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We introduce three equivalent concepts of almost periodic time scales as a further study of the corresponding concept proposed
in Li and Wang (2011) and several examples of almost periodic time scales which are not periodic are provided. Furthermore, the
concepts of almost periodic functions are redefined under the sense of this new timescale concept. Finally, almost periodicity of
Cauchymatrix for dynamic equations is proved under these new definitions. Based on these results, the existence of almost periodic
solutions to a class of nonlinear dynamic equations is investigated by the almost periodicity of Cauchy matrix on almost periodic
time scales. Besides, as an application, we apply our results to a class of high-order Hopfield neural networks.

1. Introduction

Almost periodicity is a recent concept in the literature of time
scales. It was formally introduced by Li andWang in [1, 2], and
based on this, some results concerning almost periodicity for
dynamic equations on time scales were proved and a series of
relative applications were published (see [3–6]). Meanwhile,
somemathematicians are interested in this subject, and some
relative works appeared (see [7–12]).

As everyone knows, the almost periodic time scales play
a very important and fundamental role in redefining some
classical functions on time scales such as almost periodic
functions [1], pseudo almost periodic functions [6] and
almost automorphic functions [7], and evenweighted pseudo
almost automorphic functions [3]. In [13], by using the
concept and properties of almost periodic time scales, Lizama
et al. prove a strong connection between almost periodic
functions on time scales and almost periodic functions on
R and then give an application to difference equations on
T = ℎZ. Besides, some works have been done under the
concept of almost periodic time scales; see [7, 13, 14].

However, some mathematicians find that the concept of
almost periodic time scales in [1] is exactly like the concept

of periodic time scales in [15]. Furthermore, in Section 3 of
[7], indeed, all invariant under translations time scales are
periodic time scales, that is, fromExample 3.9 to Example 3.11,
which indicate that we investigated almost periodic problems
of dynamic equations under the periodic time scales in the
past, and all the obtained results are valid for all periodic
time scales, particularly, for two special periodic time scales:
T = R and T = Z. Although this method can unify the
continuous and discrete situations effectively, whether or not
there exists a time scale which is almost periodic but not
periodic if we introduce a new concept of almost periodic
time scales. Therefore, it is very necessary to investigate the
almost periodic time scales and introduce amore general and
accurate definition that can strictly include all periodic time
scales to overcome some difficulties in this research field.

It is known to all that the Cauchymatrix is very important
in the research of dynamic equations. However, by using
the almost periodicity of Cauchy matrix to discuss almost
periodic problems of dynamic equations, we will encounter
a problem. Let𝑊(𝑡, 𝑠) be the Cauchy matrix of the following
dynamic equations:

𝑥

Δ
= 𝐴 (𝑡) 𝑥 (𝑡) , (1)
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where 𝐴 ∈ 𝐶(T ,R𝑛×𝑛) is an almost periodic matrix-valued
function and 𝑥 ∈ 𝐶(T ,R𝑛). 𝐶(T ,X) denotes the set of
all continuous functions from T to the Banach space X.
Consider the following nonlinear dynamic equations:

𝑥

Δ
= 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , (2)

where 𝐴 ∈ 𝐶(T ,R𝑛×𝑛) is an almost periodic matrix-valued
function and 𝑥 ∈ 𝐶(T ,R𝑛), and 𝑓 ∈ 𝐶(T × R𝑛,R𝑛) is almost
periodic in 𝑡 uniformly for 𝑥 ∈ R𝑛. By the Cauchy matrix
of (1), in this paper, we can get a bounded solution of (2) as
follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) Δ𝑠, (3)

and the question then arises: for any 𝜀 > 0, whether or not
the 𝜀-almost period 𝜏 of thematrix function𝐴(𝑡) is valid such
that the following inequality holds:

‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑊 (𝑡, 𝜎 (𝑠))‖

≤ 𝜀Γ
0
𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠)) , 𝑡 ≥ 𝑠,

(4)

if the Cauchy matrix satisfies the inequality:

‖𝑊 (𝑡, 𝑠)‖ ≤ 𝐾𝑒⊖𝛼 (
𝑡, 𝑠) , 𝑡 ≥ 𝑠, (5)

where 𝛼, Γ
0
, 𝐾 are positive constants. As everyone knows, if

T is a 𝜏-periodic time scale, then

𝜎 (𝑡 + 𝜏) = 𝜎 (𝑡) + 𝜏, (6)

so (4) will turn into

‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏) − 𝑊 (𝑡, 𝜎 (𝑠))‖

≤ 𝜀Γ
0
𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠)) , 𝑡 ≥ 𝑠,

(7)

which seems too special even though its validity can be shown
on all periodic time scales, particularly on T = R and
T = Z. Nevertheless, if we can introduce a new concept
of almost periodic time scales which strictly includes the
periodic time scales such that (4), rather than (7), is valid
under the condition (5), that is, the almost periodicity of
Cauchy matrix can be guaranteed without considering (6) on
this kind of general time scales, then the almost periodicity
of (3) can easily be shown under (4).

Motivated by the above, the almost periodic time scales
need a further study since the concept proposed in the past
[1] is actually periodic, which will lead to some research
difficulties and specificity of the obtained results. In this
paper, we will introduce three equivalent concepts of almost
periodic time scales as a revision of the corresponding
concept proposed in [1], and several examples of almost
periodic time scales which are not periodic are provided.
Furthermore, the concepts of almost periodic functions are
redefined under the sense of this new timescale concept.

The present paper is organized as follows. In Section 2, we
will introduce three equivalent concepts of almost periodic
time scales and give some key notes; then, the concepts of

almost periodic functions are redefined under the sense of
this new timescale definition. Furthermore, several examples
of almost periodic time scales which are not periodic are
provided. In Section 3, the almost periodicity of Cauchy
matrix is analyzed under these new definitions; then, the
almost periodicity of (3) is easily shown under the condition
(5). In Section 4, our results are applied to investigate the
existence of almost periodic solutions to a class of high-order
Hopfield neural networks on time scales. In Section 5, we
conduct a further discussion of almost periodic time scales,
on which the concept of almost automorphic functions is
introduced, and some relative works will appear in our future
research.

It isworth noting that the three new equivalent definitions
of almost periodic time scales proposed in this paper will play
an important role in analyzing almost periodicity, pseudo
almost periodicity, and weighted pseudo almost periodicity
of Cauchy matrix for dynamic equations on time scales. All
results obtained in [1] and their proof processes are valid
under these new concepts without considering the set Π,
which will be referred to in the next section.

2. A Further Study of Almost Periodic Time
Scales and Some Notes

A time scale T is a closed subset ofR. It follows that the jump
operators 𝜎, 𝜌 : T → T defined by 𝜎(𝑡) = inf{𝑠 ∈ T : 𝑠 > 𝑡}

and 𝜌(𝑡) = sup{𝑠 ∈ T : 𝑠 < 𝑡} (supplemented by inf 0 :=
sup T and sup 0 := inf T) are well defined. The point 𝑡 ∈ T

is left-dense, left-scattered, right-dense, and right-scattered if
𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡, and 𝜎(𝑡) > 𝑡, respectively. If T has
a right-scattered minimum𝑚, define T

𝑘
:= T \ 𝑚; otherwise,

set T𝑘 = T . For the notations [𝑎, 𝑏]T , [𝑎, 𝑏)T and so on, we will
denote time scale intervals

[𝑎, 𝑏]T = {𝑡 ∈ T : 𝑎 ≤ 𝑡 ≤ 𝑏} , (8)

where 𝑎, 𝑏 ∈ T with 𝑎 < 𝜌(𝑏). For more knowledge of time
scales, one can see [15–18].

Firstly, we recall the concept of almost periodic time
scales in [1].

