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We consider the makespan minimization in a flowshop environment where the job sequence does not have to be the same for all
the machines. Contrarily to the classical permutation flowshop scheduling problem, this strongly NP-hard problem received very
scant attention in the literature. In this paper, some improved single-machine-based adjustment procedures are proposed, and a
new two-machine-based one is introduced. Based on these adjustments, new lower and upper bounding schemes are derived. Our
experimental analysis shows that the proposed procedures provide promising results.

1. Introduction

In this paper, we focus on the following scheduling problem:
a set of 𝑛 jobs (1, . . . , 𝑛) has to be processed on a set of 𝑚

machines𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
in that order. That is, each job has

to be processed first on machine 𝑀
1
, then on machine 𝑀

2
,

and so on until performing its last operation onmachine𝑀
𝑚
.

Each operation𝑂
𝑖𝑗

(𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛) requires an
integer and deterministic processing time 𝑝

𝑖𝑗
. The objective

is to find a feasible schedule which minimizes the makespan.
We also make the following common assumptions.

(i) Each job can be processed at most on one machine at
the same time.

(ii) Each machine can process only one job at a time.
(iii) No preemption is allowed; that is, the processing of an

operation cannot be interrupted.
(iv) All jobs are independent and are available for process-

ing at time zero.
(v) The machines are continuously available.

In studying flowshop scheduling problems, it is usually
assumed that the sequence in which each machine processes
the jobs is identical on all machines. A sequence of this type
is called a permutation sequence. Almost all of the research
has been focused on the development of procedures to obtain
permutation schedules. The main reason is probably that, in

the general case involving 𝑚 machines and 𝑛 jobs, the total
number of feasible schedules tends to (𝑛!)

𝑚, whereas with
the assumption of no job passing, the number of feasible
solutions is reduced to 𝑛!. However, identifying the best
permutation schedule itself becomes very difficult, as the
problem size grows bigger. Obviously, finding an optimal
solution when sequence changes are permitted is more
complex. Figures 1 and 2 depict the optimal solutions of the
permutation and the nonpermutation flowshop instance with
3 jobs and 4 machines whose data are provided in Table 1.

Several authors emphasized the worth of considering
nonpermutation schedules in real life flowshop environments
[1, 2]. In particular, Potts et al. [3] exhibit a family of instances
for which the value of the optimal permutation schedule is
worse than that of the optimal nonpermutation schedule by a
factor of more than (1/2)⌈√𝑚 + 1/2⌉. This is a nonnegligible
gap since it can reach 50% for a 4-machine flowshop instance.
Also, Sviridenko [4] proposed a new approximation algo-
rithm which delivers a permutation schedule with makespan
at most 𝑂(√𝑚 log𝑚) times of the optimal nonpermutation
schedule. In this paper, we consider the nonpermutation case
where the job sequence is not necessarily identical on all
the machines. Using the notation of Graham et al. [5], this
problem is denoted by 𝐹||𝐶max.

Although the 𝐹||𝐶max is solvable to optimality in poly-
nomial time when 𝑚 = 2 [6], it is known to be NP-
hard in the strong sense when 𝑚 ≥ 3 [7]. The 𝐹||𝐶max
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Figure 1: Optimal permutation schedule.
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Figure 2: Optimal nonpermutation schedule.

Table 1: Data of a 3-job-4-machine flowshop instance.

𝑀
1

𝑀
2

𝑀
3

𝑀
4

1 1 1 3 2
2 1 4 3 3
3 4 1 1 3

has several interesting practical applications since in several
manufacturing environments (such as in glass industry,
textile, and microelectronic chip), jobs have unidirectional
flow with identical flow pattern.

Thepaper is organized as follows. In Section 2, we provide
a literature survey of the nonpermutation flowshop as well
as two closely related problems: the permutation flowshop
and the jobshop scheduling problems. In Section 3, we recall
several adjustment procedures from the literature and we
investigate new ones. The main purpose of adjustments
is to reduce the time windows of operations, mainly to
achieve a better efficiency for enumerative approaches. New
bounding strategies based on these adjustments are intro-
duced in Section 4. Our experimental results are presented
in Section 5. Finally, we conclude our paper by providing a
synthesis of our research and indicating some directions for
future research.

2. Literature Survey on Shop
Scheduling Problems

In this section, we provide a brief overview of the exist-
ing research on the nonpermutation flowshop scheduling
problem together with two closely related and much more
studied problems: the permutation flowshop and the jobshop
scheduling problems. Furthermore, we emphasize the most
important relationships between the permutation and the
nonpermutation flowshop scheduling problems.

2.1. The Flowshop Scheduling Problem. Since the nonper-
mutation flowshop scheduling problem received very scant
attention in the literature, we devote this section to the case
where we have identical job sequence on each machine. This
problem is commonly referred to as 𝐹

𝑚
|prmu|𝐶max.

Johnson [6] demonstrated that the two-machine problem
can be solved in 𝑂(𝑛 log 𝑛) time by the following sequencing
rule. First schedule the jobs with 𝑝

1𝑗
≤ 𝑝
2𝑗

in order of
nondecreasing 𝑝

1𝑗
; then schedule the remaining jobs in order

of nonincreasing 𝑝
2𝑗
. Unfortunately, the problem is no longer

polynomial for larger values of 𝑚. Indeed, Garey et al. [7]
showed that 𝐹

3
|prmu|𝐶max is stronglyNP-hard.

The 𝐹|prmu|𝐶max has received an impressive interest by
scheduling researchers. Indeed, the first proposed branch-
and-bound algorithms have been developed by Ignall and
Schrage [8] and Lomnicki [9]. In addition, several exact
approaches have been devised by Grabowski [10], Carlier
and Rebäı [11], and Cheng et al. [12]. All these algorithms,
except the latter, can solve only instances of very limited size.
Also, an effective branch-and-bound algorithm is proposed
by Haouari and Ladhari [13].

Many algorithms have been designed to find near opti-
mal schedule in reasonable time. These algorithms can be
classified as either constructive or based on local search.
There are several constructive heuristics available (for a
comprehensive review, see [14]). Nawaz et al.’s algorithm
[15] (NEH) is currently considered as the most efficient
constructive heuristic among others for the permutation
flowshop problem. In addition, a new local search paradigm
based on a truncated branch-and-bound strategy, and called
branch-and-bound-based local search, has been implemented
for the 𝐹|prmu|𝐶max by Haouari and Ladhari [16] and shown
to yield approximate solutions of excellent quality.

The permutation flowshop problem has been tackled by
several metaheuristics like simulated annealing (SA) (see
[17]) and tabu search (see [18, 19]).

2.2. The Jobshop Scheduling Problem. In jobshop environ-
ment, each job has its own routing onmachines.The jobshop
problem, denoted by 𝐽||𝐶max, is not onlyNP-hard, but even
among the members of this class, it belongs to the worst in
practice. A notorious problem with 10 jobs and 10 machines
given by Fisher and Thompson [20] remained unsolved for
more than 25 years. Interested readers can find various
jobshop-related complexity results in Brucker et al. [21–23].

Several exact approaches have been proposed for the
jobshop problem. In particular, an interesting branch-and-
bound algorithm was proposed by Carlier and Pinson [24].
It was the first algorithm to solve optimally the notorious 10-
job-10-machine jobshop problem of Fisher and Thompson
[20]. This algorithm has been followed by Brucker et al. [25]
and Brinkkötter and Brucker [26]. The efficiency of these
algorithms relies on the concept of immediate selections
leading to effective adjustments.

Among the heuristics, one of the most successful
approaches is the shifting bottleneck proposed by Adams et
al. [27]. Numerous enhancements of this method have been
proposed by Dauzere-Peres and Lasserre [28], Balas et al.
[29], and Wenqi and Aihua [30].
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Several tabu search approaches have been designed for
the jobshop problem such as Nowicki and Smutnicki [19]
and Armentano and Scrich [31]. Nowicki and Smutnicki [32]
presented a new algorithm for the jobshop problem using
tabu search.The computational experiments showed that the
algorithm not only finds shorter makespan than the best
approximation approaches, but also runs in shorter time.

