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A reaction-diffusion-advection model is proposed for the Zeya Reservoir to study interactions between algae and zooplankton,
including the diffusive spread of algae and zooplankton and the sinking of algae. The model is investigated both with and without
sinking. Conditions of Hopf and Turing bifurcation in the spatial domain are obtained, and conditions for differential-flow
instability that gives rise to the formation of spatial patterns are derived. Using numerical simulation, the authors examine the
impacts on algae of different nutrient concentrations, different sinking rates, and various diffusive spreading patterns. Finally, the
models with and without sinking are compared, revealing that the sinking of algae plays an important role in the oscillations of
algae and zooplankton. All these results may help to achieve a better understanding of the impact of algae in the Zeya Reservoir.

1. Introduction

With the economic development of human society, waters in
lakes and reservoirs are experiencing more and more serious
eutrophication, which can cause sustained algal growth.With
a high degree of eutrophication, the rapid growth of algae
may form algal blooms, bringing about ecological failure
and even causing harm to humans. For example, due to the
eutrophication, algal blooms frequently appear in the Zeya
Reservoir in Wenzhou, which is located in a subtropical
region; this can cause deterioration in water quality, which
can deprive the drinking water of millions of people.

Because of the local and global impacts of algae blooms on
water quality, the studies of dynamic model of plankton are
of current interest, and numerous studies have addressed the
dynamics of phytoplankton, zooplankton, and algal growth
[1–3]. In a number of these studies, the researchers have
shown great interest in identifying patterns (or spatiotem-
poral complexity) of phytoplankton and zooplankton growth
[4–6].

A number of empirical and theoretical studies on pattern
formation in reaction-diffusion systems [7–12] have been car-
ried out since the pioneering work of Turing [13]. Nowadays,
many applications use Turing’s scenario to attempt to explain
patterns in fish skin, vegetation, plankton, and so on [14–
16]. However, the reaction-diffusion system cannot explain
well certain phenomena in vegetation, plankton, and other
biological systems because these systems include flow.There-
fore, it is necessary and interesting to investigate reaction-
diffusion systems involving flow, which are called reaction-
diffusion-advection systems. Systems exhibiting flow as a part
of pattern formation, such as phytoplankton-nutrient systems
with sinking, have been recently studied [17]. Therefore,
it is practical and significant to study reaction-diffusion-
advection systems.

The organization of this paper is as follows. In Section 2,
we present the nutrient-algae-zooplanktonmodel, explaining
the biological model. In Section 3, the model is analyzed,
including the one with diffusion and the one with diffusion
and sinking, and the critical conditions of unstability are
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obtained. In addition, a series of simulations are given in
Section 4. Using simulation, we investigate the effect of
critical factor on the model. Finally, the paper ends with a
brief discussion and conclusions in Section 5.

2. Model

The reservoir ecology is a relatively ideal ecological envi-
ronment which includes a number of species, mainly phy-
toplankton (with algae composing the majority of the phy-
toplankton), zooplankton, and fish. In a reservoir, two food
chains typically exist: (I) the grazing food chain: nutrients-
phytoplankton-zooplankton-fish and (II) the detritus food
chain: dead organisms-bacteria or benthonic organisms-
zooplankton-fish [18]. These two food chains constitute the
food web, which maintains the ecological balance of the
reservoir. In this foodweb, once the trophic level is abnormal,
the balancemay be disturbed, for example, by an algal bloom.

In recent years, more and more researchers have been
interested in studying the nutrients-phytoplankton-zoop-
lankton system because of the serious impact of algal blooms
on the ecological environment and on human health. A num-
ber of researchers have simulated the relations among phy-
toplankton, zooplankton, and fish using reaction-diffusion
models [19–22]. Recently, some studies have included the
sinking of phytoplankton in their models [23–25]. Sedimen-
tation losses of phytoplankton seem to be an important fac-
tor that may limit phytoplankton biomass at low mixing
depths [26–28]. Because most phytoplankton taxa have a
higher specific mass than water, all nonmotile and negatively
buoyant taxa tend to sink out of the epilimnion with time
[23]. The specific sedimentation loss rate of a given taxon
depends strongly on its sinking velocity, and therefore sinking
velocity is an important determinant of sedimentation losses;
the actual sedimentation loss rate also depends on mixing
depth [23].