Definition 1 (see [1]). A time scale T is called an almost
periodic time scale if

Π := {𝜏 ∈ R : 𝑡 ± 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (9)

Remark 2. The concept of almost periodic time scales pro-
posed in [1] was cited by [7] to introduce the definition of
almost automorphic functions on time scales which can be
applied to study almost automorphic solutions of dynamic
equations on time scales, and T is also called invariant time
scale under translations in Definition 3.1 of [7]. In fact, we
find that Definition 1 is equivalent to Definition 1.1 proposed
in [15]; that is, the almost periodic time scale T proposed in [1]
is a periodic time scale. In this paper, we will give three more
general and accurate equivalent concepts of almost periodic
time scales and redefine the concepts of almost periodic
functions on this new time scale concept. Furthermore, some
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examples and applications will be shown in which our results
can be applied to iron out the flaws of the proposed definition
in [1].

We give some notations; E𝑛 denote R𝑛 or C𝑛, 𝐷 denotes
an open set in E𝑛 or 𝐷 = E𝑛, and 𝑆 denotes an arbitrary
compact subset of𝐷.

Definition 3 (see [1]). Let T be an almost periodic time scale.
A function 𝑓 ∈ 𝐶(T × 𝐷,E𝑛) is called an almost periodic
function in 𝑡 ∈ T uniformly for 𝑥 ∈ 𝐷 if the 𝜀-translation set
of 𝑓

𝐸 {𝜀, 𝑓, 𝑆} = {𝜏 ∈ Π :






𝑓 (𝑡 + 𝜏, 𝑥) − 𝑓 (𝑡, 𝑥)






< 𝜀,

∀ (𝑡, 𝑥) ∈ T × 𝑆}
(10)

is relatively dense set in T for all 𝜀 > 0 and for each compact
subset 𝑆 of 𝐷; that is, for any given 𝜀 > 0 and each compact
subset 𝑆 of𝐷, there exists a constant 𝑙(𝜀, 𝑆) > 0 such that each
interval of length 𝑙(𝜀, 𝑆) contains 𝑎 𝜏(𝜀, 𝑆) ∈ 𝐸{𝜀, 𝑓, 𝑆} such
that






𝑓 (𝑡 + 𝜏, 𝑥) − 𝑓 (𝑡, 𝑥)






< 𝜀, ∀ (𝑡, 𝑥) ∈ T × 𝑆. (11)

𝜏 is called the 𝜀-translation number of 𝑓 and and 𝑙(𝜀) is called
the inclusion length of 𝐸{𝜀, 𝑓, 𝑆}.

For convenience, we denote 𝐴𝑃(T) = {𝑓 ∈ 𝐶(T ,E𝑛) :

𝑓 is almost periodic} and introduce some notations: let 𝛼 =
{𝛼
𝑛
} and 𝛽 = {𝛽

𝑛
} be two sequences. Then 𝛽 ⊂ 𝛼 means that

𝛽 is a subsequence of 𝛼; 𝛼 + 𝛽 = {𝛼
𝑛
+ 𝛽
𝑛
}, −𝛼 = {−𝛼

𝑛
}, and

𝛼 and 𝛽 are common subsequences of 𝛼 and 𝛽, respectively,
means that 𝛼

𝑛
= 𝛼



𝑛(𝑘)
and 𝛽

𝑛
= 𝛽



𝑛(𝑘)
for some given function

𝑛(𝑘).
We will introduce the translation operator 𝑇; 𝑇

𝛼
𝑓(𝑡, 𝑥) =

𝑔(𝑡, 𝑥) means that 𝑔(𝑡, 𝑥) = lim
𝑛→+∞

𝑓(𝑡 + 𝛼
𝑛
, 𝑥) and is

written only when the limit exists.

Definition 4 (see [1]). Let 𝑓(𝑡, 𝑥) ∈ 𝐶(T × 𝐷,E𝑛), if, for any
given sequence 𝛼 ⊂ Π, there exists 𝑎 subsequence 𝛼 ⊂ 𝛼
such that 𝑇

𝛼
𝑓(𝑡, 𝑥) exists uniformly on T × 𝑆; then, 𝑓(𝑡, 𝑥) is

called an almost periodic function in 𝑡 uniformly for 𝑥 ∈ 𝐷.

However, in [15], the authors propose the definition of
periodic time scales and give the remark as follows.

Definition 5 (see [15]). One can say that a time scale T is
periodic if there exists 𝑝 > 0 such that if 𝑡 ∈ T then 𝑡 ± 𝑝 ∈ T .
For T ̸= R, the smallest positive 𝑝 is called the period of the
time scale.

Remark 6 (see [15]). If T is a periodic time scale with period
𝑝, then 𝜎(𝑡 + 𝑛𝑝) = 𝜎(𝑡) + 𝑛𝑝. Consequently, the graininess
function 𝜇 satisfies 𝜇(𝑡+𝑛𝑝) = 𝜎(𝑡+𝑛𝑝)−(𝑡+𝑛𝑝) = 𝜎(𝑡)−𝑡 =
𝜇(𝑡) and so it is a periodic function with period 𝑝.

Note that Definitions 3 and 4 are proposed based on the
set Π. Although Definition 1 is exactly like Definition 5 since
∀𝜏 ∈ Π, one has 𝑡 ± 𝜏 ∈ T . In order to clarify some theoretical
ambiguities between periodic time scales in [15] and almost

periodic time scales in [1], in the following, we will propose
a more general and accurate concept of almost periodic time
scales instead of Definition 1 and give some examples of time
scales which are almost periodic but not periodic.

Let 𝜏 be a number. We set the time scales as follows:

T :=
+∞

⋃

𝑖=−∞

[𝛼
𝑖
, 𝛽
𝑖
] ,

T
𝜏
:= T + 𝜏 = {𝑡 + 𝜏 : ∀𝑡 ∈ T} :=

+∞

⋃

𝑖=−∞

[𝛼

𝜏

𝑖
, 𝛽

𝜏

𝑖
] .

(12)

Define the distance between two time scales, T and T𝜏, by

𝑑 (T , T
𝜏
) = max{sup

𝑖∈Z






𝛼
𝑖
− 𝛼

𝜏

𝑖






, sup
𝑖∈Z






𝛽
𝑖
− 𝛽

𝜏

𝑖






} . (13)

Definition 7 (see [19]). A subset 𝑆 of R is called relatively
dense if there exists a positive number 𝐿 such that [𝑎, 𝑎+𝐿]∩
𝑆 ̸= 0 for all 𝑎 ∈ R. The number 𝐿 is called the inclusion
length.

Definition 8. We say T is an almost periodic time scale if, for
any give 𝜀 > 0, there exists a constant 𝑙(𝜀) > 0 such that each
interval of length 𝑙(𝜀) contains 𝑎 𝜏(𝜀) such that

𝑑 (T , T
𝜏
) < 𝜀; (14)

that is, for any 𝜀 > 0, the following set

𝐸 {T , 𝜀} = {𝜏 ∈ R : 𝑑 (T
𝜏
, T) < 𝜀} (15)

is relatively dense. 𝜏 is called the 𝜀-translation number of T
and 𝑙(𝜀) is called the inclusion length of 𝐸{T , 𝜀}, and 𝐸{T , 𝜀} is
called the 𝜀-translation set of T .

Remark 9. FromDefinition 1, one can easily see that ifΠ ̸= 0,
then for any 𝜀 > 0, there exists a constant 𝑙(𝜀) > 0 such that
each interval of length 𝑙(𝜀) contains a 𝜏(𝜀) ∈ Π such that

T ∩ T
𝜏
= T , 𝑑 (T , T

𝜏
) = 0 < 𝜀. (16)

Therefore, Definition 8 includesDefinition 1. Particularly, it is
worth emphasising that 𝜏(𝜀) in Definition 8 need not satisfy
𝑡 ± 𝜏(𝜀) ∈ T for all 𝑡 ∈ T .

