
14

𝐴
24

𝐴
34

𝐴
44

]
]
]

]

, (14)

where

𝐴
11
=

𝑎
1
𝑅
∗

1

𝑘
1
+ 𝑅∗
1

− 𝑚
1
,

𝐴
41
= 𝑁
∗

1
(

𝑎
1

𝑘
1
+ 𝑅∗
1

−
𝑎
1
𝑅
∗

1

(𝑘
1
+ 𝑅∗
1
)
2
) ,

𝐴
22
=

𝑎
2
𝑅
∗

1

𝑘
2
+ 𝑅∗
1

− 𝑚
2
, 𝐴

33
=

𝑎
3
𝑅
∗

1

𝑘
3
+ 𝑅∗
1

− 𝑚
3
,

𝐴
14
=
−𝛼
1
𝑎
1
𝑅
∗

1

𝑘
1
+ 𝑅∗
1

, 𝐴
24
=
−𝛼
2
𝑎
2
𝑅
∗

1

𝑘
2
+ 𝑅∗
1

,

𝐴
34
=
−𝛼
3
𝑎
3
𝑅
∗

1

𝑘
3
+ 𝑅∗
1

, 𝐴
44
= −

𝛼
1
𝑎
1
𝑁
∗

1

𝑘
1
+ 𝑅∗
1

− 𝛽 +
𝛼
1
𝑎
1
𝑁
∗

1
𝑅
∗

1

(𝑘
1
+ 𝑅∗
1
)
2
.

(15)

The determinant of J
𝐸
2

is given by

det
[
[
[

[

𝐴
11
− 𝜆 0 0 𝐴

41

0 𝐴
22
− 𝜆 0 0

0 0 𝐴
33
− 𝜆 0

𝐴
14

𝐴
24

𝐴
34

𝐴
44
− 𝜆

]
]
]

]

= 0. (16)

The characteristic equation is

𝜆
4
+ 𝑍
1
𝜆
3
+ 𝑍
2
𝜆
2
+ 𝑍
3
𝜆 + 𝑍

4
= 0, (17)

where

𝑍
1
= − (𝐴

11
+ 𝐴
22
+ 𝐴
33
+ 𝐴
44
) ,

𝑍
2
= 𝐴
11
𝐴
22
+ 𝐴
22
𝐴
33
+ 𝐴
11
𝐴
33
+ 𝐴
11
𝐴
44

+ 𝐴
22
𝐴
44
+ 𝐴
33
𝐴
44
− 𝐴
41
𝐴
14
,

𝑍
3
= 𝐴
41
𝐴
14
𝐴
22
+ 𝐴
41
𝐴
14
𝐴
33
− 𝐴
11
𝐴
33
𝐴
22

− 𝐴
11
𝐴
33
𝐴
44
− 𝐴
22
𝐴
33
𝐴
44
,

𝑍
4
= 𝐴
11
𝐴
22
𝐴
33
𝐴
44
− 𝐴
41
𝐴
14
𝐴
22
𝐴
33
.

(18)

Applying the Routh-Hurwitz criterion, the planar equilib-
rium point 𝐸

2
will be locally asymptotically stable if (i) 𝑍

1
>

0, (ii) 𝑍
3
> 0, (iii) 𝑍

4
> 0, and (iv) 𝑍

1
𝑍
2
𝑍
3
> 𝑍
2

3
+ 𝑍
2

1
𝑍
4
.

Table 1: Parameters used in simulations.

Parameters Species one Species two Species three
𝑟
𝑖

0.1 0.17 0.2
𝑚
𝑖

0.02 0.02 0.02
𝛽 0.01 0.01 0.01
𝑆 70 70 70
𝑘
𝑖

0.02 0.1 0.7
𝛼
𝑖

3 0.5 0.4
𝑤 7 7 7
𝑇
𝑖

22 20 23

Similarly, for 𝐸
3
(0,𝑁
∗

2
, 0, 𝑅
∗

2
) and 𝐸

4
(0, 0,𝑁

∗

3
, 𝑅
∗

3
), again

through the Routh-Hurwitz criteria, we have the following:
from the polynomial 𝜆4 + 𝑛

1
𝜆
3
+ 𝑛
2
𝜆
2
+ 𝑛
3
𝜆 + 𝑛
4
= 0, with

Re(𝜆
𝑖
) < 0 if 𝑛

1
> 0, 𝑛

3
> 0, 𝑛

4
> 0, and 𝑛

1
𝑛
2
𝑛
3
> 𝑛
2

3
+ 𝑛
2

1
𝑛
4

the system will be conditionally stable.