2.3. Permutation versus Nonpermutation Flowshop Scheduling
Problems. In this section, we recall the main relationships
and differences between permutation and nonpermutation
flowshops. First, it is worth noting that both problems are
symmetric. That is, the value of the optimal makespan of the
original problem (denoted by the forward problem) is equal
to that of its symmetric problem (denoted by the backward
problem) that is obtained by reversing the routing of the jobs;
that is, the jobs are first processed on𝑀

𝑚
, then on𝑀

𝑚−1
, and

so on.Now,we state the following property which is proposed
by Conway et al. [33].

Property 1. For 𝐹||𝐶max, there exists an optimal solution
having the same processing permutation on the first two
machines.

To see Property 1, consider any solution where different
orders exist on the first two machines. Then, there must be
a pair of adjacent jobs, say 𝑎 and 𝑏, on the first machine
permutation that appear in reverse order in the permutation
on the second. But these two jobs can be reversed on the
first machine without increasing the start time (and thus
the completion time) of any job on the second machine.
Inductively, we can repeat this pairwise switching process
until the permutation on the first machine is made to agree
with the (original) order on the second. An immediate
consequence of Property 1 is that the 𝐹2||𝐶max and the
𝐹2|perm|𝐶max are equivalent. That is, in the case of two-
machine flowshop, there exists an optimal schedule which
is a permutation. Consequently, the 𝐹2||𝐶max is solvable in
polynomial time using Johnson’s algorithm [6]. Moreover,
due to the symmetry of the 𝐹||𝐶max, the following property
holds.

Property 2. For 𝐹||𝐶max, there exists an optimal solution
having the same processing permutation on the last two
machines.

According to the two above properties, one can deduce
that there is an optimal solution which has the same permu-
tation on the machines for the problem 𝐹3||𝐶max. In other
terms, the 𝐹3||𝐶max and 𝐹3|perm|𝐶max are equivalent.

Garey et al. [7] showed that the problems of nonpermu-
tation and permutation flowshop become NP-hard in the
strong sense when the number of machines is larger than 3.
However, there are several polynomially solvable special cases
of 𝐹
𝑚
||𝐶max that result from imposing certain inequalities on

the processing times. For instance, Johnson [6] observed that
if max

𝑗
𝑝
2𝑗

≤ max{min
𝑗
𝑝
1𝑗

,min
𝑗
𝑝
3𝑗

} holds in an 𝐹3||𝐶max
instance, then the second machine is nonbottleneck, and
the optimal algorithm for problem 𝐹2||𝐶max can be suitably

1, 1

2, 1

1, 2

3, 1

2, 2

3, 3

2, 3

1, 3

3, 2

0 ∗

Figure 3: Disjunctive graph of a 3 × 3 flowshop.

adapted. Monma and Rinnooy Kan [34] provide a survey of
these types of results.

Now, consider the two-machine flowshop and assume
that a time delay (or time lag) is incurred by the transfer of the
jobs from the first machine to the second one. The obtained
problem, denoted by 𝐹2|𝑙

𝑗
|𝐶max, is proven to be solvable

in 𝑂(𝑛 log 𝑛) time in the permutation case [35], whereas it
turns to be NP-hard in the general case [36]. Dell’Amico
[37] proved that the nonpermutation case remainsNP-hard
even if preemption is allowed. It is worth noting that Rebaine
[38] evaluated the worst-case performance ratio between
the optimal permutation and nonpermutation schedule. He
observed that, even in the restricted case of twomachines and
unit execution time operations, the twomodels may generate
different optimal values for the makespan. More specifically,
he showed that, in the two-machine case, the performance
ratio between the two optimal solutions is bounded by 2.
When the operations of the 𝑛 jobs are restricted to be unit
execution time, this ratio is reduced to 2 − (3/(𝑛 + 2)) for the
two-machine case and is 𝑚 for the 𝑚-machine case.

If we consider the case where 𝑛 = 2, the optimal
permutation schedule is trivially computed by taking the
best permutation among the two possible ones. The problem
turns to be slightly more complicated but is still polynomially
solvable, if a nonpermutation optimal schedule is to be
determined. Indeed, Benson and Dror [39] proved that the
two-job nonpermutation flowshop is solved in 𝑂(𝑛) time.

3. Adjustment Procedures

The nonpermutation flowshop problem may be represented
using a disjunctive graph: two operations 𝑖 and 𝑗, executed
by the same machine, cannot be simultaneously processed.
Therefore with each pair (𝑖, 𝑗) of operations, we associate a
pair of disjunctive arcs [𝑖, 𝑗] = {(𝑖, 𝑗), (𝑗, 𝑖)}. The problem is
thenmodelled by a disjunctive graphG = (C,D), whereC =

(𝑋,𝑈) is a conjunctive graph (two operations belonging to the
same job are represented by a conjunctive arc) andD is a set
of disjunctions.

Figure 3 depicts a disjunctive graph of a 3-job-3-machine
instance. The pair (𝑎, 𝑏) denotes the processing of job 𝑎 on
machine 𝑏. Two dummy operations 0 and ∗ are included
which represent the source and the sink node, respectively.
The minimum starting time denoted by 𝑟

𝑗
of an operation

𝑗 is equal to the longest weighted path from 0 to 𝑗 in the
disjunctive graph 𝐺. Similarly for each operation 𝑗 the tail 𝑞

𝑗

is the length of the longest weighted path from 𝑗 to ∗ in 𝐺.
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In the sequel, we assume that the makespan is fixed to a
trial value 𝐶. The problem amounts to checking whether a
feasible schedule withmakespan less than or equal to𝐶 exists.
For that purpose, a deadline 𝑑

𝑗
= 𝐶 − 𝑞

𝑗
is associated with

each operation 𝑗.
The main purpose of adjustments is to reduce the time

windows [𝑟
𝑗
, 𝑑
𝑗
]. This kind of elimination rule has been

widely studied over the last two decades, especially for
solving jobshop scheduling problems. The importance of the
adjustment rules is twofold.They are used in the branch-and-
bound algorithm for discarding infeasible nodes, and they
permit the adjustment of the release dates and deadlines, so
that the lower bounds are tightened.Themajor breakthrough
of adjustment procedures has been achieved by Carlier and
Pinson [24] who solved the famous Muth and Thompson 10
× 10 jobshop instance for the first time.

A nonpermutation flowshop can be viewed as a particular
case of the jobshop scheduling problem. Therefore, we can
apply the same adjustment procedures of this last problem to
the nonpermutation flowshop. Interestingly, if an adjustment
of an operation is performed, then the sets of its predecessors
(Pred) and successors (Succ) according to the conjunctive
graph can be adjusted using the following global adjustment
algorithm (Algorithm 1; 𝑟

𝑗
and 𝑑

𝑗
denote the adjusted values

of 𝑟
𝑗
and 𝑑

𝑗
, resp.).

3.1. Adjustments from the Literature. In this section, we
describe the most relevant adjustment procedures proposed
in the literature.

3.1.1. Disjunction-Based Adjustment. Clearly, if two opera-
tions 𝑖 and 𝑗 are such that 𝑟

𝑗
+ 𝑝
𝑗
+ 𝑝
𝑖

> 𝑑
𝑖
then 𝑖 cannot

be scheduled after 𝑗. In this case, a disjunctive arc (𝑖, 𝑗) can
be fixed, which means that 𝑖 is processed before 𝑗 in any
feasible schedule [24]. Therefore, the release date of job 𝑗 can
be adjusted to 𝑟

𝑗
= max(𝑟

𝑗
, 𝑟
𝑖
+ 𝑝
𝑖
). Similarly, the deadline of

job 𝑖 can be adjusted to 𝑑
𝑖
= min(𝑑

𝑖
, 𝑑
𝑗
− 𝑝
𝑗
). More generally,

after determining all the disjunctive arcs using the above rule,
the release date and the deadline of each job 𝑗 can be adjusted
to 𝑟
𝑗
= max

𝑖∈pred(𝑗)(𝑟𝑗, 𝑟𝑖+𝑝
𝑖
) and 𝑑

𝑖
= min

𝑗∈succ(𝑖)(𝑑𝑖, 𝑑𝑗−𝑝
𝑗
),

where pred(𝑗) and succ(𝑖) denote the sets of predecessors
of 𝑗 and the sets of successors of 𝑖, respectively. Obviously,
the instance is infeasible if 𝑟

𝑗
+ 𝑝
𝑗

> 𝑑
𝑗
or the obtained

graph contains a cycle. Carlier and Pinson [40] proposed
an algorithm allowing the determination of all immediate
selections in a disjunctive graph in 𝑂(𝑛 log 𝑛) steps.