Remark 10. According to Definition 8, one can obtain that
sup T = +∞, inf T = −∞, and

T ∩ T
𝜏
̸= 0, sup {T ∩ T𝜏} = +∞,

inf {T ∩ T𝜏} = −∞.
(17)

Furthermore, in Definition 8, one can see that if 𝑑(T , T𝜏) < 𝜀,
then 𝑑(T , T−𝜏) < 𝜀; that is, if 𝜏 ∈ 𝐸{T , 𝜀}, then −𝜏 ∈ 𝐸{T , 𝜀}.
If 𝜏
1
∈ 𝐸{T , 𝜀}, 𝜏

2
∈ 𝐸{T , 𝜀}, then we have 𝜏

1
+ 𝜏
2
∈ 𝐸{T , 2𝜀}

since

𝑑 (T , T
𝜏
1
+𝜏
2
) ≤ 𝑑 (T , T

𝜏
1
) + 𝑑 (T

𝜏
1
, T
𝜏
1
+𝜏
2
)

= 𝑑 (T , T
𝜏
1
) + 𝑑 (T , T

𝜏
2
) < 2𝜀.

(18)
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Theorem 11. Let T be an almost periodic time scale. Then for
any given sequence 𝛼, there exists a subsequence 𝛼 ⊂ 𝛼 such
that {T𝛼

𝑛

} converges to a time scale T
0
; that is, for any given 𝜀 >

0, there exists𝑁
0
> 0 such that 𝑛 > 𝑁

0
implies 𝑑(T𝛼𝑛 , T

0
) < 𝜀.

Furthermore, T
0
is also almost periodic.

Proof. For any 𝜀 > 0. Let 𝑙 = 𝑙(𝜀/4) be an inclusion length
of 𝐸{T , 𝜀/4}. For any given subsequence 𝛼 = {𝛼

𝑛
}, we denote

𝛼



𝑛
= 𝜏



𝑛
+𝛾



𝑛
, where 𝜏

𝑛
∈ 𝐸{T , 𝜀/4} and 0 ≤ 𝛾

𝑛
≤ 𝑙, 𝑛 = 1, 2, . . ..

Therefore, there exists a subsequence 𝛾 = {𝛾
𝑛
} ⊂ 𝛾


= {𝛾



𝑛
}

such that 𝛾
𝑛
→ 𝑠 as 𝑛 → ∞, 0 ≤ 𝑠 ≤ 𝑙.

Also, it is easy to see that there exists 𝛿(𝜀) > 0 so that
|𝑡
1
− 𝑡
2
| < 𝛿 implies

𝑑 (T
𝑡
1
, T
𝑡
2
) <

𝜀

2

. (19)

Since 𝛾 is a convergent sequence, there exists 𝑁 = 𝑁(𝛿)

so that 𝑝,𝑚 ≥ 𝑁 implies |𝛾
𝑝
− 𝛾
𝑚
| < 𝛿. Now, one can take

𝛼 ⊂ 𝛼

, 𝜏 ⊂ 𝜏 = {𝜏
𝑛
} such that 𝛼, 𝜏 are common with 𝛾, and

then for any integers 𝑝,𝑚 ≥ 𝑁, we have

𝑑 (T
𝜏
𝑝
−𝜏
𝑚
, T) ≤ 𝑑 (T

𝜏
𝑝
−𝜏
𝑚
, T
𝜏
𝑝
) + 𝑑 (T

𝜏
𝑝
, T)

<

𝜀

4

+

𝜀

4

=

𝜀

2

;

(20)

that is,

(𝛼
𝑝
− 𝛼
𝑚
) − (𝛾

𝑝
− 𝛾
𝑚
) = 𝜏
𝑝
− 𝜏
𝑚
∈ 𝐸{T ,

𝜀

2

} . (21)

Hence, we can obtain

𝑑 (T
𝛼
𝑝
, T
𝛼
𝑚
) ≤ 𝑑 (T

𝛼
𝑝
−𝛼
𝑚
, T)

≤ 𝑑 (T
𝛼
𝑝
−𝛼
𝑚
, T
𝛾
𝑝
−𝛾
𝑚
) + 𝑑 (T

𝛾
𝑝
−𝛾
𝑚
, T)

<

𝜀

2

+

𝜀

2

= 𝜀.

(22)

Thus, we can take sequences 𝛼(𝑘) = {𝛼(𝑘)
𝑛
}, 𝑘 = 1, 2, . . ., and

𝛼

(𝑘+1)
⊂ 𝛼

(𝑘)
⊂ 𝛼 such that for any integers𝑚, 𝑝 the following

holds:

𝑑 (T
𝛼
(𝑘)

𝑝
, T
𝛼
(𝑘)

𝑚
) <

1

𝑘

, 𝑘 = 1, 2, . . . . (23)

For all sequences 𝛼(𝑘), 𝑘 = 1, 2, . . ., we can take a sequence
𝛽 = {𝛽

𝑛
},𝛽
𝑛
= 𝛼

(𝑛)

𝑛
, and then it is easy to see that {T𝛽𝑛} ⊂ {T𝛼𝑛}

for any integers 𝑝,𝑚 with 𝑝 < 𝑚 the following holds:

𝑑 (T
𝛽
𝑝
, T
𝛽
𝑚
) <

1

𝑝

. (24)

Therefore, {T𝛽𝑛} converges to some T
0
which is a closed subset

of R; that is, 𝑑(T𝛽𝑛 , T
0
) → 0 as 𝑛 → ∞.

Finally, for any given 𝜀 > 0, one can take 𝜏 ∈ 𝐸{T , 𝜀}; then,
the following holds:

𝑑 (T
𝛽
𝑛
+𝜏
, T
𝛽
𝑛
) < 𝜀. (25)

Letting 𝑛 → +∞, we have

𝑑 (T
𝜏

0
, T
0
) ≤ 𝜀, (26)

which implies that 𝐸{T
0
, 𝜀} is relatively dense.Therefore, T

0
is

almost periodic. This completes the proof.

Theorem 12. Let T be a time scale, if, for any sequence𝛼, there
exists 𝛼 ⊂ 𝛼 such that {T𝛼𝑛} converges to a time scale T

0
, then

T is almost periodic.

Proof. For contradiction, if this is not true, then there exists
𝜀
0
> 0 such that for any sufficiently large 𝑙 > 0, we can

find an interval with length of 𝑙 and there is no 𝜀
0
-translation

numbers of T in this interval; that is, every point in this
interval is not in 𝐸{T , 𝜀

0
}.

One can take a number 𝛼
1
and find an interval (𝑎

1
, 𝑏
1
)

with 𝑏
1
− 𝑎
1
> 2|𝛼



1
|, where 𝑎

1
, 𝑏
1
satisfy that there is no 𝜀

0
-

translation numbers of T in the interval (𝑎
1
, 𝑏
1
). Next, taking

𝛼



2
= (1/2)(𝑎

1
+ 𝑏
1
), obviously, 𝛼

2
− 𝛼



1
∈ (𝑎
1
, 𝑏
1
), so 𝛼

2
−

𝛼



1
∉ 𝐸{T , 𝜀

0
}; then, one can find an interval (𝑎

2
, 𝑏
2
) with 𝑏

2
−

𝑎
2
> 2 (|𝛼



1
| + |𝛼



2
|), where 𝑎

2
, 𝑏
2
satisfy that there is no 𝜀

0
-

translation numbers of T in the interval (𝑎
2
, 𝑏
2
). Next, taking

𝛼



3
= (1/2)(𝑎

2
+𝑏
2
), obviously, 𝛼

3
−𝛼



2
, 𝛼
3
−𝛼



1
∉ 𝐸{T , 𝜀

0
}. One

can repeat these processes again and again and find 𝛼
4
, 𝛼



5
, . . .,

such that 𝛼
𝑖
− 𝛼



𝑗
∉ 𝐸{T , 𝜀

0
}, 𝑖 > 𝑗. Hence, for any 𝑖 ̸= 𝑗, 𝑖, 𝑗 =

1, 2, . . ., without loss of generality, letting 𝑖 > 𝑗, we have

𝑑 (T
𝛼


𝑖
, T
𝛼


𝑗
) = 𝑑 (T

𝛼


𝑖
−𝛼


𝑗
, T) ≥ 𝜀

0
. (27)

Therefore, there is no convergent subsequence of {T𝛼


𝑛
}, a

contradiction. Hence, T is almost periodic. This completes
the proof.