3.3. Resource Response to Temperature. It is useful to deter-
mine the quantitative and qualitative behaviour of planar
equilibrium in response to temperature, since the quantity
of resource can highly vary within any particular region of
qualitatively similar parameters space. In this effect, let us
consider the resource as a function of temperature with the
following expression:

𝑅
∗

𝑖
=

𝑔
𝑖

𝑟
𝑖
exp ((−1/2) ((𝑇 − 𝑇

𝑖
) /𝑤)
2

) − 𝑚
𝑖

, (19)

where 𝑔
𝑖
= 𝑚
𝑖
𝑘
𝑖
, 𝑘
𝑖
, 𝑇
𝑖
, 𝑚
𝑖
, 𝑟
𝑖
, 𝑤, 𝑇 are constants.

We determine the response of 𝑅∗
𝑖
to temperature using

the derivate 𝑑𝑅∗
𝑖
/𝑑𝑇.

The derivative of the equilibrium of the temperature
dependent resource function with respect to temperature is
a dampened exponential function given by

𝑑𝑅
∗

𝑖

𝑑𝑇
= 𝑔
𝑖
(
𝑇

𝑤2
−
𝑇
𝑖

𝑤2
) × 𝑟
𝑖
exp(−1

2
(
𝑇 − 𝑇
𝑖

𝑤
)

2

)

× ([𝑟
𝑖
exp(−1

2
(
𝑇 − 𝑇
𝑖

𝑤
)

2

− 𝑚
𝑖
)]

2

)

−1

.

(20)

This generates a rather simple relationship governing the
directional response of equilibrium resource to temperature
variation. For numerical simulation, the parameters are
chosen to give the behaviour of the isoclines for the species
and the resource. This is done using three different sets of
parameters (unequal growth rate, equal growth rate, and
equal consumption rates). Due to the lack of parameters
values in the literature and from the field study we assumed
the following values in Table 1 to simulate the model.

4. Results

This section presents the results of the numerical simulations
that were carried out to investigate the dynamical behaviour
of the formulated models. In order to verify the theoretical
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predications of the models, the numerical simulations are
carried out using fixed values of the model parameters of the
models. These parameters values are chosen for simulation
purposes only. However, these parameters may be biolog-
ically feasible. Numerical simulations for three species are
done singly at five different temperatures (10∘C, 15∘C, 20∘C,
25∘C, and 30∘C) and the results are represented in Figures 2,
3, 4, 5, 6, 7, 8, and 9.

At 10∘C (Figure 2(a)), for a single species, the results show
a slow increase in the curve of the species population size
and a slow decrease in the resource quantity. At 15∘C, 20∘C,
25∘C, and 30∘C, respectively, similar curves behaviour shape
is obtained. It starts with a rapid increase of the population
size of the species, followed by slow decreases and a rapid
decrease of the resource. Figure 2(b) shows the relationship
between the different initial population size (10, 20, and 30)
with the resource at 25∘C; it was observed that the more the
initial population size of the species the resource quantity
decrease faster.

For two species competing for a single resource (Figures
3–5), the results show that species one is a superior competi-
tor at all temperatures tested when the initial population size
of species one is greater than species two and within 20–30∘C
when both species started at the same initial population size.
Species two is a superior competitor at all temperatures tested
when the initial population size of species two is greater than
species one and at 10∘Cwhen both species started at the same
initial population size. No difference is observed between the
two species at 15∘Cwhen the initial population size of the two
species is identical.

In the case of three species competing for a single
resource, the species with higher initial population size is the
superior competitor at all temperatures. However, when all
species have equal initial population size, species two grew
faster than its two counterparts at lower temperatures (from
10∘C to 15∘C). Between 20∘C and 25∘C species one is superior
competitor. With the same growth rates, the species with the
lower mortality is the superior competitor when all species
have equal initial population size. It is observed that one
species is the superior competitor at 10∘C to 15∘C and with
increase in temperature (𝑇 ≥ 20

∘C) another species became
superior when all species have equal consumption rates.

Figure 10 represents a combination of temperature and
resource for which each species has no net population growth
for a given mortality rate. Herein, the zero net growth iso-
clines represent equilibrium boundaries of individual species
based on their requirements in resource availability. The
curves show the amount of the resource that each species
needs at equilibrium to have a reproductive rate that can
balance its mortality rate. In general, within the unshaded
region, the population size of the species will increase, while
it would decrease in the shaded region.