Based on the above analysis, consider a vertical water
column. Let 𝑧 indicate the depth of the water column. Let 𝐴
denote the algae population density and 𝑍 the zooplankton
population density. The algae-zooplankton model can be
described by a reaction-diffusion system with advection:
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(1)

where 𝑁 is the nutrient level of the system, 𝜇 is the specific
growth rate, 𝑎 is the grazing rate of zooplankton on algae, 𝜀
is the prey assimilation efficiency of zooplankton, 𝐻

𝑁
is the

nutrient availability constraint,𝐾 is the carrying capacity, ℎ is
the handling time, 𝑚 is the mortality and respiration rate of
zooplankton, V is the algae sinking velocity, and 𝐷

1
, 𝐷
2
are

the respective diffusion coefficients, ∇2 = 𝜕/𝜕𝑥2 + 𝜕/𝜕𝑧2. In
model (1), all parameters are positive constants.

The nutritional growth function (𝜇𝑁/(𝐻
𝑁
+𝑁)) of algae,

as well as the dependence of the zooplankton grazing rate
on algae density, is in agreement with the Monod type [29].
Hence, in the absence of zooplankton, algal growth will
saturate at 𝐴

0
= 𝜇𝑁/[𝑐(𝐻

𝑁
+ 𝑁)], where 𝑐 = 𝜇𝑁/[(𝐻

𝑁
+

𝑁)𝐾] is the competition coefficient of the algae population.
Growth constraints imposed by different nutrients are not
considered separately, but an overall carrying capacity, which
depends on the total nutrient level, is assumed [30]. Algae
predation by zooplankton follows a Michaelis-Menten (or
Michaelis-Menten-Holling) type model; in fact, in recent
years, many experiments and observations have shown that
the functional response should be described by a ratio-
dependent function [31, 32]. In addition, many works in the
literature have examined the so-called Michaelis-Menten-
type ratio-dependent predator-prey model [33–38].

3. Analysis of the Model

To perform the analysis, model (1) is rewritten as follows:

𝜕𝐴
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(2)

where 𝑓(𝐴, 𝑍) = (𝜇𝑁/(𝐻
𝑁
+𝑁))𝐴 − (𝜇𝑁/(𝐻

𝑁
+𝑁)𝐾)𝐴

2
−

𝑎𝐴𝑍/(𝑍 + 𝑎ℎ𝐴), 𝑔(𝐴, 𝑍) = 𝜀𝑎𝐴𝑍/(𝑍 + 𝑎ℎ𝐴) − 𝑚𝑍.

3.1. Model without Diffusion and Sinking. The nonspatial
model has two positive equilibriums under the conditions
𝑚ℎ < 𝜀 and 𝜇𝑁𝜀 > 𝑎(𝐻

𝑁
+𝑁)(𝜀 −𝑚ℎ), which correspond to

spatially homogeneous equilibrium of the full model (1). The
equilibriums of the system are

(i) 𝐸
1
(𝐾, 0) (extinction of the zooplankton);

(ii) 𝐸∗(𝐴∗, 𝑍∗), where 𝐴∗ = 𝐾(𝜇𝑁𝜀 − 𝑎(𝐻
𝑁
+ 𝑁)(𝜀 −

𝑚ℎ))/𝜇𝑁𝜀, 𝑍∗ = (𝑎(𝜀 − 𝑚ℎ)/𝑚)𝐴∗.