From Theorems 11 and 12, we can obtain the following
equivalent definition of almost periodic time scales.

Definition 13. Let T be a time scale, and if, for any given
sequence 𝛼, there exists a subsequence 𝛼 ⊂ 𝛼

 such that
{T𝛼𝑛} converges to a time scale T

0
, then T is called an almost

periodic time scale.

In the sequel, based on Definitions 8 and 13, we will give
the two equivalent concepts of almost periodic functions on
time scales.

Definition 14. Let T be an almost periodic time scale. A
function 𝑓 ∈ 𝐶(T × 𝐷,E𝑛) is called an almost periodic
function in 𝑡 ∈ T uniformly for 𝑥 ∈ 𝐷 if the 𝜀-translation
set of 𝑓

𝐸 {𝜀, 𝑓, 𝑆} = {𝜏 ∈ R :





𝑓 (𝑡 + 𝜏, 𝑥) − 𝑓 (𝑡, 𝑥)






< 𝜀,

∀ (𝑡, 𝑥) ∈ (T ∩ T
−𝜏
) × 𝑆}

(28)

is a relatively dense set for all 𝜀 > 0 and for each compact
subset 𝑆 of 𝐷; that is, for any given 𝜀 > 0 and each compact
subset 𝑆 of𝐷, there exists a constant 𝑙(𝜀, 𝑆) > 0 such that each
interval of length 𝑙(𝜀, 𝑆) contains a 𝜏(𝜀, 𝑆) ∈ 𝐸{𝜀, 𝑓, 𝑆} such
that





𝑓 (𝑡 + 𝜏, 𝑥) − 𝑓 (𝑡, 𝑥)






< 𝜀, ∀ (𝑡, 𝑥) ∈ (T ∩ T
−𝜏
) × 𝑆. (29)

𝜏 is called the 𝜀-translation number of 𝑓 and 𝑙(𝜀) is called the
inclusion length of 𝐸{𝜀, 𝑓, 𝑆}.
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Remark 15. From Definition 14, one can easily see that if T
is a periodic time scale, that is, T satisfies Definition 1, then
in Definition 14, we have T ∩ T−𝜏 = T . Hence, Definition 14
strictly includes Definition 3.

Definition 16. Assume that T is an almost periodic time scale.
Let 𝑓(𝑡, 𝑥) ∈ 𝐶(T ×𝐷,E𝑛), if for any given sequence 𝛼, there
exists a subsequence𝛼 ⊂ 𝛼 such that the limit set T

0
of {T−𝛼𝑛}

exists and T
𝛼
𝑓(𝑡, 𝑥) exists uniformly on T

0
× 𝑆, then 𝑓(𝑡, 𝑥) is

called an almost periodic function in 𝑡 uniformly for 𝑥 ∈ 𝐷.

Remark 17. Noting that T is almost periodic, according to
Definition 13, we have

lim
𝑛→∞

T
−𝛼
𝑛
=

∞

⋂

𝑗=1

∞

⋃

𝑘=𝑗

T
−𝛼
𝑛
=

∞

⋃

𝑗=1

∞

⋂

𝑘=𝑗

T
−𝛼
𝑛
= T
0
. (30)

Therefore, we can also substitute ⋂

∞

𝑗=1
⋃

∞

𝑘=𝑗
T−𝛼𝑛 or

⋃

∞

𝑗=1
⋂

∞

𝑘=𝑗
T−𝛼𝑛 for T

0
in Definition 16. Furthermore,

one can see that if T is periodic, then we have
T
0
= ⋂

∞

𝑗=1
⋃

∞

𝑘=𝑗
T−𝛼𝑛 = ⋃

∞

𝑗=1
⋂

∞

𝑘=𝑗
T−𝛼𝑛 = T , that is,

Definition 16 strictly includes Definition 4.

From Definition 8 and the definition of the graininess
function 𝜇, one can have the following.

Theorem 18. If T is an almost periodic time scale, then for any
𝜀 > 0 there exists a constant 𝑙(𝜀) > 0 such that each interval of
length 𝑙(𝜀) contains 𝑎 𝜏(𝜀) ∈ 𝐸{𝜀, 𝜇} such that






𝜇 (𝑡 + 𝜏) − 𝜇 (𝑡)






< 𝜀, ∀𝑡 ∈ T ∩ T
−𝜏
. (31)

Remark 19. The inequality (31) can also be written as

|𝜎 (𝑡 + 𝜏) − 𝜎 (𝑡) − 𝜏| < 𝜀, ∀𝑡 ∈ T ∩ T
−𝜏
, (32)

which indicates that if T is 𝜏-periodic, we have 𝜎(𝑡 + 𝜏) =
𝜎(𝑡) + 𝜏; then, T is an almost periodic time scale.

Remark 20. Conversely, if the graininess function 𝜇 is an
almost periodic function, from the definition of the function
𝜇 : T → R, that is, 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, one can obviously see that
there must exist at least 𝑎 𝜏 ∈ 𝐸{𝜀, 𝜇} in the each interval of
length 𝑙(𝜀) such that 𝑑(T , T−𝜏) < 𝜀. Therefore, we can easily
get that T is an almost periodic time scale by Definition 8.
According to this, in the following, wewill introduce the third
definition of almost periodic time scales which is equivalent
to Definition 8.

Now, we give the third concept of almost periodic time
scales by the graininess function 𝜇 as follows.

Definition 21. Let 𝜇 : T → R, 𝜇(𝑡) = 𝜎(𝑡) − 𝑡. One can say
that T is an almost periodic time scale if, for any 𝜀 > 0, the set

Π

∗
= {𝜏 ∈ R :






𝜇 (𝑡 + 𝜏) − 𝜇 (𝑡)






< 𝜀, ∀𝑡 ∈ T ∩ T
−𝜏
} (33)

is relatively dense; that is, 𝜇 is an almost periodic function on
T .

ByTheorem 18 andDefinition 21, we can get the following
corollaries.

Corollary 22. If T ̸= R and T is a periodic time scale, then T

has the smallest positive period 𝑝 and the graininess function 𝜇
is a periodic function with period 𝑝.

Corollary 23. All periodic time scales are almost periodic.

Corollary 24. T is an 𝜏-periodic time scale if and only if the
graininess function 𝜇 : T → R+ is a 𝜏-periodic function.

Next, wewill show some examples of almost periodic time
scales.

Example 25. If T = ⋃
𝑘∈Z[𝑘(𝑎+𝑏), 𝑘(𝑎+𝑏)+𝑏], where 𝑎 ̸= −𝑏,

then

𝜎 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑡, if 𝑡 ∈
∞

⋃

𝑘=0

[𝑘 (𝑎 + 𝑏) , 𝑘 (𝑎 + 𝑏) + 𝑏) ,

𝑡 + 𝑎, if 𝑡 ∈
∞

⋃

𝑘=0

{𝑘 (𝑎 + 𝑏) + 𝑏} ,

𝜇 (𝑡) =

{
{
{
{

{
{
{
{

{

0, if 𝑡 ∈
∞

⋃

𝑘=0

[𝑘 (𝑎 + 𝑏) , 𝑘 (𝑎 + 𝑏) + 𝑏) ,

𝑎, if 𝑡 ∈
∞

⋃

𝑘=0

{𝑘 (𝑎 + 𝑏) + 𝑏} .

(34)

Thus, T is almost periodic. Obviously, if 𝑏 = 0, 𝑎 = 1, then
T = Z. if 𝑏 = 1, 𝑎 = 0, then T = R.

Remark 26. One can easily see that Example 25 is a periodic
time scale with periodicity 𝑎+𝑏, and by Corollary 23, it is also
an almost periodic time scale.

