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We introduce and analyze a hybrid steepest-descent algorithm by combining Korpelevich’s extragradient method, the steepest-
descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate
assumptions, the proposed algorithm converges strongly to the unique solution of a triple hierarchical constrained optimization
problem (THCOP) over the common fixed point set of finitely many nonexpansive mappings, with constraints of finitely many
generalized mixed equilibrium problems (GMEPs), finitely many variational inclusions, and a convex minimization problem
(CMP) in a real Hilbert space.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖; let𝐶 be a nonempty closed convex subset of𝐻 and
let 𝑃
𝐶
be the metric projection of𝐻 onto 𝐶. Let 𝑆 : 𝐶 → 𝐻

be a nonlinear mapping on 𝐶. We denote by Fix(𝑆) the set
of fixed points of 𝑆 and by R the set of all real numbers. A
mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if there
exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

In particular, if 𝐿 = 1 then 𝑆 is called a nonexpansive
mapping; if 𝐿 ∈ (0, 1) then 𝑆 is called a contraction.

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. The
classical variational inequality problem (VIP) [1] is to find a
point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (2)

The solution set of VIP (2) is denoted by VI(𝐶, 𝐴).

In 1976, Korpelevich [2] proposed an iterative algorithm
for solving the VIP (2) in Euclidean space R𝑛:

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑥

𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑦

𝑛
) ,

∀𝑛 ≥ 0,

(3)

with 𝜏 > 0 a given number, which is known as the extra-
gradient method. See, for example, [3–7] and the references
therein.

Let 𝜑 : 𝐶 → R be a real-valued function; let 𝐴 :

𝐻 → 𝐻 be a nonlinear mapping and let Θ : 𝐶 × 𝐶 → R
be a bifunction. In 2008, Peng and Yao [8] introduced the
following generalizedmixed equilibriumproblem (GMEP) of
finding 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (4)

We denote the set of solutions of GMEP (4) by
GMEP(Θ, 𝜑, 𝐴).
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In [8], Peng and Yao assumed that Θ : 𝐶 × 𝐶 → R is a
bifunction satisfying conditions (A1)–(A4) and 𝜑 : 𝐶 → R is
a lower semicontinuous and convex function with restriction
(B1) or (B2), where

(A1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) Θ is upper-hemicontinuous; that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (5)

(A4) Θ(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(B1) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset𝐷

𝑥 ⊂ 𝐶 and𝑦𝑥 ∈ 𝐶 such that for any 𝑧 ∈ 𝐶\𝐷𝑥,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦
𝑥
− 𝑧, 𝑧 − 𝑥⟩ < 0; (6)

(B2) 𝐶 is a bounded set.

Given a positive number 𝑟 > 0. Let 𝑇(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 be
the solution set of the auxiliary mixed equilibrium problem;
that is, for each 𝑥 ∈ 𝐻,

𝑇
(Θ,𝜑)

𝑟
(𝑥) := {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝑦 − 𝑥, 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(7)

Let 𝑓 : 𝐶 → R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing 𝑓 over the constraint set 𝐶:

min
𝑥∈𝐶

𝑓 (𝑥) (8)

(assuming the existence of minimizers). We denote by Γ the
set of minimizers of CMP (8).

On the other hand, let 𝐵 be a single-valued mapping of
𝐶 into 𝐻 and 𝑅 be a set-valued mapping with 𝐷(𝑅) = 𝐶.
Considering the following variational inclusion, find a point
𝑥 ∈ 𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥. (9)

We denote by 𝐼(𝐵, 𝑅) the solution set of the variational
inclusion (9). Let a set-valued mapping 𝑅 : 𝐷(𝑅) ⊂ 𝐻 →

2
𝐻 be maximal monotone. We define the resolvent operator
𝐽
𝑅,𝜆

: 𝐻 → 𝐷(𝑅) associated with 𝑅 and 𝜆 as follows:

𝐽
𝑅,𝜆

= (𝐼 + 𝜆𝑅)
−1
, ∀𝑥 ∈ 𝐻, (10)

where 𝜆 is a positive number.
Let 𝑆 and 𝑇 be two nonexpansive mappings. In 2009,

Yao et al. [9] considered the following hierarchical VIP: find
hierarchically a fixed point of𝑇, which is a solution to theVIP

for monotone mapping 𝐼 − 𝑆; namely, find 𝑥 ∈ Fix(𝑇) such
that

⟨(𝐼 − 𝑆) 𝑥, 𝑝 − 𝑥⟩ ≥ 0, ∀𝑝 ∈ Fix (𝑇) . (11)

The solution set of the hierarchical VIP (11) is denoted
by Λ. It is not hard to check that solving the hierarchical
VIP (11) is equivalent to the fixed point problem of the
composite mapping 𝑃Fix(𝑇)𝑆; that is, find 𝑥 ∈ 𝐶 such that
𝑥 = 𝑃Fix(𝑇)𝑆𝑥. The authors [9] introduced and analyzed the
following iterative algorithm for solving the hierarchical VIP
(11):

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑦
𝑛
,

∀𝑛 ≥ 0.

(12)

In this paper, we introduce and study the following triple
hierarchical constrained optimization problem (THCOP)
with constraints of the CMP (8), finitely many GMEPs and
finitely many variational inclusions.