Example 1. Consider the 5-job instance defined by Table 2.
We have 𝑑

3
− 𝑝
3
= 29 < 𝑟

1
+𝑝
1
= 30. Therefore, a disjunctive

arc (3, 1) should be added to the graph. Similarly, since 𝑑
5
−

𝑝
5
= 11 < 𝑟

1
+𝑝
1
, then job 5 should be processed before job 1

in any feasible schedule. By applying the same rule to each job
pair, we obtain the graph depicted in Figure 4. Accordingly,
the release dates can be adjusted as follows:

𝑟
1
= max (𝑟

1
, 𝑟
3
+ 𝑝
3
, 𝑟
5
+ 𝑝
5
) = 20,

𝑟
2
= max (𝑟

2
, 𝑟
1
+ 𝑝
1
, 𝑟
3
+ 𝑝
3
, 𝑟
5
+ 𝑝
5
) = 35,

Table 2: Data of the 5-job instance of Example 1.

Jobs 1 2 3 4 5
𝑟
𝑗

15 33 0 26 0
𝑝
𝑗

15 1 2 8 20
𝑑
𝑗

46 44 31 48 31

3

5

2

4

1

Figure 4: Disjunctive graph of the 5-job instance of Example 1.

𝑟
3
= 𝑟
3
= 0,

𝑟
4
= max (𝑟

4
, 𝑟
1
+ 𝑝
1
, 𝑟
3
+ 𝑝
3
, 𝑟
5
+ 𝑝
5
) = 35,

𝑟
5
= 𝑟
5
= 0.

(1)

The deadlines can be adjusted (decreased) in a similar
way. The corresponding procedures are symmetric to those
derived for the release dates.The procedure is reiterated until
no adjustment can be performed.

Brucker et al. [41] proposed an extension of the proce-
dure developed by Carlier and Pinson [24] in order to fix
additional disjunctive arcs. This procedure referred to as “3-
set condition” may be described as follows. Assume that all
the arcs derived fromCarlier and Pinson procedure are fixed.
Suppose that 𝑗 → 𝑖. Let 𝑘 be an operation such that 𝑟

𝑗
+ 𝑝
𝑗
+

𝑝
𝑖
+ 𝑝
𝑘

> 𝑑
𝑘
, 𝑟
𝑗
+ 𝑝
𝑗
+ 𝑝
𝑘
+ 𝑝
𝑖
> 𝑑
𝑖
, and 𝑟

𝑘
+ 𝑝
𝑘
+ 𝑝
𝑗
+ 𝑝
𝑖
> 𝑑
𝑖
;

then 𝑘 can be scheduled neither before 𝑗, nor between 𝑗 and
𝑖, nor after 𝑖. Consequently, 𝑗 cannot be processed before 𝑖 in
any feasible schedule, and a disjunctive arc (𝑖, 𝑗) can therefore
be fixed.

3.1.2. Preemption-Based Adjustment. Carlier and Pinson
[42] presented an algorithm for adjusting release dates
and deadlines in the jobshop problem. This algorithm is
based on Jackson’s preemptive schedule (JPS) for the one-
machine problem. JPS provides the optimal solution for the
1|𝑟
𝑗
, 𝑞
𝑗
, pmtn|𝐶max in 𝑂(𝑛 log 𝑛) time. It is constructed as

follows. At the first moment 𝑡 where the machine and at least
one operation are available, the operation with the maximal
tail is scheduled. This operation is processed either up to its
completion or until a more urgent job (i.e., with larger tail)
becomes available. Then, 𝑡 is updated and the procedure is
iterated until all operations are scheduled [43].

In the following, we describe the procedure of Carlier
and Pinson [42] for adjusting the release date 𝑟

𝑐
of a given

operation 𝑐. Let 𝑈𝐵 denote an upper bound of the optimal
makespan and assume that Jackson’s preemptive schedule has
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(1) For each operation (𝑖)

(2) Compute 𝑟
𝑖
and 𝑑

𝑖
.

(3) If (𝑟
𝑖
> 𝑟
𝑖
) then

(4) Let Succ(𝑖) = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
} the set of successors of operation 𝑖.

(5) For (ℎ = 1, . . . , 𝑘 − 1)

(6) If (𝑟
𝑆ℎ

+ 𝑝
𝑆ℎ

> 𝑟
𝑆ℎ+1

) then 𝑟
𝑆ℎ+1

= 𝑟
𝑆ℎ

+ 𝑝
𝑆ℎ
.

(7) If (𝑟
𝑆ℎ

+ 𝑝
𝑆ℎ

> 𝑑
𝑆ℎ

) then the instance is infeasible.
(8) end (For)
(9) end (If)
(10) If (𝑑

𝑖
< 𝑑
𝑖
) then

(11) Let Pred(𝑖) = {𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑘
} the set of predecessors of operation 𝑖

(12) For (ℎ = 𝑘, . . . , 2)

(13) If (𝑑
𝑅ℎ

− 𝑝
𝑅ℎ

< 𝑑
𝑅ℎ−1

) then 𝑑
𝑅ℎ−1

= 𝑑
𝑅ℎ

− 𝑝
𝑅ℎ
.

(14) If (𝑟
𝑅ℎ

+ 𝑝
𝑅ℎ

> 𝑑
𝑅ℎ

) then the instance is infeasible.
(15) end (For)
(16) end (If)
(17) end (For)
(18) If for all operations we have 𝑟

𝑖
= 𝑟
𝑖
and 𝑑

𝑖
= 𝑑
𝑖
then STOP. Otherwise, set 𝑟

𝑖
= 𝑟
𝑖
; 𝑑
𝑖
= 𝑑
𝑖
and go to line (1).

Algorithm 1: Global Adjustment Algorithm.

been built until time 𝑡 = 𝑟
𝑐
. Let 𝑝

+

𝑘
denote the remaining

processing times in the preemptive schedule. Then, 𝑟
𝑐
can be

adjusted as follows.
(i) Compute 𝐾

𝑐
= {𝑗 ∈ 𝐽 | 𝑞

𝑗
≥ 𝑞
𝑐
} and 𝐾

+

𝑐
= {𝑗 ∈ 𝐾

𝑐
|

𝑝
+

𝑗
> 0}.

(ii) Take the operations of 𝑘+
𝑐
in increasing order of 𝑞

𝑗
and

find the first 𝑗
1
such that 𝑟

𝑐
+𝑝
𝑐
+∑
{𝑗∈𝑘
+
𝑐
|𝑞𝑗⩾𝑞𝑗1
}
𝑝
+

𝑗
+𝑞
𝑗1

>

𝑈𝐵 (if any exists).
(iii) Define 𝐾

∗

𝑐
= {𝑗 ∈ 𝑘

+

𝑐
| 𝑞
𝑗
≥ 𝑞
𝑗1
}.

(iv) Set 𝑟
𝑐
= max

𝑗∈𝐾
∗
𝑐
𝐶
𝑗
(𝐶
𝑗
is the completion time of job

𝑗).