(1) As everyone knows, the graininess function 𝜇 : T →

[0,∞) defined by

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡 (35)

can describe the construction of a time scale. From
Definition 21, one can see that 𝜇(𝑡) is an almost
periodic function if and only if T is an almost periodic
time scale; on the other hand, from Definition 5 and
Corollary 24, T is a periodic time scale if and only if
𝜇 : T → R+ is a periodic function. Hence, from the
graininess function 𝜇, we can see that these two time
scales are different and we will show some examples
in the next point.

(2) In this point, we will show some examples of time
scales which are almost periodic but not periodic.

Example 27. Let 𝑎 > 1 and consider the the following time
scale:

P
𝑎,cos 𝑡 =

∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
] , (36)

where
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𝑝
𝑚
= (𝑚 − 1) 𝑎 +

𝑚−1

∑

𝑘=1

cos(𝑘𝑎 + cos 𝑎 + cos(2𝑎 + cos 𝑎) + ⋅ ⋅ ⋅ + cos((𝑘 − 1)𝑎 + cos 𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 terms
) . (37)

Then, we have

𝜎 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

𝑡 + cos 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} ,

𝜇 (𝑡) =

{
{
{
{

{
{
{
{

{

0, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

cos 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} .

(38)

One can see that this kind of time scale has the graininess
function 𝜇 which is an almost periodic function, and by
Definition 21, T is an almost periodic time scale. It is worth
noting that there is not any 𝜏 ∈ R such that 𝑡 ± 𝜏 ∈ T for all
𝑡 ∈ T ; thus, T is not a periodic time scale by Definitions 1 or
5.

Example 28. Let 𝑎 > 1 and consider the the following time
scale:

P
𝑎,cos 𝑡+cos√2𝑡 =

∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
] , (39)

where

𝑝
𝑚
= (𝑚 − 1) 𝑎

+

𝑚−1

∑

𝑘=1

cos(𝑘𝑎 + cos 𝑎 + cos√2𝑎

+ cos (2𝑎 + cos 𝑎 + cos√2𝑎)

+ ⋅ ⋅ ⋅ + cos ((𝑘 − 1) 𝑎 + cos 𝑎 + cos√2𝑎)

+ cos√2 ((𝑘 − 1) 𝑎 + cos 𝑎 + cos√2𝑎)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘+1 terms

) .

(40)

Then, we have

𝜎 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

𝑡 + cos 𝑡 + cos√2 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} ,

𝜇 (𝑡) =

{
{
{
{

{
{
{
{

{

0, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

cos 𝑡 + cos√2 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} .

(41)

We see that this kind of time scale has the graininess function
𝜇 which is an almost periodic function, and by Definition 21,
T is an almost periodic time scale. It is worth noting that there
is not any 𝜏 ∈ R such that 𝑡 ± 𝜏 ∈ T for all 𝑡 ∈ T ; thus, T is not
a periodic time scale by Definitions 1 or 5.

Example 29. Let 𝑎 > 1 and consider the the following time
scale:

P
𝑎,sin 𝑡 =

∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
] , (42)

where

𝑝
𝑚
= (𝑚 − 1) 𝑎 +

𝑚−1

∑

𝑘=1

sin(𝑘𝑎 + sin 𝑎 + sin (2𝑎 + sin 𝑎) + ⋅ ⋅ ⋅ + sin ((𝑘 − 1) 𝑎 + sin 𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 terms
) . (43)

Then, we have

𝜎 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

𝑡 + sin 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} ,

𝜇 (𝑡) =

{
{
{
{

{
{
{
{

{

0, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

sin 𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} .

(44)

One can see that this kind of time scale has the graininess
function 𝜇 which is an almost periodic function, and by
Definition 21, T is an almost periodic time scale. It is worth
noting that there is not any 𝜏 ∈ R such that 𝑡 ± 𝜏 ∈ T for all
𝑡 ∈ T ; thus, T is not a periodic time scale by Definitions 1 or
5.

Example 30. Let 𝑎 > 1 and consider the the following time
scale:

P
𝑎,sin 𝑡+sin√2𝑡 =

∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
] , (45)
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where

𝑝
𝑚
= (𝑚 − 1) 𝑎

+

𝑚−1

∑

𝑘=1

sin(𝑘𝑎 + sin 𝑎 + sin√2𝑎

+ sin (2𝑎 + sin 𝑎 + sin√2𝑎)

+ . . . + sin ((𝑘 − 1) 𝑎 + sin 𝑎 + sin√2𝑎)

+ sin√2 ((𝑘 − 1) 𝑎 + sin 𝑎 + sin√2𝑎)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘+1 terms

) .

(46)

Then, we have

𝜎 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

𝑡 + sin 𝑡 + sin√2𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} ,

𝜇 (𝑡) =

{
{
{
{

{
{
{
{

{

0, if 𝑡 ∈
∞

⋃

𝑚=1

[𝑝
𝑚
, 𝑎 + 𝑝

𝑚
) ,

sin 𝑡 + sin√2𝑡, if 𝑡 ∈
∞

⋃

𝑚=1

{𝑎 + 𝑝
𝑚
} .

(47)

We see that this kind of time scale has the graininess function
𝜇 which is an almost periodic function, and by Definition 21,
T is an almost periodic time scale. It is worth noting that there
is not any 𝜏 ∈ R such that 𝑡 ± 𝜏 ∈ T for all 𝑡 ∈ T ; thus, T is not
a periodic time scale by Definition 1 or Definition 5.

Remark 31. From Example 27 to Example 30, there is not any
𝜏 ∈ R such that 𝑡 ± 𝜏 ∈ T for all 𝑡 ∈ T . Therefore, all
examples show that the concepts of almost periodic time
scales proposed in this paper strictly include all periodic time
scales and they are more general and accurate.

By Definitions 8 and 21, we can give the following
sufficient and necessary condition to guarantee that T is
almost periodic.

Theorem 32. Let T be a time scale and T is almost periodic if
and only if Π∗ is relatively dense in T ; that is, 𝜇 is an almost
periodic function on T .

Corollary 33. The time scales are invariant under translations
if and only if 𝜇 is periodic.

Remark 34. The Examples 3.7, 3.8, 3.9, 3.10, and 3.11 in [7] are
invariant time scales under translations, and obviously, all of
them are periodic time scales.

3. Cauchy Matrix for Dynamic Equations

In this section, by the new concepts proposed in Section 2,
we will prove some useful theorems and lemmas of Cauchy
matrix of (1), and using these results, we can obtain the
existence and uniqueness of almost periodic solutions of
(2) straightly. These theorems and lemmas can be applied
to study almost periodic solutions of many other types of
mathematical models on time scales.

Theorem 35. Let𝑊(𝑡) be a fundamental matrix of system (1).
Then, for 𝑡 ≥ 𝑡

0
, every solution of system (2) is given by

𝑥 (𝑡) = 𝑊 (𝑡) [𝑐 + ∫

𝑡

𝑡
0

𝑊

−1
(𝜎 (𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) Δ𝜏] . (48)

In particular, if𝑊(𝑡) = 𝑊(𝑡, 𝑡
0
) is a Cauchy matrix of system

(1), then, for 𝑡 ≥ 𝑡
0
, any solution of (2) with initial condition

𝑥(𝑡
0
, 𝑥
0
) = 𝑥
0
can be written as

𝑥 (𝑡, 𝑥
0
) = 𝑊(𝑡, 𝑡

0
) 𝑥
0
+ ∫

𝑡

𝑡
0

𝑊(𝑡, 𝜎 (𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) Δ𝜏.

(49)

Proof. Since𝑊 is a nonsingular matrix and Δ-differentiable.
Then, under the linear change of variables,

𝑥 = 𝑊(𝑡) 𝑦; (50)

then, system (2) turns into the following:

𝑦

Δ
= 𝑊

−1
(𝜎 (𝑡)) 𝑓 (𝑡, 𝑥 (𝑡)) . (51)

From (51) we can find that, for 𝑡 ≥ 𝑡
0
,

𝑦 (𝑡) = 𝑐 + ∫

𝑡

𝑡
0

𝑊

−1
(𝜎 (𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) Δ𝜏, (52)

where 𝑐 = 𝑦(𝑡
0
) is a constant vector; that is,

𝑊

−1
(𝑡) 𝑥 = 𝑊

−1
(𝑡
0
) 𝑥
0
+ ∫

𝑡

𝑡
0

𝑊

−1
(𝜎 (𝜏)) 𝑓 (𝜏, 𝑥 (𝜏)) Δ𝜏;

(53)

then, we can get (48) and (49). This completes the proof.