The Jacobian matrix, 𝐵, of nonspatial system at the
equilibrium 𝐸

1
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𝐵 = (
𝑏
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) . (3)

From 𝐵, when the condition, 𝑚ℎ > 𝜀, holds, the
equilibrium 𝐸

1
is locally stable, whose index is +1, and then

there is no positive equilibrium in the nonspatial model.
When the condition, 𝑚ℎ < 𝜀, holds, the equilibrium 𝐸

1
is

saddle and then there is a positive equilibrium, 𝐸∗, in the
nonspatial model when the condition, 𝜇𝑁𝜀 > 𝑎(𝐻

𝑁
+𝑁)(𝜀 −

𝑚ℎ), holds.



Abstract and Applied Analysis 3

0.36

0.34

0.32

0.30

0.28

0.26

0.5 1 1.5 2

N

D2

I

II

III

IV

Turing

Hopf

(a)

0.05

0

−0.05

−0.10

−0.15

0 0.3 0.6 0.9 1.2

k

Re
 (𝜆

) 1

2

3

4

(b)

Figure 1: (a) Bifurcation curves of model (2) showing the Turing space, which is marked as III. (b) Dispersion relationships showing an
unstable Hopf mode and a Turing mode,𝐷

2
= 0.5, with (1) 𝑁 = 0.26, (2) 𝑁 = 0.30, (3) 𝑁 = 𝑁

𝑇
≈ 0.33 and (4) 𝑁 = 0.36.

The Jacobian matrix, 𝐽, of nonspatial system at the equi-
librium 𝐸∗ is
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(4)

By 𝐽, the index of 𝐸∗ is +1, and the equilibrium 𝐸∗ is
locally stable when the condition, 𝜇 > max(𝑎(𝐻

𝑁
+ 𝑁)(𝜀 −

𝑚ℎ)/𝑁𝜀, (𝑎(𝑚ℎ + 𝜀) − 𝑚𝜀)(𝐻
𝑁
+ 𝑁)(𝜀 − 𝑚ℎ)/𝑁𝜀

2
), holds.

3.2. Model with Diffusion. Now let us investigate the most
interesting equilibrium point𝐸∗. To perform a linear stability
analysis, model (2) is rewritten as follows:

𝜕𝐴
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(5)

Model (5) can be linearized around the spatially homo-
geneous fixed point 𝐸∗ for small space- and time-dependent
fluctuations and expanded in Fourier space:
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The following characteristic equation, then, can be obtained:
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Note that (7) can be solved using the characteristic
polynomial of the original problem:
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(10)

The roots of (9) can be expressed in the following form:

𝜆
1,2 (𝑘) =

tr
𝑘
± √tr2

𝑘
− 4Δ
𝑘

2

.
(11)

At the bifurcation point, two equilibrial states of the
model intersect and exchange their stability. The space-
independentHopf bifurcation breaks the temporal symmetry
of the system, giving rise to oscillations that are uniform
in space and periodic in time. In addition, the Turing
bifurcation breaks the spatial symmetry, forming patterns
that are stationary in time and oscillatory in space.

The Hopf bifurcation occurs when

Im (𝜆 (𝑘)) ̸= 0, Re (𝜆 (𝑘)) = 0, at 𝑘 = 0. (12)

Then the critical value of the transition, the critical parameter
𝑁 on Hopf bifurcation, can be obtained as

𝑁
𝐻
=

𝐻
𝑁 (𝑎 (𝜀 + 𝑚ℎ) − 𝑚𝜀) (𝜀 − 𝑚ℎ)
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2
− (𝑎 (𝜀 + 𝑚ℎ) − 𝑚𝜀) (𝜀 − 𝑚ℎ)

. (13)
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Figure 2: The dispersion relation Re(𝜆). The critical mode 𝑘 = 𝑘
𝑐

is obtained for the first unstable point at V = V
𝑐
and 𝑁 = 𝑁

𝑐
,

respectively, while other curves correspond to different values of𝑁
and V. (a) 𝑁 = 0.32, (1) V = 0.2, (2) V = V

𝑐
, (3) V = 0.1; (b)

V = 0.132, (1)𝑁 = 0.31, (2) 𝑁 = 𝑁
𝑐
, (3) 𝑁 = 0.33.