Carlier and Pinson [42] presented an𝑂(𝑛
2
) algorithm for

adjusting all release dates. Brucker et al. [25] improved this
complexity by proposing an 𝑂(max{𝑛 log 𝑛, 𝑓}) algorithm,
where 𝑓 is the number of new disjunctive arcs. The idea
relies on the dual version of JPS which, starting from 𝑑 =

max
𝑗∈𝐽

𝑑
𝑗
, calculates a schedule from right to left by applying

the following dual rule. At each time 𝑡 which is given by a
deadline or a release date of an operation, schedule backwards
an incompletely scheduled operation 𝑗 with 𝑑

𝑗
≥ 𝑡 and

𝑟
𝑗

= max
𝑖∈𝐽

{𝑟
𝑖

| 𝑑
𝑖

≥ 𝑡}. Such a schedule is referred to as
backwards Jackson preemptive schedule (BJPS). The release
date of a given operation 𝑐 can be adjusted using the following
procedure.

Earliest Possible Completion Algorithm

Step 1. Calculate JPS up to 𝑟
𝑐
.

Step 2. Calculate BJPS without 𝑐 in [𝑟
𝑐
, 𝑑] using the remaining

processing times.

Step 3. Schedule operation 𝑐 from left to right within the idle
periods of [𝑟

𝑐
, 𝑑]. Let 𝑠

𝑐
be the completion time of operation

𝑐 and set 𝑟
𝑐
= 𝑠
𝑐
− 𝑝
𝑐
.

Similarly, the deadline of a given operation 𝑐 can be
adjusted by applying the dual version of the above algorithm.

Latest Possible Completion Algorithm

Step 1. Calculate BJPS up to 𝑑
𝑐
.

Step 2. Calculate JPS without 𝑐 in [min
𝑗∈𝐽

𝑟
𝑗
, 𝑑
𝑐
] using the

remaining processing times.

Step 3. Schedule operation 𝑐 from right to left within the
idle periods of [min

𝑗∈𝐽
𝑟
𝑗
, 𝑑
𝑐
]. Let 𝑠



𝑐
be the starting time of

operation 𝑐 and set 𝑑
𝑐
= 𝑠


𝑐
+ 𝑝
𝑐
.

Example 1 (continued). Figures 5 and 6depict the preemption-
based adjustment of the release date and the deadline of job
1, respectively. We have 𝑟

1
= 𝑠
1

− 𝑝
1

= 37 − 15 = 22 and
𝑑
1
= 𝑠


1
+ 𝑝
1
= 24 + 15 = 39.

3.2. New Adjustment Procedures. In this section, we intro-
duce new adjustment procedures and show that they outper-
form those described in the previous section.

3.2.1. Improved Disjunction-Based Procedure. Recall that the
disjunction-based adjustment rule consists in setting 𝑟

𝑗
=

max
𝑖∈pred(𝑗)(𝑟𝑗, 𝑟𝑖 + 𝑝

𝑖
) and 𝑑

𝑗
= min

𝑖∈succ(𝑗)(𝑑𝑗, 𝑑𝑖 − 𝑝
𝑖
) for

all 𝑗 ∈ 𝐽. Interestingly, this adjustment rule can be improved
in the following way.

(i) A job 𝑖 is defined as an immediate predecessor of 𝑗 if
there exists an arc (𝑖, 𝑗) in the disjunctive graph.

(ii) A job 𝑖 is defined as a predecessor of 𝑗 if there exists a
path (𝑖, . . . , 𝑗) in the disjunctive graph.

Let 𝑃
𝑗
denote the set of all the predecessors of 𝑗. Clearly,

job 𝑗 has to wait until all the jobs of 𝑃
𝑗
have been processed.
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Figure 5: Preemption-based adjustment of 𝑟
1
(Example 1).
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4
46

0 2 22

24

26 32 33 34

26 32 33 340 2 22

48

46 48

46 48
3 5 4 2 4

3 5 1 4 1 2 1 4

Step 1: application of BJPS up to d1 = 46
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Figure 6: Preemption-based adjustment of 𝑑
1
(Example 1).

Let 𝐶max(𝑃𝑗) denote the minimum completion time of all
jobs of 𝑃

𝑗
. Therefore, the minimum starting time of 𝑗

is at least equal to max(𝑟
𝑗
, 𝐶max(𝑃𝑗)). It is worth noting

that 𝐶max(𝑃𝑗) corresponds to the optimal makespan of the
1|𝑟
𝑗
|𝐶max problem defined on 𝑃

𝑗
. The 1|𝑟

𝑗
|𝐶max is solvable

in 𝑂(𝑛 log 𝑛) time by ranking jobs in nondecreasing order
of their release dates. Clearly, since 𝐶max(𝑃𝑗) > max

𝑖∈𝑃𝑗
(𝑟
𝑖
+

𝑝
𝑖
), then this adjustment rule dominates the classical one

proposed by Carlier and Pinson [24].
Similarly, the deadline of job 𝑗 can be adjusted by setting

𝑑
𝑗

= min(𝑑
𝑗
,max
𝑖∈𝑆𝑗

𝑑
𝑖
− 𝐶max(𝑆𝑗)), where 𝑆

𝑗
denotes the

set of all the successors of 𝑗, and 𝐶max(𝑆𝑗) is the optimal
makespan of 1|𝑟

𝑗
|𝐶max problem defined on 𝑆

𝑗
by setting 𝑟

𝑗
=

max
𝑖∈𝑆𝑗

𝑑
𝑖
− 𝑑
𝑗
.

3.2.2. Semipreemption-Based Procedure. In this section, we
develop a new adjustment rule which dominates the preemp-
tive version while having the same complexity. The proposed
procedure is similar, in spirit, to JPS in the sense that we
apply the same algorithmwith a small distinction.The idea of
semipreemption has been introduced in Haouari and Gharbi
[44].

Table 3: Data of the 5-job instance of Example 2.

Jobs 1 2 3 4 5
𝑟
𝑗

5 2 4 14 1
𝑝
𝑗

11 2 11 6 14
𝑑
𝑗

50 49 41 46 27

First, by remarking that the latest starting time of any job
𝑗 ∈ 𝐽 is 𝑑

𝑗
−𝑝
𝑗
, and its earliest finishing time is 𝑟

𝑗
+𝑝
𝑗
, we can

state the following observation.

Observation 1. Assume that there exists a job 𝑗 such that 𝑟
𝑗
+

𝑝
𝑗

> 𝑑
𝑗
− 𝑝
𝑗
. Then, in any nonpreemptive schedule, there is

a part of job 𝑗 which must be processed during the interval
[𝑑
𝑗
− 𝑝
𝑗
, 𝑟
𝑗
+ 𝑝
𝑗
].

According to the above observation, each job 𝑗 satisfying
𝑟
𝑗

+ 𝑝
𝑗

> 𝑑
𝑗

− 𝑝
𝑗
is composed of a fixed and a free part.

Its fixed part is the amount of time 2𝑝
𝑗

− (𝑑
𝑗

− 𝑟
𝑗
) which

must be processed in [𝑑
𝑗
− 𝑝
𝑗
, 𝑟
𝑗
+ 𝑝
𝑗
], and its free part is

the amount of time 𝑝


𝑗
= 𝑑
𝑗

− (𝑟
𝑗

+ 𝑝
𝑗
) which has to be

processed in [𝑟
𝑗
, 𝑑
𝑗
− 𝑝
𝑗
] ∪ [𝑟

𝑗
+ 𝑝
𝑗
, 𝑑
𝑗
]. The other jobs are

composed only of a free processing part 𝑝


𝑗
= 𝑝
𝑗
which

has to be processed in [𝑟
𝑗
, 𝑑
𝑗
]. Let Jackson’s semipreemptive

schedule (JSPS) denote Jackson’s preemptive schedule applied
on the modified instance where each job is replaced by two
jobs which designate its free part and fixed part, respectively.
Clearly, the preemption-based adjustment is improved if JPS
is replaced by JSPS.

Example 2. Consider the 5-job instance defined by Table 3.

We remark that 𝑟
5
+ 𝑝
5
> 𝑑
5
− 𝑝
5
. Then, job 5 has a fixed

part (5) in [13, 15]with processing time equal to 2 and a free
part in [1, 27]with processing time equal to 12. Themodified
instance is depicted in Table 4.

Figure 7 displays the semipreemption-based adjustment
of the release date of job 1. We have 𝑟

1
= 𝑠
1
−𝑝
1
= 18−11 = 7.
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Figure 7: Semipreemption-based adjustment of 𝑟
1
(Example 2).