Remark 36. ByTheorem 35, one can easily check that (2) has
a bounded solution as follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) Δ𝑠. (54)

Noting that if (1) admits an exponential dichotomy, then we
can take the projection 𝑃 = 𝐼 in Lemma 2.13 of [2] and
𝑊(𝑡, 𝜎(𝑠)) = 𝑋(𝑡)𝑋

−1
(𝜎(𝑠)) to get this bounded solution.

Furthermore, by the concept of exponential dichotomies on
time scales, one can easily see that there exist 𝐾 > 1, 𝛼 > 0
such that

‖𝑊 (𝑡, 𝜎 (𝑠))‖ =







𝑋 (𝑡)𝑋

−1
(𝜎 (𝑠))







≤ 𝐾𝑒
⊖𝛼 (
𝑡, 𝑠) , 𝑡 ≥ 𝑠,

(55)

where 𝑋(𝑡) is the fundamental solution matrix of (1); that is,
(5) holds.
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Definition 37 (see [16]). Let 𝑓 : T → R be a function and let
𝑡 = (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ T𝜅. Then define 𝑓Δ 𝑖(𝑡) to be the number

(provided it exists) with the property that given any 𝜀 > 0
there exists a neighborhood𝑈 of 𝑡

𝑖
with𝑈 = (𝑡

𝑖
−𝛿, 𝑡
𝑖
+𝛿)∩T

𝑖

for 𝛿 > 0 such that






[𝑓

𝜎
𝑖
(𝑡) − 𝑓

𝑠

𝑖
(𝑡)] − 𝑓

Δ
𝑖
(𝑡) [𝜎𝑖 (

𝑡) − 𝑠]







≤ 𝜀






𝜎
𝑖 (
𝑡) − 𝑠






∀𝑠 ∈ 𝑈.

(56)

𝑓

Δ
𝑖 is called the partial delta derivative of 𝑓 at 𝑡 with respect

to the variable 𝑡
𝑖
.

Theorem 38. For system (1), let the matrix 𝐴 ∈ 𝐶(T ,R𝑛×𝑛)

be almost periodic. If the Cauchy matrix 𝑊(𝑡, 𝑠) satisfies the
inequality

‖𝑊 (𝑡, 𝑠)‖ ≤ 𝐾𝑒⊖𝛼 (
𝑡, 𝑠) , 𝑡 ≥ 𝑠, (57)

where 𝐶 and 𝛼 are positive real numbers and 𝛼 is positive
regressive, then the diagonal of the matrix 𝑊(𝑡, 𝑠) is almost
periodic; that is, for any 𝜀 > 0, there exists a relatively dense
set Γ of almost periods such that, for 𝑟 ∈ Γ, we have

‖𝑊 (𝑡 + 𝑟, 𝑠 + 𝑟) − 𝑊 (𝑡, 𝑠)‖ < 𝜀Γ0
𝑒
⊖𝛼 (
𝑡, 𝑠) ,

𝑡, 𝑠 ∈ T ∩ T
−𝑟
,

(58)

where Γ
0
is a positive constant.

Proof. Since

𝑊

Δ
1
= 𝐴 (𝑡)𝑊 (𝑡 + 𝑟, 𝑠 + 𝑟)

+ (𝐴 (𝑡 + 𝑟) − 𝐴 (𝑡))𝑊 (𝑡 + 𝑟, 𝑠 + 𝑟) ,

(59)

we have

𝑊(𝑡 + 𝑟, 𝑠 + 𝑟)

= 𝑊 (𝑡, 𝑠) + ∫

𝑡

𝑠

𝑊(𝑡, 𝜎 (𝑢)) (𝐴 (𝑡 + 𝑢) − 𝐴 (𝑢))

× 𝑊 (𝑢 + 𝑟, 𝑠 + 𝑟) Δ𝑢.

(60)

Further we have

‖𝑊 (𝑡 + 𝑟, 𝑠 + 𝑟) − 𝑊 (𝑡, 𝑠)‖

≤ ∫

𝑡

𝑠

‖𝑊 (𝑡, 𝜎 (𝑢))‖ ‖𝐴 (𝑢 + 𝑟) − 𝐴 (𝑢)‖

× ‖𝑊 (𝑢 + 𝑟, 𝑠 + 𝑟)‖ Δ𝑢

≤ ∫

𝑡

𝑠

𝜀𝐾

2
𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑢)) Δ𝑢

= ∫

𝑡

𝑠

𝜀𝐾

2
𝑒
⊖𝛼 (
𝑡, 𝑠) 𝑒⊖𝛼 (

𝑠, 𝜎 (𝑢)) Δ𝑢

≤ 𝜀𝐾

2
𝑒
⊖𝛼 (
𝑡, 𝑠) ∫

𝑡

𝑠

𝑒
⊖𝛼 (
𝑠, 𝜎 (𝑢)) Δ𝑢

≤

𝜀𝐾

2
(1 + 𝜇𝛼)

𝛼

𝑒
⊖𝛼 (
𝑡, 𝑠) , 𝑡 ≥ 𝑠,

(61)

where 𝜇 = sup
𝑡∈T𝜇(𝑡); then, we can get

‖𝑊 (𝑡 + 𝑟, 𝑠 + 𝑟) − 𝑊 (𝑡, 𝑠)‖

≤

𝜀𝐾

2
(1 + 𝜇𝛼)

𝛼

𝑒
⊖𝛼 (
𝑡, 𝑠) ,

𝑡, 𝑠 ∈ T ∩ T
−𝑟
, 𝑡 ≥ 𝑠,

(62)

where Γ
0
= 𝐾

2
(1 + 𝜇𝛼)/𝛼. This completes the proof.

We can prove the following theorem exactly like
Theorem 38 if we let𝑊(𝑡, 𝑠) = 𝑒

𝛼
(𝑡, 𝑠), so we give it straightly.

Theorem 39. For any 𝜀 > 0, 𝛼 ∈R+ is positive regressive and
𝛼 is almost periodic; then, there exists a relatively dense set Γ of
almost periods such that, for 𝑟 ∈ Γ, we have






𝑒
⊖𝛼 (
𝑡 + 𝑟, 𝑠 + 𝑟) − 𝑒⊖𝛼 (

𝑡, 𝑠)






< 𝜀Γ
0
𝑒
⊖𝛼 (
𝑡, 𝑠) , 𝑡, 𝑠 ∈ T ∩ T

−𝑟
,

(63)

where Γ
0
is a positive constant.

Lemma 40. Let 𝛼 ∈ R+ be regressive and let T be almost
periodic; then, for any 𝜀 > 0, there exists 𝛿 > 0 such that
|𝑠
1
− 𝑠
2
| < 𝛿 implies





𝑒
𝛼
(𝑡, 𝑠
1
) − 𝑒
𝛼
(𝑡, 𝑠
2
)






< 𝜀






𝑒
𝛼
(𝑡, 𝑠
2
)






, ∀𝑡 ∈ T . (64)

Proof. For any 𝑠
1
, 𝑠
2
∈ T , we have






𝑒
𝛼
(𝑡, 𝑠
1
) − 𝑒
𝛼
(𝑡, 𝑠
2
)






=






𝑒
𝛼
(𝑡, 𝑠
2
) 𝑒
𝛼
(𝑠
2
, 𝑠
1
) − 𝑒
𝛼
(𝑡, 𝑠
2
)






=






𝑒
𝛼
(𝑡, 𝑠
2
)











(𝑒
𝛼
(𝑠
2
, 𝑠
1
) − 1)






.