The Turing bifurcation occurs when

Im (𝜆 (𝑘)) = 0, Re (𝜆 (𝑘)) = 0, at 𝑘 = 𝑘
𝑇
̸= 0. (14)

The critical value of the bifurcation parameter𝑁 is
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Figure 3: (a) Typical neutral curve V, as defined in (27), for different
values of𝑁. (b)Numerical calculation of stability in the (V, 𝑁) space.
The curve can be obtained from the combination of (25) and (27).

From previous analysis, we can know that the diffusion
affects the stability of equilibrium. Next, we will discuss the
effect of sinking on equilibrium.

3.3. Model with Diffusion and Sinking. In this subsection, the
model with sinking will be discussed. To analyze this model,
following Murray [15], zero-flux boundary conditions will be
assumed and initial conditions specified. By substituting𝐴 =
𝐴
∗
+𝐴(𝑟, 𝑡) and𝑍 = 𝑍∗+𝑍(𝑟, 𝑡) intomodel (1) and assuming

𝐴 ≪ 1, 𝑍 ≪ 1, a linear approximation of model (1) can be
obtained as follows:
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𝜕𝑍

𝜕𝑡

= 𝑎
21
𝐴 + 𝑎
22
𝑍 + 𝐷

2
∇
2
𝑍.

(16)
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Figure 4: Snapshots of contour diagrams of the time evolution of algae at different points in time with𝑁 = 0.25, 𝐷
2
= 0.5. (a) 0 iterations,

(b) 50000 iterations, and (c) 100000 iterations.

The initial conditions are assumed as follows:𝐴|
𝑡=0
= 𝜑(𝑟)

and 𝑍|
𝑡=0
= 𝜙(𝑟), where the functions 𝜑(𝑟) and 𝜙(𝑟) decay

rapidly for 𝑟 → ±∞. Following the standard approach,
Laplace transformation of the linearized equations over the
two independent variables 𝑟 and 𝑡 is performed. For 𝑟, the so-
called two-sided version of the transformation is used [39].
The relations for the forward and backward transforms are

𝐴
𝜆𝑞
= ∫

∞

0

𝑒
−𝜆𝑡
𝑑𝑡∫

∞

−∞
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𝐴 (𝑟, 𝑡) = −

1

4𝜋
2
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−𝑖∞

𝐴
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𝑒
𝑞𝑟
𝑑𝑞, (18)

where 𝜆 and 𝑞 are complex variables. In (17) for the backward
transformation, the integration contour in the 𝑞-plane is the
imaginary axis. In the 𝜆-plane, the contour is parallel to the
imaginary axis and located to the right of all singularities of
the integrand.

After this transformation, the kinetic equations read as
follows:

(𝜆 − 𝑎
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1
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2
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𝐴
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= Ψ (𝑞) ,

(19)

where Φ(𝑞) and Ψ(𝑞) are the transforms of 𝜑(𝑟) and 𝜙(𝑟). To
reveal the presence of instability and disclose its nature, it is
sufficient to consider one variable. Further calculations yield

𝐴 (𝑟, 𝑡)
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Hence, the dispersion equation is

(𝜆 − 𝑎
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2
𝑞
2
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11
+ V𝑞 − 𝐷

1
𝑞
2
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12
𝑎
21
= 0. (22)

For the sake of convenience, the one-dimensional case is
considered first. From the quadratic equation (22), the roots

𝜆 =

1

2

(tr
𝑘
+ V𝑘𝑖 ± √𝑀 + 𝑄𝑖) (23)
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Figure 5: Snapshots of contour diagrams of the time evolution of algae at different points in time with𝑁 = 0.31, 𝐷
2
= 0.5. (a) 0 iterations,

(b) 50000 iterations, and (c) 100000 iterations.

can be obtained, where

𝑀 = 2 (𝑎
11
− 𝑎
22
) (𝐷
2
− 𝐷
1
) 𝑘
2

+ (𝐷
2

1
+ 𝐷
2

2
) 𝑘
4
− 2𝐷
1
𝐷
2
𝑘
2

+ tr2
0
− 4Δ
0
− V2𝑘2,

𝑄 = 2 ((𝑎
22
− 𝑎
11
) 𝑘 + (𝐷

2
− 𝐷
1
) 𝑘
3
) V.