5. Discussion

We have conducted a qualitative analysis of the effects of
resource and temperature on competition between insect
species. For this purpose, temperature dependent system of

differential equations was formulated. Both qualitative and
numerical analyses of the models were considered. In respect
to each model, the axial, planar, and interior equilibrium
points were obtained and their stabilities were investigated.
Conditions on the parameters that insure the stability and
instability of the boundary equilibrium points were pre-
sented. For a single species interacting with the resource,
the local stability analyses revealed that the species could
maintain a stable population when growing alone under all
conditions used in the analysis. It was illustrated that as the
population size of the species grows, the resource depletes
to the level of equilibrium of the resource availability where
the population size of the species stops growing. Numerical
simulation also revealed that the dynamical outcomes of the
interactions are very sensitive to the model parameter values
and to the initial population size of the species. In axial
equilibrium point, it was observed that if the value of the
equilibrium of the resource availability is too large than the
supply point of the resource, the population of the species
cannot persist. In one hand, this is due to the fact that the
resource availability directly depends on the rate of resource
supply. On the other hand, if the supply of the resource is
sufficiently large, the species can establish a stable population
and equally control the resource to the equilibrium of the
resource availability.

Generally, the obtained results highlight an essential
assumption of the resource competition theory, which sug-
gested that when several species compete for the same
resource, the species with the lowest requirement for the
resource is the superior competitor at equilibrium [24]. This
species competitively displaces all its counterparts, indepen-
dent of the initial size of the population for other competing
species.Thismeans that at the equilibrium points, in a habitat
with a single limiting resource, the best competitor is the
species that has the lowest equilibrium resource value (𝑅∗

𝑖
).

It implies that a given species 𝑖 is able to continue growing
as long as the resource is greater than the lowest equilibrium
resource value (𝑅 > 𝑅

∗

𝑖
). Reciprocally, species 𝑖 can go

to local extinction if the resource is less than the lowest
equilibrium resource (𝑅 < 𝑅

∗

𝑖
). For these values of 𝑅, the

resource-dependent growth rates of the species is less than
their mortality rates, and all species will experience negative
exponential decline towards the equilibrium point. These
results are in agreement with Tilman findings reported by
Tilman [8].

From the formulated models, it was observed that the
relationships between the available resource and resulting
population size are nonlinear. This makes the analysis of the
developed mathematical equations in varying temperature
difficult. We therefore opted to conduct the analysis at fixed
temperatures and then generalize by intervals [25–28]. The
study of insects’ physiology has demonstrated that different
species have different temperature optimum that affects their
competitive ability for resource exploitation [10]. To predict
the outcome of competition between insect species within a
range of temperatures, we superimpose the zero net growth
isoclines of the species and results show that one species
has an equilibrium resource significantly lower than its
counterparts.
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Figure 2: Behavior of the isoclines for one species and the resource at different temperatures; (a) shows the behavior of population size and
the resource at temperatures 10∘C, 15∘C, 20∘C, 25∘C, and 30∘C, respectively; (b) shows the behavior of population size and resource at different
initial population size at temperature 25∘C.
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Figure 3: Behavior of the isoclines for two species competing for a single resource when both species initial population size are the same;
curves (a)–(c) show the behavior of population size for each species and resource at temperatures: (a) 10∘C and 15∘C, (b) 20∘C and 25∘C, and
(c) and 30∘C, respectively.



8 Journal of Applied Mathematics

Species one at 10 Species two at 10
Resource at 10 Species one at 15
Species two at 15 Resource at 15

0 5 10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70

Time

Po
pu

lat
io

n 
siz

e (
m

−
2
)

Re
so

ur
ce

 (m
−
2
)

(a)

0 5 10 15 20 25 30 35 40 45 50

0
10
20
30
40
50
60
70

Time

Po
pu

lat
io

n 
siz

e (
m

−
2
)

Re
so

ur
ce

 (m
−
2
)

Species one at 20 Species two at 20
Resource at 20 Species one at 25
Species two at 25 Resource at 25

(b)

Species one at 30
Species two at 30
Resource at 30

0 5 10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70

Time

Po
pu

lat
io

n 
siz

e (
m

−
2
)

Re
so

ur
ce

 (m
−
2
)

(c)