(65)

Since T is almost periodic time scale, 𝜇 is bounded on T .
Denoting that

sup
𝑡∈T











ln (1 + 𝜇 (𝑡) 𝛼)
𝜇 (𝑡)











:= 𝐶, (66)

we can take 𝛿 < ln(𝜀 + 1)/𝐶; then,





𝑒
𝛼
(𝑡, 𝑠
2
)











𝑒
𝛼
(𝑠
2
, 𝑠
1
) − 1






< 𝜀






𝑒
𝛼
(𝑡, 𝑠
2
)






. (67)

This completes the proof.

We can prove the following theorem exactly like
Lemma 40, so we give it straightly.

Theorem 41. Let𝑊(𝑡, 𝑠) be the Cauchy matrix of (1) and 𝛼 ∈
R+ is regressive. If𝑊(𝑡, 𝑠) is continuous on T ×T , then, for any
𝜀 > 0, there exists 𝛿 > 0 such that |𝑠

1
− 𝑠
2
| < 𝛿 implies






𝑊 (𝑡, 𝑠
1
) − 𝑊(𝑡, 𝑠

2
)






≤ 𝜀






𝑊 (𝑡, 𝑠
2
)






, ∀𝑡 ∈ T . (68)

If𝑊(𝑡, 𝑠) satisfies

‖𝑊 (𝑡, 𝑠)‖ ≤ 𝐾𝑒𝛼 (
𝑡, 𝑠) , (69)

then ‖𝑊(𝑡, 𝑠
1
) − 𝑊(𝑡, 𝑠

2
)‖ ≤ 𝜀𝐾𝑒

𝛼
(𝑡, 𝑠
2
).
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Using the above results, one can show the following
theorem.

Theorem 42. If 𝑓 ∈ 𝐶(T × R𝑛,R𝑛) is almost periodic in 𝑡
uniformly for 𝑥 ∈ R𝑛 and the Cauchy matrix of (1) satisfies
(57),𝑊(𝑡, 𝑠) is continuous on T × T and






𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)






≤ 𝐿






𝑥 − 𝑦






, ∀𝑥, 𝑦 ∈ R
𝑛
,

𝐾𝐿 (1 + 𝜇𝛼)

𝛼

< 1, 𝜇 = sup
𝑡∈T

𝜇 (𝑡) .

(70)

Then (2) has a unique continuous almost periodic solution as
follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) Δ𝑠. (71)

Proof. Let D be the space formed by all almost periodic
functions on an almost periodic time scale T . Define an
operator 𝑇 : 𝐶(T ,R𝑛) → 𝐶(T ,R𝑛):

𝑇 (𝜑 (𝑡)) = ∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝜑 (𝑠)) Δ𝑠. (72)

Consider the following difference:





𝑇𝜑 (𝑡 + 𝜏) − 𝑇𝜑 (𝑡)






=










∫

𝑡+𝜏

−∞

𝑊(𝑡 + 𝜏, 𝜎 (𝑠)) 𝑓 (𝑠, 𝜑 (𝑠)) Δ𝑠

−∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝜑 (𝑠)) Δ𝑠










=










∫

𝑡

−∞

𝑊(𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) 𝑓 (𝑠 + 𝜏, 𝜑 (𝑠 + 𝜏)) Δ𝜏

−∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠, 𝜑 (𝑠)) Δ𝑠










≤ ∫

𝑡

−∞

‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏))‖






𝑓 (𝑠 + 𝜏, 𝜑 (𝑠 + 𝜏)) − 𝑓 (𝑠 + 𝜏, 𝜑 (𝑠))






Δ𝑠

+ ∫

𝑡

−∞

‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑊 (𝑡, 𝜎 (𝑠))‖

×






𝑓 (𝑠 + 𝜏, 𝜑 (𝑠))






Δ𝑠

+ ∫

𝑡

−∞

‖𝑊 (𝑡, 𝜎 (𝑠))‖

×






𝑓 (𝑠 + 𝜏, 𝜑 (𝑠)) − 𝑓 (𝑠, 𝜑 (𝑠))






Δ𝑠

≤ ∫

𝑡

−∞

𝐾𝐿𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏))






𝜑 (𝑠 + 𝜏) − 𝜑 (𝑠)






Δ𝑠

+ ∫

𝑡

−∞

𝐹 ‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑊 (𝑡, 𝜎 (𝑠))‖ Δ𝑠

+ ∫

𝑡

−∞

𝐾𝜀𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠)) Δ𝑠,

(73)

where𝐹 = sup
(𝑡,𝑥)∈T×R𝑛𝑓(𝑡, 𝑥). Noting that |𝜇(𝑡+𝜏)−𝜇(𝑡)| < 𝜀,

that is, |𝜎(𝑡 + 𝜏) − (𝜎(𝑡) + 𝜏)| < 𝜀, by Lemma 40, we have





𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑒⊖𝛼 (

𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏)






< 𝜀𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏) ;

(74)

then, from (74) andTheorem 39, we have

𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏))

≤ (1 + 𝜀) 𝑒⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏)

= (1 + 𝜀) [𝑒⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏)

−𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠)) + 𝑒⊖𝛼 (

𝑡, 𝜎 (𝑠))]

≤ [(1 + 𝜀) 𝜀Γ0
+ (1 + 𝜀)] 𝑒⊖𝛼 (

𝑡, 𝜎 (𝑠))

(75)

and since𝑊(𝑡, 𝑠) is continuous on T ×T , byTheorems 38, 39,
and 41, one has

‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑊 (𝑡, 𝜎 (𝑠))‖

≤ ‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠 + 𝜏)) − 𝑊 (𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏)‖

+ ‖𝑊 (𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏) − 𝑊 (𝑡, 𝜎 (𝑠))‖

≤ 𝜀𝐾𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏) + 𝜀Γ0

𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠))

≤ 𝜀𝐾






𝑒
⊖𝛼 (
𝑡 + 𝜏, 𝜎 (𝑠) + 𝜏) − 𝑒⊖𝛼 (

𝑡, 𝜎 (𝑠))






+ 𝜀 (𝐾 + Γ
0
) 𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠))

≤ [𝜀

2
𝐾Γ
0
+ 𝜀 (𝐾 + Γ

0
)] 𝑒
⊖𝛼 (
𝑡, 𝜎 (𝑠)) ,

(76)

where Γ
0
= 𝐾

2
(1 + 𝜇𝛼)/𝛼.

By (73), we can obtain





𝑇𝜑 (𝑡 + 𝜏) − 𝑇𝜑 (𝑡)






≤ {

(1 + 𝜇𝛼)𝐾𝐿 [(1 + 𝜀) (𝜀Γ0
+ 1)]

𝛼

+

𝐹 (𝜀𝐾Γ
0
+ 𝐾 + Γ

0
) (1 + 𝜇𝛼)

𝛼

+

𝐾 (1 + 𝜇𝛼)

𝛼

} 𝜀.

(77)

Hence, 𝑇𝜑(𝑡) is almost periodic. Now, if 𝜓, 𝜑 ∈ D, then we
can obtain





𝑇𝜑 (𝑡) − 𝑇𝜓 (𝑡)






=










∫

𝑡

−∞

𝑊(𝑡, 𝜎 (𝑠)) (𝑓 (𝑠, 𝜑 (𝑠)) − 𝑓 (𝑠, 𝜓 (𝑠))) Δ𝑠










≤ ∫

𝑡

−∞

‖𝑊 (𝑡, 𝜎 (𝑠))‖






𝑓 (𝑠, 𝜑 (𝑠)) − 𝑓 (𝑠, 𝜓 (𝑠))






Δ𝑠

≤

𝐾𝐿 (1 + 𝜇𝛼)

𝛼






𝜑 − 𝜓






.

(78)

Since 𝐾𝐿(1 + 𝜇𝛼)/𝛼 < 1, then 𝑇 is a contraction mapping.
Hence,𝑇has a fixed point inD; that is, (2) has a unique almost
periodic solution. This completes the proof.
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4. An Application

In the following, we present a result which can be found in
[[2, Lemma 2.15] which will be essential to our purposes.