Problem I. Let 𝑀,𝑁, and 𝐾 be three positive integers.
Assume that

(i) 𝑓 : 𝐶 → R is a convex and continuously Fréchet
differentiable functional with 𝐿-Lipschitz continuous
gradient∇𝑓, 𝑆𝑖 : 𝐻 → 𝐻 is a nonexpansivemapping,
and 𝐴𝑗 : 𝐻 → 𝐻 is 𝜁𝑗-inverse-strongly monotone
for 𝑖 = 1, 2, . . . , 𝑁 and 𝑗 = 1, 2, . . . , 𝐾;

(ii) 𝐴1 : 𝐻 → 𝐻 is 𝛼-inverse strongly monotone
and 𝐴

2
: 𝐻 → 𝐻 is 𝛽-strongly monotone and 𝜅-

Lipschitz continuous;

(iii) Θ
𝑗
is a bifunctions from 𝐶 × 𝐶 to R satisfying (A1)–

(A4), and 𝜑
𝑗
: 𝐶 → R is a lower semicontinuous

and convex functional with restriction (B1) or (B2) for
𝑗 = 1, 2, . . . , 𝐾;

(iv) 𝑅
𝑘
: 𝐶 → 2

𝐻 is a maximal monotone mapping and
𝐵
𝑘
: 𝐶 → 𝐻 is 𝜂

𝑘
-inverse strongly monotone for

𝑘 = 1, 2, . . . ,𝑀;

(v) VI(∩𝑁
𝑖=𝑖

Fix(𝑆𝑖), 𝐴1) ̸= 0 with (∩
𝑁

𝑖=𝑖
Fix(𝑆𝑖)) ⊂ (∩

𝐾

𝑗=1

GMEP(Θ
𝑗
, 𝜑
𝑗
, 𝐴
𝑗
)) ∩ (∩

𝑀

𝑘=1
𝐼(𝐵
𝑘
, 𝑅
𝑘
)) ∩ Γ.

Then the objective is to

find𝑥∗ ∈ VI(VI(
𝑁

⋂

𝑖=𝑖

Fix (𝑆
𝑖
) , 𝐴
1
) ,𝐴
2
)

:= {𝑥
∗
∈ VI(

𝑁

⋂

𝑖=𝑖

Fix (𝑆
𝑖
) , 𝐴
1
) : ⟨𝐴

2
𝑥
∗
, V − 𝑥∗⟩

≥ 0, ∀V ∈ VI(
𝑁

⋂

𝑖=𝑖

Fix (𝑆
𝑖
) , 𝐴
1
)} .

(13)
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Motivated and inspired by the above facts, we introduce
and analyze a hybrid iterative algorithm via Korpelevich’s
extragradient method, the steepest-descent method, and
the gradient-projection algorithm obtained by the averaged
mapping approach. It is proven that under mild conditions,
the proposed algorithm converges strongly to a unique
element of VI(VI(∩𝑁

𝑖=1
Fix(𝑆
𝑖
), 𝐴
1
), 𝐴
2
) with (∩𝑁

𝑖=1
Fix(𝑆
𝑖
)) ⊂

(∩
𝐾

𝑗=1
GMEP(Θ𝑗, 𝜑𝑗, 𝐴𝑗)) ∩ (∩

𝑀

𝑘=1
𝐼(𝐵𝑘, 𝑅𝑘)) ∩ Γ, that is, the

unique solution of the THCOP (13). In this paper, the results
we acquired improve and extend the existing results found in
this field.

2. Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space of which inner product and norm are denoted by ⟨⋅, ⋅⟩
and ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. We write 𝑥

𝑛
⇀ 𝑥 to indicate that the sequence

{𝑥
𝑛
} converges weakly to 𝑥 and 𝑥

𝑛
→ 𝑥 to indicate that

the sequence {𝑥𝑛} converges strongly to 𝑥. Moreover, we use
𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of the sequence {𝑥𝑛};
that is,

𝜔
𝑤
(𝑥
𝑛
)

:= {𝑥 ∈ 𝐻 : 𝑥
𝑛
𝑖

⇀ 𝑥 for some subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}} .

(14)

Definition 1. A mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (15)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶; (16)

(iii) 𝜁-inverse-stronglymonotone if there exists a constant
𝜁 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜁
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (17)

It is obvious that if𝐴 is 𝜁-inverse-stronglymonotone, then
𝐴 is monotone and 1/𝜁-Lipschitz continuous. Moreover, we
also have that, for all 𝑢, V ∈ 𝐶 and 𝜆 > 0,

‖(𝐼 − 𝜆𝐴) 𝑢 − (𝐼 − 𝜆𝐴) V‖2

≤ ‖𝑢 − V‖2 + 𝜆 (𝜆 − 2𝜁) ‖𝐴𝑢 − 𝐴V‖2.
(18)

So, if 𝜆 ≤ 2𝜁, then 𝐼 − 𝜆𝐴 is a nonexpansive mapping from 𝐶

to𝐻.
The metric projection from𝐻 onto 𝐶 is the mapping 𝑃

𝐶
:

𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻, the unique point
𝑃
𝐶
𝑥 ∈ 𝐶, satisfying the property

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 =: 𝑑 (𝑥, 𝐶) . (19)

Some important properties of projections are gathered in
the following proposition.

Proposition 2. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶:

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2
, ∀𝑦 ∈ 𝐶;

(iii) ⟨𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2
, ∀𝑦 ∈ 𝐻. (This

implies that 𝑃
𝐶
is nonexpansive and monotone.)

Next we list some elementary conclusions for the mixed
equilibrium problem where MEP(Θ, 𝜑) is the solution set.

Proposition 3 (see [10]). Assume that Θ : 𝐶 × 𝐶 → R
satisfies (A1)–(A4) and let 𝜑 : 𝐶 → R be a proper lower
semicontinuous and convex function. Assume that either (B1)
or (B2) holds. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping
𝑇
(Θ,𝜑)

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
(Θ,𝜑)

𝑟
(𝑥) = {𝑧 ∈ 𝐶 : Θ (𝑧, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑧)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(20)

for all 𝑥 ∈ 𝐻. Then the following hold:

(i) for each 𝑥 ∈ 𝐻, 𝑇
(Θ,𝜑)

𝑟
(𝑥) is nonempty and single-

valued;
(ii) 𝑇(Θ,𝜑)
𝑟

is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ,𝜑)

𝑟
𝑥 − 𝑇
(Θ,𝜑)

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
(Θ,𝜑)

𝑟
𝑥 − 𝑇
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ ; (21)

(iii) Fix(𝑇(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);
(iv) MEP(Θ, 𝜑) is closed and convex;

(v) ‖𝑇(Θ,𝜑)
𝑠

𝑥 − 𝑇
(Θ,𝜑)

𝑡
𝑥‖
2

≤ (𝑠 − 𝑡)/𝑠⟨𝑇
(Θ,𝜑)

𝑠
𝑥 −

𝑇
(Θ,𝜑)

𝑡
𝑥, 𝑇
(Θ,𝜑)

𝑠
𝑥 − 𝑥⟩ for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻.