Table 4: Modified instance of Example 2.

Jobs 1 2 3 4 5 5

𝑟
𝑗

5 2 4 14 1 13
𝑝
𝑗

11 2 11 6 12 2
𝑑
𝑗

50 49 41 46 27 15

Table 5: Semipreemptive-based adjusted data of Example 2.

Jobs 1 2 3 4 5
𝑟
𝑗

15 2 15 15 1
𝑝
𝑗

11 2 11 6 14
𝑑
𝑗

50 49 41 46 22

The procedure is reiterated until no adjustment can be
performed.The obtained adjusted release dates and deadlines
are depicted in Table 5.

It is worth noting that no adjustment can be made on this
instance using the classical preemptive-based procedure.

3.2.3. Two-Machine-Based Adjustment Procedure. First, we
observe that there exists an optimal 𝐹||𝐶max schedule such
that there is no idle time on the first machine. That is, no
job finishes processing on 𝑀

1
later than ∑𝑝

1𝑗
. Therefore,

the deadlines on 𝑀
1
can be adjusted by setting 𝑑

1𝑗
=

min(𝑑
1𝑗

, ∑ 𝑝
1𝑗

) for all 𝑗 ∈ 𝐽. In a similar way, using the
symmetry of the𝐹||𝐶max the release dates on the last machine
can be adjusted by setting 𝑟

𝑚𝑗
= max(𝑟

𝑚𝑗
, 𝐶 − ∑𝑝

𝑚𝑗
).

Now, we introduce a new approach for adjusting the
deadlines on the second machine. Recall that there exists an
optimal schedule such that the sequences on 𝑀

1
and 𝑀

2

are the same. Consider a particular job 𝑗
∗ and let 𝜎

∗ denote
the sequence (or permutation) of 𝐽 \ {𝑗

∗
} which maximizes

the makespan on 𝑀
2
. Let 𝐶

𝑗
∗ denote the completion time

of 𝑗
∗ on 𝑀

2
and let 𝐶max(𝜎

∗
) denote an upper bound

on the completion time of 𝜎
∗ on 𝑀

2
. Clearly, we have

𝐶
𝑗
∗ ≤ max{∑𝑝

1𝑗
, 𝐶max(𝜎

∗
)} + 𝑝

2𝑗
∗ . Consequently, the

deadline of 𝑗
∗ on machine 𝑀

2
can be adjusted to 𝑑

2𝑗
∗ =

min{𝑑
2𝑗
∗ ,max{∑𝑝

1𝑗
, 𝐶max(𝜎

∗
)} + 𝑝

2𝑗
∗}.

In what follows, we show how to compute 𝐶max(𝜎
∗
). Let

𝜎
𝑗0
denote a permutation such that 𝑗

0
is the job that starts

processing on 𝑀
2
after its last idle period (see Figure 8).

Denote by 𝑡
𝑖𝑗
and 𝐶

𝑖𝑗
the starting time and the completion

time of job 𝑗 on machine 𝑀
𝑖
, respectively. Clearly, we have

𝐶
1𝑗0

= 𝑡
2𝑗0
.

S

Cmax(𝜎j0 )

j0

j0

S

Figure 8: Illustration of the permutation 𝜎
𝑗0
.

Let 𝑆 and 𝑆
 denote the set of jobs that are scheduled

before and after 𝑗
0
in 𝜎
𝑗0
, respectively. Denote by 𝑥

𝑗
the

variable that equals 1 if 𝑗 ∈ 𝑆 and 0 otherwise. We have

𝐶max (𝜎
𝑗0
) = ∑

𝑗∈𝐽\{𝑗0}

𝑝
1𝑗

𝑥
𝑗
+ 𝑝
1𝑗0

+ 𝑝
2𝑗0

+ ∑

𝑗∈𝐽\{𝑗0}

𝑝
2𝑗

(1 − 𝑥
𝑗
)

= ∑

𝑗∈𝐽\{𝑗0}

(𝑝
1𝑗

− 𝑝
2𝑗

) 𝑥
𝑗
+ 𝑝
1𝑗0

+ 𝑝
2𝑗0

+ ∑

𝑗∈𝐽\{𝑗0}

𝑝
2𝑗

.

(2)

Clearly 𝐶max(𝜎𝑗0) is maximized by setting 𝑥
𝑗

= 1 for all
𝑗 satisfying 𝑝

1𝑗
> 𝑝
2𝑗

and 𝑥
𝑗

= 0 otherwise. Let 𝐶max(𝜎
∗

𝑗0
)

denote the corresponding makespan and 𝐽

= {𝑗 ∈ 𝐽 : 𝑝

1𝑗
>

𝑝
2𝑗

}. We have 𝐶max(𝜎
∗

𝑗0
) = ∑
𝑗∈𝐽

\{𝑗0}

(𝑝
1𝑗

− 𝑝
2𝑗

) + 𝑝
1𝑗0

+ 𝑝
2𝑗0

+

∑
𝑗∈𝐽\{𝑗0}

𝑝
2𝑗
.

Two cases have to be considered.
(i) If 𝑗

0
∈ 𝐽
 then

𝐶max (𝜎
∗

𝑗0
) = ∑

𝑗∈𝐽


𝑝
1𝑗

− 𝑝
1𝑗0

− (∑

𝑗∈𝐽


𝑝
2𝑗

− 𝑝
2𝑗0

)

+ 𝑝
1𝑗0

+ 𝑝
2𝑗0

+ ∑

𝑗∈𝐽

𝑝
2𝑗

− 𝑝
2𝑗0

= ∑

𝑗∈𝐽


𝑝
1𝑗

+ ∑

𝑗∈𝐽

𝑝
2𝑗

− ∑

𝑗∈𝐽


𝑝
2𝑗

+ 𝑝
2𝑗0

≤ ∑

𝑗∈𝐽


(𝑝
1𝑗

− 𝑝
2𝑗

) + ∑

𝑗∈𝐽

𝑝
2𝑗

+ max
𝑗0∈𝐽


{𝑝
2𝑗0

} .

(3)

(ii) If 𝑗
0
∉ 𝐽
 then

𝐶max (𝜎
∗

𝑗0
) = ∑

𝑗∈𝐽


𝑝
1𝑗

− ∑

𝑗∈𝐽


𝑝
2𝑗

+ 𝑝
1𝑗0

+ 𝑝
2𝑗0

+ ∑

𝑗∈𝐽

𝑝
2𝑗

− 𝑝
2𝑗0

≤ ∑

𝑗∈𝐽


(𝑝
1𝑗

− 𝑝
2𝑗

) + ∑

𝑗∈𝐽

𝑝
2𝑗

+ max
𝑗0∉𝐽


{𝑝
1𝑗0

} .

(4)
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Table 6: Data of 5-job-4-machine instance of Example 3.

1 2 3 4 5
𝑀
1

6 20 2 9 20
𝑀
2

9 13 5 11 10
𝑀
3

15 1 8 6 4
𝑀
4

2 4 4 8 3

Table 7: Initial values of release dates of Example 3.

Jobs 1 2 3 4 5
𝑀
1

0 0 0 0 0
𝑀
2

6 20 2 9 20
𝑀
3

15 33 7 20 30
𝑀
4

30 34 15 26 34

Table 8: Initial values of deadlines of Example 3.

Jobs 1 2 3 4 5
𝑀
1

59 67 68 60 62
𝑀
2

68 80 73 71 78
𝑀
3

83 81 81 77 82
𝑀
4

85 85 85 85 85

Consequently, an upper bound 𝐶max(𝜎
∗

𝑗0
) on 𝐶max(𝜎

∗

𝑗0
) is

obtained by

𝐶max (𝜎
∗

𝑗0
) = ∑

𝑗∈𝐽


(𝑝
1𝑗

− 𝑝
2𝑗

) + ∑

𝑗∈𝐽

𝑝
2𝑗

+ max{max
𝑗0∉𝐽


{𝑝
1𝑗0

} ,max
𝑗0∈𝐽


{𝑝
2𝑗0

}} .