(24)

Straightforward manipulation of (23) yields

Re (𝜆) = 1
2

(tr
𝑘
± √
1

2

(√𝑀
2
+ 𝑄
2
+𝑀)) , (25)

Im (𝜆) = 1
2

(V𝑘 ± sign (𝑀)(√1
2

(√𝑀
2
+ 𝑄
2
−𝑀))) ,

(26)

where Re(𝜆) and Im(𝜆) denote the real and imaginary parts
of 𝜆, respectively.

The condition for a spatial mode to be unstable is that
model (1) grows into a pattern; that is, Re(𝜆) > 0. If Re(𝜆) > 0

for any values of 𝑘 ̸= 0, then pattern formation will occur.
Therefore, it is necessary to find the critical value of 𝑘 for
Re(𝜆) = 0. In fact, what is needed is the maximum value
of Re(𝜆). Thus, the critical condition can be obtained using
Re(𝜆) = 0, as follows:

V2 =
tr4
𝑘
− tr2
𝑘
𝐿

𝑃
2
− tr2
𝑘
𝑘
2
, (27)

where

𝐿 = 2 (𝑎
11
− 𝑎
22
) (𝐷
2
− 𝐷
1
) 𝑘
2
+ (𝐷
2

1
+ 𝐷
2

2
) 𝑘
4

− 2𝐷
1
𝐷
2
𝑘
2
+ tr2
0
− 4Δ
0
,

𝑃 = (𝑎
22
− 𝑎
11
) 𝑘 + (𝐷

2
− 𝐷
1
) 𝑘
3
.

(28)

Generically, (27) has a strictly positive minimum V
𝑐
.

When (27) holds, the neutral curve V = V(𝑘,𝑁) has a
minimum at a nonzero value of V = V

𝑐
> 0.

From previous analysis, we can know that the sinking
affects the stability of equilibrium.
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Figure 6: Snapshots of contour diagrams of the time evolution of algae at different points in time with𝑁 = 0.31, 𝐷
2
= 1.25. (a) 0 iterations,

(b) 50000 iterations, and (c) 100000 iterations.

4. Numerical Results

In the previous, we analyzed the model, including nonspa-
tial model, the model with diffusion, and the model with
diffusion and sinking. In this section, in order to carry out
numerical simulations, it is necessary to discretize the space
and time variables in the problem. So-called “discretization”
means that the continuous problem is transformed into a
discrete problem; that is, the continuous space becomes a
discrete domain with𝑚× 𝑛 lattice sites. The spacing between
the lattice points is defined by the lattice constant Δℎ. The
following discussion uses an explicit Euler method with
time step Δ𝑡 = 0.01 for time integration and a finite-
difference method for the diffusion and advection terms,
in which the difference approaches the derivatives when
Δℎ → 0. The numerical simulation is performed over
200 × 200 mesh points with spatial resolution Δℎ = 0.5,
and the zero-flux boundary condition is used. Because the
spatiotemporal dynamics of the system depend on the choice
of initial conditions, random spatial distributions of the
species around the nontrivial stationary state𝐸∗ were chosen,
which seems to be a fairly general assumption from the

biological point of view. In the rest of this paper, the model
parameters are set to

𝜇 = 0.6, 𝐻
𝑁
= 1, ℎ = 2, 𝑎 = 0.5,

𝜀 = 0.5, 𝑚 = 0.2, 𝐾 = 0.5, 𝐷
1
= 0.05.