In the following, we recall some facts and tools in a real
Hilbert space𝐻.

Lemma 4. Let 𝑋 be a real inner product space. Then there
holds the following inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (22)

Lemma 5. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − ‖𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;
(b) ‖𝜆𝑥 + 𝜇𝑦‖2 = 𝜆‖𝑥‖2+𝜇‖𝑦‖2−𝜆𝜇‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈

𝐻 and 𝜆, 𝜇 ∈ [0, 1] with 𝜆 + 𝜇 = 1;
(c) if {𝑥

𝑛
} is a sequence in 𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

= lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑦 ∈ 𝐻.

(23)
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Definition 6. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (24)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged. Thus firmly nonexpansive mappings (particularly,
projections) are 1/2-averaged mappings.

Lemma 7 (see [11]). Let 𝑇 : 𝐻 → 𝐻 be a given mapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇
is 1/2-ism.

(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is ]/𝛾-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is ]-ism

for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is 1/2𝛼-ism.

Lemma 8 (see [11]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1

is averaged, then so is the composite 𝑇
1
⋅ ⋅ ⋅ 𝑇
𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

(v) If the mappings {𝑇
𝑖}
𝑁

𝑖=1
are averaged and have a

common fixed point, then

𝑁

⋂

𝑖=1

Fix (𝑇𝑖) = Fix (𝑇1𝑇2 ⋅ ⋅ ⋅ 𝑇𝑁) . (25)

The notation Fix(𝑇) denotes the set of all fixed points of
the mapping 𝑇; that is, Fix(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.

Let 𝑓 : 𝐶 → R be a convex functional with 𝐿-
Lipschitz continuous gradient ∇𝑓. It is well known that the
gradient-projection algorithm (GPA) generates a sequence
{𝑥𝑛} determined by the gradient∇𝑓 and themetric projection
𝑃𝐶:

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆∇𝑓 (𝑥

𝑛
)) , ∀𝑛 ≥ 0, (26)

or more generally,

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑥
𝑛
)) , ∀𝑛 ≥ 0, (27)

where, in both (26) and (27), the initial guess 𝑥
0
is taken

from 𝐶 arbitrarily, and the parameters 𝜆 or 𝜆
𝑛
are positive

real numbers. The convergence of algorithms (26) and (27)
depends on the behavior of the gradient ∇𝑓.

Lemma 9 (see [12, Demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥
𝑛
} strongly converges

to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Lemma 10. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 2(i)) implies

𝑢 ∈ VI (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (28)

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻. We introduce some notations. Let 𝜆 be a number in
(0, 1] and let 𝜇 > 0. Associating with a nonexpansive mapping
𝑇 : 𝐶 → 𝐻, we define the mapping 𝑇𝜆 : 𝐶 → 𝐻 by

𝑇
𝜆
𝑥 := 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐶, (29)

where 𝐹 : 𝐻 → 𝐻 is an operator such that, for some positive
constants 𝜅, 𝜂 > 0,𝐹 is 𝜅-Lipschitzian and 𝜂-stronglymonotone
on𝐻; that is, 𝐹 satisfies the conditions:

󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜅

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

(30)

for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 11 (see [13, Lemma 3.1]). 𝑇𝜆 is a contraction provided
by 0 < 𝜇 < 2𝜂/𝜅2; that is,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑥 − 𝑇
𝜆
𝑦
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜆𝜏)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, (31)

where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2) ∈ (0, 1].

Lemma 12 (see [13]). Let {𝑠
𝑛
} be a sequence of nonnegative

numbers satisfying the conditions

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝛽
𝑛
, ∀𝑛 ≥ 1, (32)

where {𝛼𝑛} and {𝛽𝑛} are sequences of real numbers such that

(i) {𝛼𝑛} ⊂ [0, 1] and ∑
∞

𝑛=1
𝛼𝑛 = ∞, or equivalently,

∞

∏

𝑛=1

(1 − 𝛼
𝑛
) := lim
𝑛→∞

𝑛

∏

𝑘=1

(1 − 𝛼
𝑘
) = 0; (33)

(ii) lim sup
𝑛→∞

𝛽𝑛 ≤ 0, or ∑
∞

𝑛=1
|𝛼𝑛𝛽𝑛| < ∞.

Then lim
𝑛→∞

𝑠
𝑛
= 0.

Recall that a Banach space 𝑋 is said to satisfy Opial’s
property [12] if, for any given sequence {𝑥𝑛} ⊂ 𝑋 which
converges weakly to an element 𝑥 ∈ 𝑋, there holds the
inequality

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(34)
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It is well known that every Hilbert space 𝐻 satisfies Opial’s
property in [12].

Finally, recall that a set-valued mapping 𝑇 : 𝐷(𝑇) ⊂

𝐻 → 2
𝐻 is called monotone if for all 𝑥, 𝑦 ∈ 𝐷(𝑇), 𝑓 ∈ 𝑇𝑥,

and 𝑔 ∈ 𝑇𝑦 imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (35)

A set-valued mapping 𝑇 is called maximal monotone if 𝑇 is
monotone and (𝐼 + 𝜆𝑇)𝐷(𝑇) = 𝐻 for each 𝜆 > 0, where 𝐼 is
the identitymapping of𝐻.We denote by𝐺(𝑇) the graph of𝑇. It
is known that a monotone mapping𝑇 is maximal if and only if,
for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑓−𝑔, 𝑥−𝑦⟩ ≥ 0, for every (𝑦, 𝑔) ∈ 𝐺(𝑇),
implies 𝑓 ∈ 𝑇𝑥. Let 𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-
continuous mapping and let 𝑁

𝐶
V be the normal cone to 𝐶 at

V ∈ 𝐶; that is,

𝑁
𝐶
V = {𝑢 ∈ 𝐻 : ⟨V − 𝑝, 𝑢⟩ ≥ 0, ∀𝑝 ∈ 𝐶} . (36)

Define

𝑇̃V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(37)

Then, 𝑇̃ is maximal monotone such that

0 ∈ 𝑇̃V ⇐⇒ V ∈ VI (𝐶, 𝐴) . (38)

Let 𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻 be a maximal monotone

mapping. Let 𝜆, 𝜇 > 0 be two positive numbers.