(5)

Finally, 𝐶max(𝜎
∗
) = max

𝑗0∈𝐽
𝐶max(𝜎

∗

𝑗0
) is an upper bound

on the completion time of all possible permutations on 𝑀
2
.

Using appropriate data structure, all the deadlines on𝑀
2
can

be adjusted in 𝑂(𝑛) time.
Thanks to the symmetry of the problem, the release dates

on 𝑀
𝑚−1

can be adjusted by setting 𝑟
𝑚−1,𝑗

= max(𝑟
𝑚−1,𝑗

; 𝐶 −

𝐶max(𝜎
∗
)), where 𝐶max(𝜎

∗
) is computed on the two-machine

flowshop problem defined on 𝑀
𝑚
and 𝑀

𝑚−1
.

Example 3. Consider the 5-job-4-machine instance depicted
in Table 6 and let 𝐶 = 85. The values of the releases dates and
the deadlines before performing any adjustment are depicted
in Tables 7 and 8, respectively.

First, we have

𝑑
1𝑗

= min (𝑑
1𝑗

,∑𝑝
1𝑗

) = 57,

𝑟
4𝑗

= max (𝑟
4𝑗

, 𝐶 − ∑𝑝
4𝑗

) = 64

∀𝑗 ∈ 𝐽.

(6)

Now, we have 𝐽


= {2, 5} and 𝐶max(𝜎
∗
) = 55. Therefore, the

deadline of job 2 on 𝑀
2
can be adjusted to

𝑑
22

= min {𝑑
22

,max {∑𝑝
1𝑗

, 𝐶max (𝜎
∗
)} + 𝑝

22
}

= min {80,max {57, 55} + 13} = 70.

(7)

Similarly, the deadline of job 5 on 𝑀
2
is adjusted to 𝑑

25
= 68

(instead of 78). The adjusted release dates on 𝑀
3
obtained by

the two-machine-based procedure are the following:
𝑟
31

= 40; 𝑟
32

= 43; 𝑟
33

= 40;

𝑟
34

= 44, 𝑟
35

= 40.

(8)

4. Bounding Procedures

In this section, we introduce lower and upper bounding
procedures for the nonpermutation flowshop problem.These
procedures are derived from the adjustments described in
Section 3.

4.1. Lower Bounds. A simple and efficient way of deriving a
good lower bound for the 𝐹||𝐶max consists in relaxing the
capacities of all the machines but one denoted by 𝑀

𝑘
. The

obtained problem is a one machine problem with release
dates and delivery times denoted by 1|𝑟

𝑗
, 𝑞
𝑗
|𝐶max, where 𝑟

𝑗
=

∑
𝑖≺𝑘

𝑝
𝑖𝑗
and 𝑞
𝑗
= ∑
𝑖≻𝑘

𝑝
𝑖𝑗
.

Although the latter problem is strongly NP-hard, it
is efficiently solved using the branch-and-bound algorithm
developed by Carlier [45]. Let 𝐶

∗

max(𝑀𝑘) denote the optimal
makespan of the 1|𝑟

𝑗
, 𝑞
𝑗
|𝐶max problemdefined on𝑀

𝑘
. A valid

lower bound for the 𝐹||𝐶max is
𝐿𝐵
0
= max
1≤𝑘≤𝑚

𝐶
∗

max (𝑀
𝑘
) . (9)

It is worth noting that 𝐿𝐵
0
is considered as a good

lower bound in the context of jobshop scheduling prob-
lem. Moreover, it constitutes a fundamental component in
several effective heuristics, such as the well-known shifting
bottleneck procedure [27]. In the sequel, we introduce an
interesting way of deriving a stronger lower bound using the
developed adjustment procedures.

Let 𝑈𝐵 denote an upper bound on the optimal makespan
and let𝐶 ∈ [𝐿𝐵

0
, 𝑈𝐵−1] denote a trial value of themakespan.

With each operation 𝑂
𝑖𝑗
is associated a release date 𝑟

𝑖𝑗
, a

delivery time 𝑞
𝑖𝑗
, and a deadline 𝑑

𝑖𝑗
= 𝐶 − 𝑞

𝑖𝑗
. Clearly, if

after performing the adjustment procedure the instance is
identified to be infeasible, then 𝐶 + 1 is a valid lower bound
on the optimal makespan. Consequently, a bisection search
on [𝐿𝐵

0
, 𝑈𝐵 − 1] combined with the proposed adjustment

procedure provides a lower bound denoted by 𝐿𝐵
1
which

dominates 𝐿𝐵
0
. The computation of 𝐿𝐵

1
can be described as

follows.

Compute 𝐿𝐵
1

Step 1. Set 𝐶− = 𝐿𝐵
0
, 𝐶+ = 𝑈𝐵 − 1.

Step 2. Let 𝐶 = ⌊(𝐶
−

+ 𝐶
+
)/2⌋.

Step 3. Set 𝑑
𝑗
= 𝐶 − 𝑞

𝑗
for all 𝑗 ∈ 𝐽.

Step 4. Apply an adjustment procedure to the instance
obtained in step 3. If the instance is infeasible, then set 𝐶− =

𝐶 + 1. Otherwise, set 𝐶+ = 𝐶 − 1.

Step 5. If 𝐶− = 𝐶
+, then stop and set 𝐿𝐵

1
= 𝐶. Else, go to step

2.
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Figure 9: Schedule of Example 4 according to LPT rule.

In the computation of 𝐿𝐵
1
, we implemented the new

proposed adjustment procedures. The value of 𝑈𝐵 is equal
to the makespan of the schedule obtained by applying the
longest processing time (LPT) dispatching rule. It consists
in scheduling in the first available machine, the available
operation with longest processing time.

4.2. Heuristics. In this sectionwe describe howwe can use the
adjustment procedures in order to construct an upper bound
for the nonpermutation flowshop scheduling problem.

4.2.1. Heuristic 𝐻1. We are interested in building a nonpre-
emptive schedule with makespan less than or equal to a trial
value 𝐶 ∈ [𝐿𝐵,𝑈𝐵 − 1]. First, we set 𝑑

𝑖𝑗
= 𝐶 − 𝑞

𝑖𝑗
and we

adjust the release dates and the deadlines using an adjustment
procedure. An operation such that 𝑑

𝑖𝑗
= 𝑟
𝑖𝑗
+𝑝
𝑖𝑗
is referred to

as a fixed operation and is considered as already scheduled.
Let 𝐿 denote the list of the free (nonfixed) first operations
of each job, sorted according to the nondecreasing order of
their release dates.The ties are settled according to the nonde-
creasing order of deadlines, then by the nondecreasing order
of processing times. At each iteration, we use an adjustment
procedure to check whether the first operation 𝑂

𝑖𝑗0
can be

scheduled at its release date. In this case, we set𝑑
𝑖𝑗0

= 𝑟
𝑖𝑗0

+𝑝
𝑖𝑗0
.

The list 𝐿 is then updated by the adjustment procedure.
Now, assume that the adjustment procedure yields an

infeasibility. That is, scheduling 𝑗
0
at this position is not the

right decision. Therefore, we have to skip operation 𝑂
𝑖𝑗0

and
move to the next operation in the list. Note that in this case
the minimum starting time of 𝑂

𝑖𝑗0
is 𝑟
𝑖𝑗0

+ 1. Obviously, there
may be no possible operation to be scheduled at the current
iteration. In this case, finding a schedule with makespan less
than or equal to the trial value𝐶 is assumed as impossible. So
we have to move on to 𝐶 + 1 and so on. The algorithm stops
when a feasible schedule is constructed.

Example 4. Consider the 4-job-3-machine instance whose
data are depicted in Table 9.

Assume that 𝐿𝐵 = 252 and 𝑈𝐵 = 287 (𝑈𝐵 is a
makespan obtained by LPT dispatching rule and it is depicted
in Figure 9).

Table 9: Data of 4-job-3-machine instance of Example 4.