Figure 4: Behavior of the isoclines when the population size of species one is greater than species two; curves (a)–(c) show the behavior of
population size for each species and the resource at temperatures: (a) 10∘C and 15∘C, (b) 20∘C and 25∘C, and (c) at 30∘C, respectively.
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Figure 5: Behavior of the isoclines when the population size of species two is greater than species one; curves (a)–(c) show the behavior of
population size for each species and the resource at temperatures: (a) 10∘C and 15∘C, (b) 20∘C and 25∘C, and (c) at 30∘C, respectively.
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Figure 6: Behavior of the isoclines for three species competing for a single resource when both species initial population size are the same;
curves (a)–(e) show the behavior of population size for each resource at temperatures 10∘C, 15∘C, 20∘C, 25∘C, and 30∘C, respectively.The solid
lines represent the resource; species one are represented with round dot lines, species two are represented with dash lines, and species three
are represented with long dash dot lines and all species have different growth rate.

Furthermore, in a competing situation it is observed that
three parameters, half-saturation constant, growth rate, and
themortality rate determine which species wins for any given
resource. A species with a high affinity for the resource can
still lose if it has low growth rate and a high death rate.
This relationship is simple as it demonstrates that resource-
based models bring more understanding than the classical
theory in ecology for species resource competition [8, 11].
Moreover, the use of resource-based models emphasizes the

role of resource in determining competitive interactions and
the abilities of each species to acquire and use the limiting
resource. Classical models of competition [14, 17] are useful
tools for understanding insect population growth, whereas
resource-based models create direct link between the species
and the resource. These types of models are more predictive.

Further experimental or field investigation in this direc-
tion may be helpful to verify whether or not the process
prescribed by the formulated models actually functions in a
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Figure 7: Behavior of the isoclines when initial, population size of species one is greater than species two and three; curves (a)–(e) show the
behavior of population size for each species and resource at temperatures 10∘C, 15∘C, 20∘C, 25∘C, and 30∘C, respectively.

similar manner under practical consideration. For example,
we should verify the accuracy of our models on the maize-
lepidopteran stem borer pests system. In fact, maize is the
most important staple food in most sub-Saharan Africa [29].
In spite of its importance, maize production is constrained by
lepidopteran stem borer pests, the most damaging being the

crambid Chilo partellus (Swinhoe) and the noctuid Busseola
fusca (Fuller) and Sesamia calamistis Hampson [30]; more
and in-depth research is needed on its predominant insect
pests with different optimal temperatures to guide the for-
mulation of appropriate adaptation strategies to the current
climate change [31].Therefore, ourmodels can be a useful tool
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Figure 8: Behavior of the isoclines when the population size of species two is greater than that of species one and three; curves (a)–(e) show
the behavior of population size for each species and resource at temperatures 10∘C, 15∘C, 20∘C, 25∘C, and 30∘C, respectively.

to test how temperature can affect the competition between
these insect pests, their future distribution, and incidence on
maize production.

In conclusion, the present study qualitatively analysed a
series of mathematical equations to demonstrate competition
of insect species feeding on one resource. Therefore, it would
be interesting to conduct further quantitative and qualitative
studies for all kind of insect communities with different feed-
ing behaviour (boring insects, chewing insects, and phloem-
feeding insects) competing for one resource for possible
improvement of integrated pest management strategies. Fur-
thermore, many questions remain open including applying

or improving the model and obtaining the results when the
resource and insect species are in different stages (neonates
and old instars larvae). Thus, purely observational methods
may give an indication of whether competition is occurring,
particularly if time-series data are used.

Abbreviations
𝑅(𝑡): Amount of resource available at time 𝑡
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(𝑡): Population size of species (𝑖) at time 𝑡

𝑇: The physical factor (temperature)
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, 𝑖 = 1, 2, 3: The optimal temperature of species (𝑖)
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Figure 9: Behavior of the isoclines when the population size of species three is greater than species two and one; curves (a)–(e) show the
behavior of population size for each species and the resource at temperatures 10∘C, 15∘C, 20∘C, 25∘C, and 30∘C, respectively.

𝑟
𝑖
, 𝑖 = 1, 2, 3: Maximal gross productivity rate of species

𝑖 at temperature 𝑇
𝑖

𝑎
𝑖
: Population growth rate of species (𝑖)

𝛼
𝑖
: Consumption rate of the resource by

species (𝑖)
𝑚
𝑖
: Mortality rate of species (𝑖)

𝑘
𝑖
: The half-saturation constant of species (𝑖)

𝛽: The flow or supply rate of the resource
𝑆: The supply point
𝑤: The width environmental tolerance.
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