Lemma 43 (see [2]). Let 𝑐
𝑖
(𝑡) be an almost periodic function

on T , where 𝑐
𝑖
(𝑡) > 0, −𝑐

𝑖
∈R, ∀𝑡 ∈ T , and

min
1≤𝑖≤𝑛

{inf
𝑡∈T
𝑐
𝑖 (
𝑡)} = �̃� > 0; (79)

then, the linear system

𝑥

Δ
(𝑡) = diag (−𝑐

1 (
𝑡) , −𝑐2 (

𝑡) , . . . , −𝑐𝑛 (
𝑡)) 𝑥 (𝑡) (80)

admits an exponential dichotomy on T .

Remark 44. By Remark 36, it is easy to see that one can take
𝑊(𝑡, 𝜎(𝑠)) = 𝑋(𝑡)𝑋

−1
(𝜎(𝑠)) and there exist positive constants

𝐾, 𝛼 such that

‖𝑊 (𝑡, 𝜎 (𝑠))‖ ≤ 𝐾𝑒⊖𝛼 (
𝑡, 𝑠) , 𝑡 ≥ 𝑠. (81)

That is to say, the inequality (57) inTheorem 38 holds.

Consider the following high-order Hopfield neural net-
works on time scales:

𝑥

Δ

𝑖
= − 𝑐

𝑖 (
𝑡) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗𝑙 (
𝑡) 𝑔𝑗

(𝑥
𝑗 (
𝑡)) 𝑔𝑙

(𝑥
𝑙 (
𝑡)) + 𝐼𝑖 (

𝑡) ,

(82)

for 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 corresponds to the number of
units in a neural network, 𝑋

𝑖
(𝑡) corresponds to the state

vector of the 𝑖th unite at the time 𝑡, 𝑐
𝑖
(𝑡) represents the

rate with which the 𝑖th unite will reset its potential to the
resting state in isolationwhendisconnected from the network
external inputs, 𝑎

𝑖𝑗
(𝑡) and 𝑏

𝑖𝑗𝑙
(𝑡) are the first- and second-

order connection weights of neural network, 𝐼
𝑖
(𝑡) denotes the

external inputs at time 𝑡, and 𝑓
𝑗
and 𝑔

𝑗
are the activation

functions of signal transmission.
Now, we assume the following conditions are fulfilled.

(𝐻
1
) 𝑥
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗𝑙
, 𝐼
𝑖
are almost periodic functions, −𝑐

𝑖
∈ R

and 𝑐
𝑖
> 0 for every 𝑖, 𝑗, 𝑙 = 1, 2, . . . , 𝑛.

(𝐻
2
) There exist positive constants𝑀

𝑗
, 𝑁
𝑗
, 𝑗 = 1, 2, . . . , 𝑛

such that |𝑓
𝑗
(𝑥)| ≤ 𝑀

𝑗
and |𝑔

𝑗
(𝑥)| ≤ 𝑁

𝑗
for 𝑗 =

1, 2, . . . , 𝑛, 𝑥 ∈ R.
(𝐻
3
) Functions 𝑓

𝑗
(𝑢), 𝑔

𝑗
(𝑢), 𝑗 = 1, 2, . . . , 𝑛 satisfy the

Lipschitz condition; that is, there exist constants 𝐿
𝑗
,

𝐻
𝑗
> 0 such that |𝑓

𝑗
(𝑢
1
) − 𝑓
𝑗
(𝑢
2
)| ≤ 𝐿

𝑗
|𝑢
1
− 𝑢
2
|,

|𝑔
𝑗
(𝑢
1
) − 𝑔
𝑗
(𝑢
2
)| ≤ 𝐻

𝑗
|𝑢
1
− 𝑢
2
|, 𝑗 = 1, 2, . . . , 𝑛.

(𝐻
4
)

max
1≤𝑖≤𝑛

{

{

{

(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝐿
𝑗
+

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗𝑙
𝑁
𝑗
𝐻
𝑙
+

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗𝑙
𝑁
𝑙
𝐻
𝑗
)

× (𝑐
𝑖
)

−1}

}

}

< 1,

(83)

where

𝑐
𝑖
= inf
𝑡∈T






𝑐
𝑖 (
𝑡)






, 𝑐
𝑖
= sup
𝑡∈T






𝑐
𝑖 (
𝑡)






,

𝑎
𝑖𝑗
= sup
𝑡∈T







𝑎
𝑖𝑗 (
𝑡)







, 𝑏
𝑖𝑗𝑙
= sup
𝑡∈T







𝑏
𝑖𝑗𝑙 (
𝑡)







,

𝐼
𝑖
= sup
𝑡∈T






𝐼
𝑖 (
𝑡)






.

(84)

Then, by hypotheses (𝐻
1
), (𝐻
2
), (𝐻
3
), and (𝐻

4
) and using

Lemma 43 and Remark 44, we obtain that all hypotheses of
Theorem 42 are satisfied; then, the system (82) possesses a
unique almost periodic solution.

5. Conclusion and Further Discussion

In this paper, we introduce three equivalent concepts of
almost periodic time scales which can strictly include the
concept of periodic time scales. Several examples are given to
show that there exists a class of time scales which is almost
periodic but not periodic according to the new proposed
definitions. Furthermore, all the results obtained in [1] are
valid without considering the set Π, which will bring more
generality of the obtained results in our relative previous
works. Furthermore, using the almost periodicity of Cauchy
matrix for dynamic equations on time scales, by fixed point
theorems in Banach space, one can find some new sufficient
conditions for the existence of almost periodic solutions for
dynamic equations under the sense of these new definitions.
Finally, all new concepts proposed in this paper will play
an important and fundamental role in establishing almost
periodic theory of dynamic equations on time scales.

Furthermore, according to Definition 13, one can intro-
duce the concept of almost automorphic functions as follows.

Definition 45. LetX be a Banach space and let T be an almost
periodic time scale.

(i) Let 𝑓 : T → X be a bounded continuous function.
We say that 𝑓 is almost automorphic if, for every
sequence of real numbers {𝑠

𝑛
}

∞

𝑛=1
, we can extract a

subsequence {𝜏
𝑛
}

∞

𝑛=1
such that the limit set T

0
of {T−𝜏𝑛}

exists and:

𝑔 (𝑡) = lim
𝑛→∞

𝑓 (𝑡 + 𝜏
𝑛
) (85)

is well defined for each 𝑡 ∈ T
0
. Furthermore, the limit

set of {T𝜏𝑛
0
} is T and

lim
𝑛→∞

𝑔 (𝑡 − 𝜏
𝑛
) = 𝑓 (𝑡) (86)

for each 𝑡 ∈ T . Denote by 𝐴𝐴(T ,X) the set of all such
functions.

(ii) A continuous function 𝑓 : T × 𝐵 → X is said to be
almost automorphic if 𝑓(𝑡, 𝑥) is almost automorphic
in 𝑡 ∈ T uniformly for all 𝑥 ∈ 𝐵, where 𝐵 is any
bounded subset of X or 𝐵 = X. Denote by 𝐴𝐴(T ×
X,X) the set of all such functions.
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Under Definition 45, all the obtained results and proof
process in [3] are valid and this new kind of time scales
proposed in this paper will bring more general sense to our
future research works.

Remark 46. In Definition 45, if 𝑡 ∈ T
0
, then 𝑡 + 𝜏

𝑛
∈ T
𝜏
𝑛

0
=

(lim
𝑛→∞

T−𝜏𝑛)
𝜏
𝑛
= T . Similarly, if 𝑡 ∈ T , then 𝑡 − 𝜏

𝑛
∈ T−𝜏𝑛 =

(lim
𝑛→∞

T
𝜏
𝑛

0
)

−𝜏
𝑛
= T
0
. Hence, the (i) of Definition 45 makes

sense.
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