Lemma 13 (see [14]). There holds the resolvent identity

𝐽𝑅,𝜆𝑥 = 𝐽𝑅,𝜇 (
𝜇

𝜆
𝑥 + (1 −

𝜇

𝜆
) 𝐽𝑅,𝜆𝑥) , ∀𝑥 ∈ 𝐻. (39)

For 𝜆, 𝜇 > 0, there holds the following relation that

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜇
𝑦
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜆 − 𝜇

󵄨󵄨󵄨󵄨

× (
1

𝜆

󵄩󵄩󵄩󵄩𝐽𝑅,𝜆𝑥 − 𝑦
󵄩󵄩󵄩󵄩 +

1

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝑅,𝜇𝑦

󵄩󵄩󵄩󵄩󵄩
) ,

∀𝑥, 𝑦 ∈ 𝐻.

(40)

Based on Huang [15], there holds the following property for
the resolvent operator 𝐽

𝑅,𝜆 : 𝐻 → 𝐷(𝑅).

Lemma 14. 𝐽𝑅,𝜆 is single-valued and firmly nonexpansive;
that is,

⟨𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜆
𝑦, 𝑥 − 𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝐽𝑅,𝜆𝑥 − 𝐽𝑅,𝜆𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻.

(41)

Consequently, 𝐽
𝑅,𝜆

is nonexpansive and monotone.

Lemma 15 (see [16]). Let 𝑅 be a maximal monotone
mapping with 𝐷(𝑅) = 𝐶. Then for any given 𝜆 > 0, 𝑢 ∈

𝐶 is a solution of problem (10) if and only if 𝑢 ∈ 𝐶

satisfies

𝑢 = 𝐽
𝑅,𝜆 (𝑢 − 𝜆𝐵𝑢) . (42)

Lemma 16 (see [17]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and let 𝐵 : 𝐶 → 𝐻 be a strongly monotone,
continuous, and single-valued mapping. Then, for each 𝑧 ∈ 𝐻,
the equation 𝑧 ∈ (𝐵+𝜆𝑅)𝑥 has a unique solution 𝑥

𝜆 for 𝜆 > 0.

Lemma 17 (see [16]). Let 𝑅 be a maximal monotone mapping
with𝐷(𝑅) = 𝐶 and let𝐵 : 𝐶 → 𝐻 be amonotone, continuous,
and single-valued mapping.Then (𝐼+𝜆(𝑅+𝐵))𝐶 = 𝐻 for each
𝜆 > 0. In this case, 𝑅 + 𝐵 is maximal monotone.

3. Main Results

In this section, we will introduce and analyze a hybrid
steepest-descent algorithm for finding a solution of the
THCOP (13) with constraints of several problems: the CMP
(8), finitely many GMEPs, and finitely many variational
inclusions in a real Hilbert space. This algorithm is based
on Korpelevich’s extragradient method, the steepest-descent
method, and the averagedmapping approach to the gradient-
projection algorithm. We prove the strong convergence of
the proposed algorithm to a unique solution of THCOP (13)
under suitable conditions. Throughout this paper, let {𝑆

𝑖
}
𝑁

𝑖=1

be 𝑁 nonexpansive mappings 𝑆
𝑖
: 𝐻 → 𝐻 with 𝑁 ≥ 1

an integer. We write 𝑆[𝑘] := 𝑆𝑘 mod 𝑁, for integer 𝑘 ≥ 1, with
the mod function taking values in the set {1, 2, . . . , 𝑁} (i.e., if
𝑘 = 𝑗𝑁 + 𝑞 for some integers 𝑗 ≥ 0 and 0 ≤ 𝑞 < 𝑁, then
𝑇[𝑘] = 𝑁 if 𝑞 = 0 and 𝑇[𝑘] = 𝑞 if 1 ≤ 𝑞 < 𝑁).

The following is to state and prove the main result in this
paper.

Theorem 18. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻 and let 𝑓 : 𝐶 → R be a convex and
continuously Fréchet differentiable functional with 𝐿-Lipschitz
continuous gradient ∇𝑓. Let 𝑀,𝑁,𝐾 ≥ 1 be three integers.
Let Θ
𝑗
be a bifunctions from 𝐶 × 𝐶 to R satisfying (A1)–(A4),

𝜑
𝑗
: 𝐶 → R a lower semicontinuous and convex functional

with restriction (B1) or (B2), and 𝐴𝑗 : 𝐻 → 𝐻𝜁𝑗-inverse-
strongly monotone for 𝑗 = 1, 2, . . . , 𝐾. Let 𝑅

𝑘
: 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐵
𝑘
: 𝐶 → 𝐻

be 𝜂
𝑘
-inverse strongly monotone for 𝑘 = 1, 2, . . . ,𝑀. Let

{𝑆𝑖}
𝑁

𝑖=1
be a finite family of nonexpansive mappings on 𝐻. Let

𝐴
1
: 𝐻 → 𝐻 be 𝛼-inverse strongly monotone and let 𝐴

2
:

𝐻 → 𝐻 be 𝛽-strongly monotone and 𝜅-Lipschitz continuous.
Assume that VI(∩𝑁

𝑖=1
Fix(𝑆
𝑖
), 𝐴
1
) ̸= 0 with (∩

𝑁

𝑖=1
Fix(𝑆
𝑖
)) ⊂

(∩
𝐾

𝑗=1
GMEP(Θ

𝑗
, 𝜑
𝑗
, 𝐴
𝑗
)) ∩ (∩

𝑀

𝑘=1
𝐼(𝐵
𝑘
, 𝑅
𝑘
)) ∩ Γ. Let 𝜇 ∈

(0, 2𝛽/𝜅
2
), {𝛼
𝑛
}
∞

𝑛=0
⊂ (0, 1], {𝜌

𝑛
}
∞

𝑛=0
⊂ (0, 2𝛼], {𝜆

𝑘,𝑛
}
∞

𝑛=0
⊂

[𝑎
𝑘
, 𝑏
𝑘
] ⊂ (0, 2𝜂

𝑘
), and {𝑟

𝑗,𝑛
}
∞

𝑛=0
⊂ [𝑐
𝑗
, 𝑑
𝑗
] ⊂ (0, 2𝜁

𝑗
) where
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𝑗 ∈ {1, 2, . . . , 𝐾} and 𝑘 ∈ {1, 2, . . . ,𝑀}. For arbitrarily given
𝑥
0
∈ 𝐻, let {𝑥

𝑛
} be a sequence generated by

𝑢
𝑛
= 𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) 𝑇
(Θ
𝐾−1
,𝜑
𝐾−1
)

𝑟
𝐾−1,𝑛

(𝐼 − 𝑟
𝐾−1,𝑛

𝐴
𝐾−1

)

⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛
,

V
𝑛 = 𝐽𝑅

𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆𝑀,𝑛𝐵𝑀) 𝐽𝑅
𝑀−1
,𝜆
𝑀−1,𝑛

(𝐼 − 𝜆𝑀−1,𝑛𝐵𝑀−1)

⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑦𝑛 = 𝑆[𝑛+1] (𝐼 − 𝜌𝑛𝐴1) 𝑇𝑛V𝑛,

𝑥
𝑛+1 = 𝑦𝑛 − 𝜇𝛼𝑛𝐴2𝑦𝑛, ∀𝑛 ≥ 0,

(43)

where 𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive

and 𝑠
𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈

(0, 2/𝐿)). Assume that

𝑁

⋂

𝑖=1

Fix (𝑆i) = Fix (𝑆
1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑁
)

= Fix (𝑆
𝑁𝑆1 ⋅ ⋅ ⋅ 𝑆𝑁−1)

= ⋅ ⋅ ⋅ = Fix (𝑆
2
𝑆
3
⋅ ⋅ ⋅ 𝑆
𝑁
𝑆
1
)

(44)

and that the following conditions are satisfied:

(i) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=0
𝛼
𝑛
= ∞ and 𝜌

𝑛
≤ 𝛼
𝑛
for all

𝑛 ≥ 0;
(ii) lim𝑛→∞(|𝛼𝑛 − 𝛼𝑛+𝑁|/𝛼𝑛+𝑁) = 0 or∑

∞

𝑛=0
|𝛼𝑛 − 𝛼𝑛+𝑁| <

∞;
(iii) lim𝑛→∞(|𝑠𝑛 − 𝑠𝑛+𝑁|/𝛼𝑛+𝑁) = 0 or ∑∞

𝑛=0
|𝑠𝑛 − 𝑠𝑛+𝑁| <

∞;
(iv) lim𝑛→∞(|𝜌𝑛 − 𝜌𝑛+𝑁|/𝜌𝑛+𝑁) = 0 or ∑∞

𝑛=0
|𝜌
𝑛
− 𝜌
𝑛+𝑁

| <

∞;
(v) lim

𝑛→∞
(|𝜆
𝑘,𝑛

− 𝜆
𝑘,𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or ∑∞
𝑛=0

|𝜆
𝑘,𝑛

−

𝜆
𝑘,𝑛+𝑁

| < ∞ for 𝑘 = 1, 2, . . . ,𝑀;
(vi) lim

𝑛→∞
(|𝑟
𝑗,𝑛

− 𝑟
𝑗,𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or ∑∞
𝑛=0

|𝑟
𝑗,𝑛

−

𝑟
𝑗,𝑛+𝑁

| < ∞ for 𝑗 = 1, 2, . . . , 𝐾.

Then the following hold:

(a) {𝑥
𝑛}
∞

𝑛=0
is bounded;

(b) lim
𝑛→∞‖𝑥𝑛 − 𝑥𝑛+𝑁‖ = 0;

(c) lim
𝑛→∞‖𝑥𝑛 − 𝑆[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1]𝑥𝑛‖ = 0 provided

lim𝑛→∞(‖𝑥𝑛 − 𝑦𝑛‖ + ‖𝑇𝑛V𝑛 − V𝑛‖) = 0;
(d) {𝑥

𝑛}
∞

𝑛=0
converges strongly to the unique element of

VI(VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
), 𝐴
2
) provided ‖𝑥

𝑛
− 𝑦
𝑛
‖ +

‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ = 𝑜(𝜌

𝑛
).

Proof. Let {𝑥
∗
} = VI(VI(Ω, 𝐴

1
), 𝐴
2
). Since ∇𝑓 is 𝐿-

Lipschitzian, it follows that ∇𝑓 is 1/𝐿-ism. By Lemma 7(ii),
we know that for 𝜆 > 0, 𝜆∇𝑓 is 1/𝜆𝐿-ism. So by Lemma 7(iii),
we deduce that 𝐼 − 𝜆∇𝑓 is 𝜆𝐿/2-averaged. Now since the pro-
jection 𝑃

𝐶
is 1/2-averaged, it is easy to see from Lemma 8(iv)

that the composite 𝑃
𝐶
(𝐼−𝜆∇𝑓) is (2+𝜆𝐿)/4-averaged for 𝜆 ∈

(0, 2/𝐿). Hence we obtain that, for each 𝑛 ≥ 0, 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓)

is (2 + 𝜆
𝑛
𝐿)/4-averaged for each 𝜆

𝑛
∈ (0, 2/𝐿). Therefore, we

can write

𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) =

2 − 𝜆
𝑛
𝐿

4
𝐼 +

2 + 𝜆
𝑛
𝐿

4
𝑇
𝑛

= 𝑠
𝑛
𝐼 + (1 − 𝑠

𝑛
) 𝑇
𝑛
,

(45)

where 𝑇
𝑛
is nonexpansive and 𝑠

𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈

(0, 1/2) for each 𝜆
𝑛

∈ (0, 2/𝐿). Since 𝐴
2
is 𝜅-Lipschitz

continuous, we get
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑦
𝑛
− 𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩
≤ 𝜅