(29)

Firstly, we consider the Hopf and Turing bifurcations of
model (1) without sinking in the parameter space spanned by
the parameters 𝑁 and 𝐷

2
, as illustrated in Figure 1(a). The

Hopf bifurcation line and the Turing bifurcation line intersect
at a codimension-2 bifurcation point, called the Turing-Hopf
bifurcation point. The parametric space can be separated
into four domains. Domain I, located above both bifurcation
lines, corresponds to systems with homogeneous equilibrium
which is unconditionally stable. Domain II is the region of
pure Hopf instability, and domain III is that of pure Turing
instability. In Domain IV, both Hopf and Turing instabilities
occur. Figure 1(b) shows the dispersion relationships of the
unstable Hopf mode and the Turing mode as they move from
stable to unstable states, using model (2).

By (23), the critical wavelength (𝑘
𝑐
= 0.089) can be

obtained such that Re(𝜆(𝑘 = 𝑘
𝑐
)) = 0, where 𝑁 and V
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Figure 7: Snapshots of contour diagrams of the time evolution of algae at different points in time with 𝑁 = 0.25, 𝐷
2
= 0.5, V = 0.1. (a) 0

iterations, (b) 50000 iterations, and (c) 100000 iterations.

are chosen as control parameters, and their corresponding
values are 𝑁

𝑐
= 0.32 and V

𝑐
= 0.132, as shown in Figure 2.

Figure 2 depicts the range of values of 𝑘 for certain parameter
values, and it is apparent that spatial patterns can occur when
Re(𝜆) > 0. At the same time, it is easy to see that instability
occurs when V > V

𝑐
(Figure 2(a)), while instability also occurs

when𝑁 < 𝑁
𝑐
(Figure 2(b)).

According to (27), the neutral curve V = V(𝑘,𝑁) has a
minimum at a nonzero value of V = V

𝑐
> 0, as shown in

Figure 3(a). From Figure 3(a), it is easy to see that V
𝑐
increases

with increasing nutrient concentration 𝑁. The reason for
this is that the algae may pursue nutrients that have been
deposited on the bottom. In this way, nutrients can influence
the sinking of algae. Moreover, using (27), a parameter space
((V, 𝑁) space) can be obtained in which the stable and
unstable domains of model (1) can be determined, as shown
in Figure 3(b). Figure 3(b) also shows that V

𝑐
increases with

increasing nutrient concentration 𝑁. Moreover, instability
will occur for any 𝑁 < 𝑁

𝑐
when V

𝑐
is fixed, as is shown in

Figure 3(b) as domain II (identified as the “spatial patterns”
domain).

It is obvious that detailed numerical investigation of the
model in the whole parameter space is virtually impossible

because the model has a relatively large number of parame-
ters. However, the numerical simulations show that the type
of dynamics in the system is determined by the values of,𝐷

2
,

and V, which represent the effect of nutrients, the diffusion of
zooplankton, and the sinking of algae.

Figure 4 shows the stripelike patterns that spontaneously
form at 𝑁 = 0.25, 𝐷

2
= 0.5. From Figure 4, it is

clear the stripelike spatial patterns arise from random initial
conditions. After some time, the stripelike patterns form from
the initial state (Figure 4(b)) and grow steadily over time
until they reach a certain width. Finally, the stripelike spatial
patterns prevail over the whole domain (Figure 4(c)).

Figure 5 shows snapshots of algae spatial patterns with
𝑁 = 0.31, 𝐷

2
= 0.5 at 0, 50000, and 100000 iterations.

From Figure 5, it is interesting to note that the spotted
spatial patterns arise from the random initial conditions.The
stripelike pattern forms from the initial state (Figure 5(a))
after some time has passed. Surprisingly, however, the final
pattern becomes a spotted spatial pattern. Compared with
Figure 4, only the amount of nutrients has been changed,
but this is clearly an essential difference. Therefore, nutrient
concentration evidently plays an important role in the spatial
distribution of algae.
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Figure 8: Snapshots of contour diagrams of the time evolution of algae at different points in time with 𝑁 = 0.25, 𝐷
2
= 0.5, V = 2. (a) 0

iterations, (b) 50000 iterations, and (c) 100000 iterations.