𝑀
1

𝑀
2

𝑀
3

1 1 86 36
2 2 55 30
3 38 16 76
4 11 62 32

Assume that we are interested in constructing a sched-
ule with makespan equal to 254. The list 𝐿 contains only
the first free operations in each machine. Thus, 𝐿 =

{𝑂
11

, 𝑂
12

, 𝑂
14

, 𝑂
13

}. At the first iteration, operation 𝑂
11

is
scheduled at time 𝑟

11
= 0. That is, the deadline is set to 𝑑

11
=

1. The current data is updated by applying the adjustment
procedures. Thus, we have 𝐿 = {𝑂

12
, 𝑂
14

, 𝑂
13

, 𝑂
21

}. In the
second iteration, the operation 𝑂

12
is scheduled to finish at

𝑑
12

= 3. Next, we apply the adjustment procedures. Thus, we
have 𝐿 = {𝑂

21
, 𝑂
14

, 𝑂
13

, 𝑂
22

}. Assume that operation 𝑂
21

is
scheduled at 𝑟

21
= 1 at the third iteration.That is, its deadline

is set to 𝑑
21

= 87.
Applying the adjustment procedures to the obtained

instance yields an infeasibility. That is, the minimum starting
time of 𝑂

21
is equal to 2, and scheduling operation 𝑂

21
at

the third iteration is not the right choice. Consequently, we
move to the next operation, and we have 𝐿 = {𝑂

14
, 𝑂
13

, 𝑂
21

}

and so on. The obtained schedule is depicted in Figure 10. Its
makespan is equal to 254.

4.2.2. Heuristic 𝐻2. Using the symmetry of the problem,
a second heuristic can be obtained by applying 𝐻1 to the
symmetric 𝐹||𝐶max instance (backward).

Example 4 (continued). Assume that 𝐿𝐵 = 252 and 𝑈𝐵 =

254. We are interested in constructing a schedule with
makespan equal to 253. The list of the free jobs is 𝐿 =

{𝑂
11

, 𝑂
12

, 𝑂
14

, 𝑂
13

}. At the first iteration, operation 𝑂
11

is
scheduled at time 𝑟

11
= 0. That is, the deadline is set

to 𝑑
11

= 36. Applying the adjustment procedures to the
obtained instance yields an infeasibility.That is, theminimum
starting time of 𝑂

11
is equal to 1. Consequently, scheduling
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1 2 4 3

2 3 1 4

3 1 42

0 1 3 14 52 58 74 80 110 180 186 222 254

Figure 10: Schedule provided by 𝐻1 for Example 4.

4 1 2 3

4 1 3 2

1 4 3 2

0 32 68 94 98 174 180 196 201 202 213 251 253

Figure 11: Schedule provided by 𝐻2 for Example 4.

operation 𝑂
11

at the first iteration is not the right choice
and we move to the next operation, and so on. The obtained
schedule is depicted in Figure 11. Its makespan is equal to 253.

4.2.3. Heuristic𝐻3. For each value of 𝐶, we first consider the
forward instance and try to construct a feasible schedule. In
case of failure, the backward instance is considered.Wemove
on to𝐶+1 only if a failure has been obtained for both forward
and backward instance. Note that the obtained value of the
makespan is equal to the minimum between those obtained
by 𝐻1 and 𝐻2. However, our experimental results show that
the required computational effort is substantially reduced.

4.2.4. Heuristic 𝐻4. In order to reduce the computational
effort, a bisection search on the trial value 𝐶 is embedded
within𝐻3.The value of𝐶 lies in the interval [𝐿𝐵

1
, 𝑈𝐵]where

𝑈𝐵 denotes the makespan obtained by LPT dispatching rule.
It is worth noting that if a failure is obtained for a given
value 𝐶 then all the values less than 𝐶 will not be considered.
However, it may be possible to obtain a feasible schedule if a
smaller value of 𝐶 is considered. Therefore, it is possible that
𝐻4 yields a solution which is worse than that obtained by𝐻3.
Our experimental results show that 𝐻4 often exhibits a good

trade-off between the decrease of the computation time and
the decrease of the solution’s quality.

4.2.5. Heuristic𝐻5. A randomization component is included
in 𝐻4 by selecting the operation that has to be scheduled
randomly between the twofirst operations in the list𝐿. In case
of failure for a given value of 𝐶, the randomized procedure is
performed until a feasible schedule is obtained or the maxi-
mum number of iterations is reached. In our experiments, we
fixed the maximum number of iterations to 40. Also, a CPU
time limit of 600 seconds has been fixed for 𝐻5.

5. Computational Results

In this section, we present an empirical analysis of the
performance of the proposed lower and upper bounds that
are derived from our adjustment procedures. The algorithms
were coded in C and compiled with Visual C++ 6.0. All the
computational experiments were carried out on a Pentium IV
3.2GHz Personal Computer with 1 GB RAM.

5.1. Test Generation. We carried out a series of experiments
on 240 test problems that were randomly generated in the
following way. The processing times are drawn from the



Journal of Applied Mathematics 11

Table 10: Performance of the lower bounds form = 4.

𝑛 Opt
0

Imp Redavg Redmax Opt
1

Time
10 30 85.71 76.32 100 50 0.04
20 50 40 71.15 92.31 0 0.06
30 50 60 73.22 100 66.67 0.17
40 70 66.67 100 100 100 0.28
50 50 40 100 100 100 0.59
60 50 60 100 100 100 1.05
70 40 50 69.89 100 66.67 1.09
80 60 50 72.5 100 50 1.49

Table 11: Performance of the lower bounds form = 5.

𝑛 Opt
0

Imp Redavg Redmax Opt
1

Time
10 20 100 48.92 100 28.57 0.02
20 20 100 36.24 100 12.5 0.08
30 10 88.89 21.91 100 12.5 0.20
40 10 77.78 47.77 100 14.27 0.53
50 10 100 46.56 100 22.22 0.67
60 30 71.43 26.02 100 20 1.46
70 30 71.43 40.59 77.78 0 2.03
80 50 80 61.17 100 25 2.79

discrete uniform distribution on [1, 100]. The number of
jobs 𝑛 is taken equal to 10, 20, 30, 40, 50, 60, 70, and 80. The
number of machines 𝑚 is taken equal to 4, 5, and 6. We
combined these problem characteristics to obtain 24 classes
of instances. For each class, 10 instances are generated.

5.2. Performance of the Lower Bounds. In order to assess
the impact of the proposed adjustment procedures in the
computation of a lower bound, we performed a thorough
comparison between the one-machine-based lower bound
𝐿𝐵
0
and the adjustment-based lower bound 𝐿𝐵

1
. The objec-

tive of this analysis is to determine how many times 𝐿𝐵
1

improved 𝐿𝐵
0
and how important is this improvement. For

that purpose, we first computed, for each class of instances,
the percentage of times (Opt

0
) where 𝐿𝐵

0
provides the

optimal makespan, that is, 𝐿𝐵
0

= 𝑈𝐵, where 𝑈𝐵 denotes the
best value of the makespan provided by our five heuristics.
Clearly, 𝐿𝐵

1
is not computed for these instances since there

is no room for improving 𝐿𝐵
0
. Then, we computed for the

remaining instances the percentage of times (Imp)where 𝐿𝐵
1

outperformed 𝐿𝐵
0
. The importance of this improvement is

emphasized in the following way. For the instances where an
improvement of 𝐿𝐵

0
occurred, we compared the reduced gap

𝑈𝐵−𝐿𝐵
1
with respect to the initial gap𝑈𝐵−𝐿𝐵

0
by computing

the relative gap reduction defined as 100((𝐿𝐵
1
− 𝐿𝐵
0
)/(𝑈𝐵 −

𝐿𝐵
0
)). We reported the average gap reduction (Redavg), the

maximum gap reduction (Redmax), and the percentage of
times (Opt

1
) where the reduced gap reached 100%; that is,

the optimalmakespan is provided by 𝐿𝐵
1
. Finally, the average

CPU time (in seconds) required by 𝐿𝐵
1
is computed. At this

point, it is worth noting that the CPU time of 𝐿𝐵
0
is always

less than 0.001 sec and has not been reported.
The results of our analysis are reported inTables 10, 11, and

12. These tables provide strong evidence of the dominance

Table 12: Performance of the lower bounds form = 6.