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 0. (46)

Putting 𝑧
𝑛
= (𝐼 − 𝜌

𝑛
𝐴
1
)𝑇
𝑛
V
𝑛
, for all 𝑛 ≥ 0, we have

𝑥
𝑛+1 = 𝑦𝑛 − 𝜇𝛼𝑛𝐴2𝑦𝑛

= 𝑆
[𝑛+1]

𝑧
𝑛
− 𝜇𝛼
𝑛
𝐴
2
𝑆
[𝑛+1]

𝑧
𝑛

= 𝑆
𝛼
𝑛

[𝑛+1]
𝑧
𝑛
, ∀𝑛 ≥ 0.

(47)

Put

Δ
𝑗

𝑛
= 𝑇
(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛

(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
) 𝑇
(Θ
𝑗−1
,𝜑
𝑗−1
)

𝑟
𝑗−1,𝑛

(𝐼 − 𝑟
𝑗−1,𝑛

𝐴
𝑗−1
)

⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐴
1
) 𝑥
𝑛

(48)

for all 𝑗 ∈ {1, 2, . . . , 𝐾} and 𝑛 ≥ 0,

Λ
𝑘

𝑛
= 𝐽
𝑅
𝑘
,𝜆
𝑘,𝑛

(𝐼 − 𝜆
𝑘,𝑛
𝐵
𝑘
) 𝐽
𝑅
𝑘−1
,𝜆
𝑘−1,𝑛

(𝐼 − 𝜆
𝑘−1,𝑛

𝐵
𝑘−1

)

⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
)

(49)

for all 𝑘 ∈ {1, 2, . . . ,𝑀}, Δ0
𝑛
= 𝐼, and Λ0

𝑛
= 𝐼, where 𝐼 is the

identity mapping on 𝐻. Then we have that 𝑢
𝑛
= Δ
𝐾

𝑛
𝑥
𝑛
and

V
𝑛
= Λ
𝑀

𝑛
𝑢
𝑛
.

We divide the rest of the proof into several steps.

Step 1. We prove that {𝑥
𝑛
} is bounded.

Indeed, utilizing (18) and Proposition 3(ii), we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐵
𝐾
) Δ
𝐾−1

𝑛
𝑥
𝑛

− 𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟𝐾,𝑛𝐵𝐾) Δ
𝐾−1

𝑛
𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝐾,𝑛
𝐵
𝐾
) Δ
𝐾−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝐾,𝑛
𝐵
𝐾
) Δ
𝐾−1

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝐾−1

𝑛
𝑥
𝑛
− Δ
𝐾−1

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥
𝑛
− Δ
0

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(50)
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Utilizing (18) and Lemma 14 we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆𝑀,𝑛𝐴𝑀) Λ
𝑀−1

𝑛
𝑢𝑛

− 𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆
𝑀,𝑛

𝐴
𝑀
) Λ
𝑀−1

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀,𝑛
𝐴
𝑀
) Λ
𝑀−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑀,𝑛
𝐴
𝑀
) Λ
𝑀−1

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑀−1

𝑛
𝑢
𝑛
− Λ
𝑀−1

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
0

𝑛
𝑥
∗󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(51)

Combining (50) and (51), we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 . (52)

Since 𝐴
1
is 𝛼-inverse strongly monotone and {𝜌

𝑛
}
∞

𝑛=0
⊂

(0, 2𝛼], we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
V
𝑛
− 𝑥
∗
− 𝜌
𝑛
(𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 2𝜌
𝑛
⟨𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑥
∗
, 𝑇
𝑛
V
𝑛
− 𝑥
∗
⟩

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛 − 𝐴1𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝜌𝑛 (2𝛼 − 𝜌𝑛)

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛 − 𝐴1𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
.

(53)

Utilizing Lemma 11, we deduce from (52), 𝜌
𝑛 ≤ 𝛼𝑛, and

𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗
= 𝑥
∗
− 𝛼
𝑛
𝜇𝐴
2
𝑥
∗ that for all 𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑧
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑧
𝑛
− 𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛𝜏)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜇

󵄩󵄩󵄩󵄩󵄩
𝐴
2𝑥
∗󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜌

𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩
+ 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
V
𝑛
− 𝑥
∗
− 𝜌
𝑛
(𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑥
∗
) − 𝜌
𝑛
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛𝜏) [

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛V𝑛 − 𝑥

∗
− 𝜌𝑛 (𝐴1𝑇𝑛V𝑛 − 𝐴1𝑥

∗
)
󵄩󵄩󵄩󵄩󵄩

+ 𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
] + 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛𝜏) [

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑥
∗󵄩󵄩󵄩󵄩󵄩
] + 𝛼
𝑛𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏) [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
] + 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
+ 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜏

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
+ 𝜇

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

𝜏

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑥
∗󵄩󵄩󵄩󵄩󵄩
+ 𝜇

󵄩󵄩󵄩󵄩󵄩
𝐴
2𝑥
∗󵄩󵄩󵄩󵄩󵄩

𝜏
} ,

(54)

where 𝜏 = 1 − √1 − 𝜇(2𝛽 − 𝜇𝜅2). So, by induction we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
+ 𝜇

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩󵄩

𝜏
} , ∀𝑛 ≥ 0.

(55)

Hence {𝑥𝑛}
∞

𝑛=0
is bounded. Since 𝐴1 : 𝐻 → 𝐻 is 𝛼-inverse

strongly monotone, it is known that 𝐴
1
is 1/𝛼-Lipschitz

continuous. Thus, from (52), we get

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩󵄩
≤
1

𝛼

󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

1

𝛼

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
1

𝛼

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 0.