Figure 6 shows snapshots of algae spatial patterns with
𝑁 = 0.31, 𝐷

2
= 1.25 at 0, 50000, and 100000 iterations.

Comparing Figures 5 and 6, the final pattern in Figure 6
is similar to that in Figure 5 (they are both spotted), but
their formative processes are different.Moreover, it is obvious
that the density of spots is sparser in Figure 6(c) than in
Figure 5(c). In fact, the difference between Figures 5 and 6
is the change in diffusion coefficient. These results show that
the diffusion of zooplankton is a key factor in the formative
processes of algae patterns.

Now including sinking in model (1), that is, V ̸= 0, the
effects of sinking are simulated, and the results are shown
in Figures 7 and 9. Figure 7 shows snapshots of algae spatial
patterns with 𝑁 = 0.25, 𝐷

2
= 0.5, V = 0.1 at 0, 50000,

and 100000 iterations. In Figure 7, vertical stripes move from
top to bottom and then exit from the bottom. Compared to
Figure 4, it is apparent that sinking exists in Figure 7. To see
the effect of sinking, V = 0.1 is replaced by V = 2, and
the resulting patterns are shown in Figure 8. If Figure 9 is
compared with Figure 6, the spotted pattern becomes vertical
stripes. Note that Figures 7, 8, and 9 are quite similar at the
end.

Based on the above analysis, it is apparent that parameters
𝑁, 𝐷

2
, and V are critical factors for controlling the amount

and the spatial distribution of algae. Moreover, the sinking
of algae can play an important role in the oscillations of
algae and zooplankton. Such evolutionary developments of
the reaction-diffusion-advection system may well be taking
place in the real world.

5. Discussion and Conclusions

In the present paper, we used a reaction-diffusion-advection
model to investigate the interaction between algae and
zooplankton, where the sinking of algae was considered
which was described by the advection term. Using linear
analysis technique, the model was analyzed, and the effects
of critical factors, including𝑁, 𝐷

2
, and V, on the model were

discussed.Then the instability conditions of Hopf and Turing
were obtained. In addition, from the analysis described in
Section 3 and Figures 1 and 9, it was not difficult to find
that the theoretical results were consistent with the numerical
simulations.

The model was relatively simple because it was only
an abstraction of real-world phenomena, but it reproduced
many features of real-world phenomena. In the real world,
many patterns have been observed, such as banded vegeta-
tion, patches, and spiral waves, which could be regular or
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Figure 9: Snapshots of contour diagrams of the time evolution of algae at different points in time with𝑁 = 0.31, 𝐷
2
= 1.25, V = 2.5. (a) 0

iterations, (b) 1500 iterations, and (c) 100000 iterations.

irregular. The patterns may be forced to occur by physical
factors or internal factors. While our explanation focused on
a predator-prey interaction between algae and zooplankton,
especially, how the sinking of algae affected the interaction
and patterns, our analytical results showed that the homo-
geneous steady state became unstable due to the sinking
of algae. In addition, diffusion also led to instability of the
homogeneous steady state. But, the sinking of algae forced
band patterns to occur. That is, when the sinking flux of
algae was beyond a certain critical value which could be
obtained from our analyzed results, the spatial distribution
of population was not homogeneous because the sinking of
algae existed.

From the numerical results, it was obvious that different
𝑁, 𝐷
2
, or V can lead to different patterns at the same time.

Many field studies indicated that the oscillation of population
density occurs in reality, while Figures 4 and 9 implied that
nutrient, diffusion, and the sinking can result in oscillation
of population density. It means that these factors may play
an important role in the change of algae population density.
These results may provide better understanding on the study
of algal dynamics in water environment.
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