𝑛 Opt
0

Imp Redavg Redmax Opt
1

Time
10 10 77.78 21.51 46.42 0 0.04
20 0 70 34.49 78.12 0 0.19
30 10 88.89 8.40 14.28 0 0.43
40 10 44.45 11.52 25.32 0 0.95
50 0 80 27.92 85.71 0 1.35
60 20 50 36.87 85 0 2.09
70 30 57.14 23.79 85.71 0 2.88
80 30 85.71 20.19 100 16.68 3.44

of our adjustment-based lower bound. Indeed, we observe
that, in all problem classes, 𝐿𝐵

1
was able to improve 𝐿𝐵

0
.

Moreover, this improvement often occurred in more than
70% of the cases (14 out of 24 classes) and reached 100% in
some few cases. In addition, the average gap reduction is in
most cases larger than 30% and the maximal gap reduction
exceeds 70% in 87.5% of the problem classes (21 out of 24).
We observe that this gap reduction is more important for
smaller values of 𝑚. Indeed, for 𝑚 = 4, the average gap
reduction is always more than about 70% and the maximal
gap reduction is equal to 100% in all problem classes except
one. Furthermore, except for𝑚 = 6, the bound 𝐿𝐵

1
was often

able to provide the optimal makespan. Finally, we observe
that the adjustment-based lower bound is very fast, since the
average CPU time never exceeds 3.5 sec.

5.3. Performance of the Heuristics. The results of a compari-
son of our five heuristics are depicted in Tables 13, 14, and 15.
For each heuristic, we provide the following.

(i) Gap: the average gap with respect to the lower
bound 𝐿𝐵

1
, where the gap of the heuristic 𝐻

𝑖
(𝑖 =

1, . . . , 5) with makespan 𝑈𝐵
𝑖
is defined as 100((𝑈𝐵

𝑖
−

𝐿𝐵
1
)/𝐿𝐵
1
).

(ii) Time: the average CPU time
(iii) Opt: the percentage of times where the provided solu-

tion is proven optimal (i.e., the provided makespan is
equal to 𝐿𝐵

1
)

Weobserve that𝐻1 and𝐻2 exhibit a similar performance
but are outperformed by𝐻3. We note that the obtained value
of the makespan provided by 𝐻3 is equal to the minimum
between those obtained by 𝐻1 and 𝐻2. However, our
experimental results show that the required computational
effort is substantially reduced.

The comparison of 𝐻3 with 𝐻4 shows that the bisection
search performed by 𝐻4 allows a substantial decrease of the
CPU time while it slightly deteriorates the quality of the
obtained solution.𝐻4 often exhibits a good trade-off between
the decrease of the computation time and the decrease of the
solution’s quality. In addition, 𝐻5 outperforms all the other
heuristics for small value of 𝑛 (𝑛 ≤ 50) by providing a small
average gap. However it requires much more CPU time.

For all the heuristics, we observe that the average gap
increases when the number of machines increases (especially
for 𝑚 = 6) and decreases when the number of jobs increases.
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Table 13: Performance of the heuristics for 𝑚 = 4.

𝑛 10 20 30 40 50 60 70 80
𝐻1

Gap 3.57 2.15 1.29 0.50 0.72 0.36 0.31 0.09
Time 0.76 6.65 24.78 39.09 119.40 115.96 208.47 229.45
Opt 50 10 30 60 40 60 40 50

𝐻2

Gap 3.88 3.08 1.00 0.49 0.80 0.77 0.80 0.56
Time 0.71 9.03 15.80 23.74 236.01 218.44 379.63 507.28
Opt 40 20 50 50 40 50 40 50

𝐻3

Gap 2.69 2.04 0.84 0.22 0.51 0.33 0.20 0.07
Time 0.92 10.56 29.25 34.45 256.20 140.97 271.56 260.30
Opt 60 30 60 70 60 80 50 70

𝐻4

Gap 3.50 2.99 2.03 0.52 0.97 0.47 0.55 0.44
Time 0.33 3.25 13.91 35.38 95.81 185.55 360.32 628.47
Opt 50 30 20 60 60 70 50 50

𝐻5

Gap 1.62 0.95 0.66 0.25 0.46 0.29 0.48 0.22
Time 2.72 26.90 159.39 149.75 290.63 314.27 482.18 599.55
Opt 60 50 60 90 60 80 50 30

Table 14: Performance of the heuristics for 𝑚 = 5.

𝑛 10 20 30 40 50 60 70 80
𝐻1

Gap 5.79 7.18 5.73 3.08 1.77 1.68 1.34 0.84
Time 1.66 31.35 134.53 222.54 300.07 681.81 1391.61 881.23
Opt 20 10 10 0 10 40 20 30

𝐻2

Gap 4.94 5.29 6.35 3.44 1.27 1.36 1.82 0.94
Time 1.62 25.63 170.30 213.26 319.76 606.98 1228.84 1652.91
Opt 20 10 10 0 10 20 10 50

𝐻3

Gap 3.86 4.43 4.93 2.36 0.73 0.91 1.23 0.55
Time 2.10 35.78 233.55 285.89 291.89 851.41 1882.48 1485.87
Opt 30 20 10 0 20 40 20 60

𝐻4

Gap 5.15 6.21 5.35 3.34 1.38 1.26 1.59 0.90
Time 0.53 6.38 24.17 59.67 152.74 281.72 537.82 907.04
Opt 20 20 10 0 10 40 10 40

𝐻5

Gap 2.90 3.17 3.99 2.40 0.96 1.32 1.40 1.12
Time 9.58 108.53 376.25 529.69 560 498.20 590.75 600
Opt 40 30 20 20 20 40 20 0

Furthermore, for the case where 𝑚 = 4, we remark that
the average gap is in most cases less than 1%. The maximum
number of occurrences where the average gap is less than 1%
is reached for 𝐻5 which is often able to provide the optimal
solution.

6. Conclusion

In this paper, we present new adjustment and bounding pro-
cedures for the nonpermutation flowshop scheduling prob-
lem. We improve the main proposed adjustment procedures

of the literature and develop new ones. The resulting adjust-
ments have been efficiently used to derive lower and upper
bounds for the problem. Our experimental results show that
the developed bounds provide good results especially for
small values of the number of machines. In particular, a
heuristic based on randomization and bisection search seems
to exhibit promising performance.

This research can be extended by incorporating all the
new adjustment procedures and the developed lower and
upper bounds in a branch-and-bound algorithm. Another
avenue of future investigation is to apply the adjustment
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Table 15: Performance of the heuristics for 𝑚 = 6.

𝑛 10 20 30 40 50 60 70 80
𝐻1

Gap 9.47 7.67 6.91 5.14 3.80 1.62 2.76 2.68
Time 3.78 53.16 253.38 728.58 1063.13 1228.46 3719.93 6279.36
Opt 0 0 0 0 0 20 20 20

𝐻2

Gap 9.61 7.43 7.31 5.12 4.57 2.04 2.56 2.72
Time 4.28 49.41 242.64 628.18 1192.89 1173.98 2274.25 5679.16
Opt 0 0 0 10 0 0 20 40

𝐻3

Gap 7.99 6.49 6.23 4.48 3.33 1.27 2.32 2.18
Time 5.85 83.94 412.25 1180.35 1563.44 1476.98 4525.30 7984.64
Opt 0 0 0 10 0 20 30 40

𝐻4

Gap 9.75 8.29 6.90 5.45 4.72 2.55 2.81 2.78
Time 0.87 10.34 40.37 106.24 217.00 453.18 922.69 1491.32
Opt 0 0 0 10 0 10 20 20

𝐻5

Gap 6.39 4.84 5.61 5.05 5.01 3.43 3.31 5.04
Time 16.85 223.17 554.18 553.06 594.42 576.12 600 600
Opt 10 0 10 10 0 10 0 0

procedures to the permutation flowshop and the jobshop
scheduling problems.
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