(56)

Consequently, the boundedness of {𝑥
𝑛
} ensures the bound-

edness of {V
𝑛
}, {𝑇
𝑛
V
𝑛
}, and {𝐴

1
𝑇
𝑛
V
𝑛
}. From 𝑦

𝑛
= 𝑆
[𝑛+1]

(𝐼 −

𝜌
𝑛
𝐴
1
)𝑇
𝑛
V
𝑛
and the nonexpansivity of 𝑆

[𝑛+1]
, it follows that

{𝑦
𝑛
} is bounded. Since 𝐴

2
is 𝜅-Lipschitz continuous, {𝐴

2
𝑦
𝑛
}

is also bounded.

Step 2. We prove that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+𝑁

‖ = 0.
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Indeed, utilizing (18) and (40), we obtain that

󵄩󵄩󵄩󵄩V𝑛+𝑁 − V
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
Λ
𝑀

𝑛+𝑁
𝑢𝑛+𝑁 − Λ

𝑀

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛+𝑁

(𝐼 − 𝜆
𝑀,𝑛+𝑁

𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

−𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛+𝑁

(𝐼 − 𝜆
𝑀,𝑛+𝑁

𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

−𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛+𝑁

(𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛+𝑁

(𝐼 − 𝜆𝑀,𝑛𝐵𝑀) Λ
𝑀−1

𝑛+𝑁
𝑢𝑛+𝑁

−𝐽𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆𝑀,𝑛𝐵𝑀) Λ
𝑀−1

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀,𝑛+𝑁
𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

− (𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀,𝑛
𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

− (𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜆𝑀,𝑛+𝑁 − 𝜆𝑀,𝑛

󵄨󵄨󵄨󵄨

× (
1

𝜆
𝑀,𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛+𝑁

(𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

− (𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+
1

𝜆
𝑀,𝑛

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑀,𝑛
𝐵
𝑀
) Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

−𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) Λ
𝑀−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄨󵄨󵄨󵄨𝜆𝑀,𝑛+𝑁 − 𝜆𝑀,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑀
Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑀−1

𝑛+𝑁
𝑢
𝑛+𝑁

− Λ
𝑀−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑀,𝑛+𝑁 − 𝜆𝑀,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑀Λ
𝑀−1

𝑛+𝑁
𝑢𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+
󵄨󵄨󵄨󵄨𝜆𝑀−1,𝑛+𝑁 − 𝜆𝑀−1,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑀−1

Λ
𝑀−2

𝑛+𝑁
𝑢
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑀−2

𝑛+𝑁
𝑢
𝑛+𝑁

− Λ
𝑀−2

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

...

≤
󵄨󵄨󵄨󵄨𝜆𝑀,𝑛+𝑁 − 𝜆𝑀,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑀Λ
𝑀−1

𝑛+𝑁
𝑢𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+
󵄨󵄨󵄨󵄨𝜆𝑀−1,𝑛+𝑁 − 𝜆𝑀−1,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑀−1

Λ
𝑀−2

𝑛+𝑁
𝑢
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝜆1,𝑛+𝑁 − 𝜆1,𝑛

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩
𝐵
1Λ
0

𝑛+𝑁
𝑢𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+ 𝑀̃)

+
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛+𝑁
𝑢
𝑛+𝑁

− Λ
0

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̃
0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁 − 𝜆𝑘,𝑛
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑢𝑛+𝑁 − 𝑢𝑛
󵄩󵄩󵄩󵄩 ,

(57)

where

sup
𝑛≥0,1≤𝑖≤𝑀

{
1

𝜆
𝑖,𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛+𝑁

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖) Λ
𝑖−1

𝑛+𝑁
𝑢𝑛+𝑁

− (𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+
1

𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛+𝑁
𝑢
𝑛+𝑁

−𝐽𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖) Λ
𝑖−1

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩
} ≤ 𝑀̃,

(58)

for some 𝑀̃ > 0 and sup
𝑛≥0

{∑
𝑀

𝑘=1
‖𝐵
𝑘
Λ
𝑘−1

𝑛+𝑁
𝑢
𝑛+𝑁

‖ + 𝑀̃} ≤ 𝑀̃
0

for some 𝑀̃
0
> 0.

Furthermore, since ∇𝑓 is 1/𝐿-ism, 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) is

nonexpansive for 𝜆
𝑛
∈ (0, 2/𝐿). So, it follows that

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩 + 2
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 .

(59)

With the boundedness of {V
𝑛
}, this implies that {𝑃

𝐶
(𝐼 −

𝜆
𝑛+𝑁

∇𝑓)V
𝑛
} is bounded. Also, observe that

󵄩󵄩󵄩󵄩𝑇𝑛+𝑁V𝑛 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4𝑃
𝐶
(𝐼 − 𝜆

𝑛+𝑁
∇𝑓) − (2 − 𝜆

𝑛+𝑁
𝐿) 𝐼

2 + 𝜆
𝑛+𝑁

𝐿
V
𝑛

−
4𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) − (2 − 𝜆

𝑛
𝐿) 𝐼

2 + 𝜆𝑛𝐿
V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4𝑃
𝐶
(𝐼 − 𝜆

𝑛+𝑁
∇𝑓)

2 + 𝜆𝑛+𝑁𝐿
V
𝑛
−
4𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓)

2 + 𝜆𝑛𝐿
V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 − 𝜆
𝑛
𝐿

2 + 𝜆𝑛𝐿
V
𝑛
−
2 − 𝜆
𝑛+𝑁𝐿

2 + 𝜆𝑛+𝑁𝐿
V
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(4 (2 + 𝜆

𝑛
𝐿) 𝑃
𝐶
(𝐼 − 𝜆

𝑛+𝑁
∇𝑓) V
𝑛

−4 (2 + 𝜆𝑛+𝑁𝐿) 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛)

×((2 + 𝜆
𝑛+𝑁

𝐿)(2 + 𝜆
𝑛
𝐿))
−1󵄩󵄩󵄩󵄩󵄩

+
4𝐿

󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛
󵄨󵄨󵄨󵄨

(2 + 𝜆
𝑛+𝑁

𝐿) (2 + 𝜆
𝑛
𝐿)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
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=
󵄩󵄩󵄩󵄩(4𝐿 (𝜆𝑛 − 𝜆𝑛+𝑁) 𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛 + 4 (2 + 𝜆𝑛+𝑁𝐿)

× (𝑃
𝐶
(𝐼 − 𝜆

𝑛+𝑁
∇𝑓) V
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛
))

×((2 + 𝜆
𝑛+𝑁

𝐿)(2 + 𝜆
𝑛
𝐿))
−1󵄩󵄩󵄩󵄩󵄩

+
4𝐿

󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛
󵄨󵄨󵄨󵄨

(2 + 𝜆𝑛+𝑁𝐿) (2 + 𝜆𝑛𝐿)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩

≤
4𝐿

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆𝑛+𝑁
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛
󵄩󵄩󵄩󵄩

(2 + 𝜆
𝑛+𝑁

𝐿) (2 + 𝜆
𝑛
𝐿)

+ (4 (2 + 𝜆
𝑛+𝑁

𝐿)

×
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛

󵄩󵄩󵄩󵄩)

× ((2 + 𝜆
𝑛+𝑁𝐿)(2 + 𝜆𝑛𝐿))

−1

+
4𝐿

󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛
󵄨󵄨󵄨󵄨

(2 + 𝜆𝑛+𝑁𝐿) (2 + 𝜆𝑛𝐿)

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛

󵄨󵄨󵄨󵄨 [𝐿
󵄩󵄩󵄩󵄩𝑃𝐶 (𝐼 − 𝜆𝑛+𝑁∇𝑓) V𝑛

󵄩󵄩󵄩󵄩

+ 4
󵄩󵄩󵄩󵄩∇𝑓 (V𝑛)

󵄩󵄩󵄩󵄩 + 𝐿
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩]

≤ 𝑀̃
1

󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛
󵄨󵄨󵄨󵄨 ,

(60)

where sup
𝑛≥0

{𝐿‖𝑃
𝐶
(𝐼−𝜆
𝑛+𝑁

∇𝑓)V
𝑛
‖+4‖∇𝑓(V

𝑛
)‖+𝐿‖V

𝑛
‖} ≤ 𝑀̃

1

for some 𝑀̃
1
> 0. Thus, we conclude from (57) and (60) that

󵄩󵄩󵄩󵄩𝑇𝑛+𝑁V𝑛+𝑁 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛+𝑁V𝑛+𝑁 − 𝑇𝑛+𝑁V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛+𝑁V𝑛 − 𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩V𝑛+𝑁 − V

𝑛

󵄩󵄩󵄩󵄩 + 𝑀̃1
󵄨󵄨󵄨󵄨𝜆𝑛+𝑁 − 𝜆𝑛

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩V𝑛+𝑁 − V𝑛

󵄩󵄩󵄩󵄩 +
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁 − 𝑠𝑛
󵄨󵄨󵄨󵄨

≤ 𝑀̃
0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁 − 𝜆𝑘,𝑛
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑢𝑛+𝑁 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁 − 𝑠𝑛
󵄨󵄨󵄨󵄨 .

(61)

Also, utilizing Proposition 3(ii), (v), we deduce that

󵄩󵄩󵄩󵄩𝑢𝑛+𝑁 − 𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
Δ
𝐾

𝑛+𝑁
𝑥
𝑛+𝑁

− Δ
𝐾

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟𝐾,𝑛+𝑁𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

−𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟𝐾,𝑛+𝑁𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

−𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟𝐾,𝑛𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

−𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

−𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

−𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

− (𝐼 − 𝑟
𝐾,𝑛
𝐴
𝐾
) Δ
𝐾−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨𝑟𝐾,𝑛+𝑁 − 𝑟𝐾,𝑛
󵄨󵄨󵄨󵄨

𝑟𝐾,𝑛+𝑁

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟𝐾,𝑛+𝑁𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

− (𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑟𝐾,𝑛+𝑁 − 𝑟𝐾,𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
𝐾Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

− Δ
𝐾−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄨󵄨󵄨󵄨𝑟𝐾,𝑛+𝑁 − 𝑟𝐾,𝑛

󵄨󵄨󵄨󵄨 [
󵄩󵄩󵄩󵄩󵄩
𝐴
𝐾
Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+

1

𝑟𝐾,𝑛+𝑁

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟𝐾,𝑛+𝑁𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

− (𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
]

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

− Δ
𝐾−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

...

≤
󵄨󵄨󵄨󵄨𝑟𝐾,𝑛+𝑁 − 𝑟𝐾,𝑛

󵄨󵄨󵄨󵄨 [
󵄩󵄩󵄩󵄩󵄩
𝐴
𝐾Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+

1

𝑟
𝐾,𝑛+𝑁

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛+𝑁

(𝐼 − 𝑟
𝐾,𝑛+𝑁

𝐴
𝐾
) Δ
𝐾−1

𝑛+𝑁
𝑥
𝑛+𝑁

− (𝐼 − 𝑟𝐾,𝑛+𝑁𝐴𝐾) Δ
𝐾−1

𝑛+𝑁
𝑥𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
]

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑟1,𝑛+𝑁 − 𝑟1,𝑛

󵄨󵄨󵄨󵄨

× [
󵄩󵄩󵄩󵄩󵄩
𝐴
1
Δ
0

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩
+

1

𝑟1,𝑛+𝑁

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛+𝑁

(𝐼 − 𝑟1,𝑛+𝑁𝐴1) Δ
0

𝑛+𝑁
𝑥𝑛+𝑁

− (𝐼 − 𝑟
1,𝑛+𝑁

𝐴
1
) Δ
0

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩
]
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+
󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛+𝑁
𝑥
𝑛+𝑁

− Δ
0

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̃
2

𝐾

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗,𝑛+𝑁

− 𝑟
𝑗,𝑛

󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ,

(62)

where 𝑀̃
2 > 0 is a constant such that for each 𝑛 ≥ 0

𝐾

∑

𝑗=1

[
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩

+
1

𝑟
𝑗,𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛+𝑁

(𝐼 − 𝑟𝑗,𝑛+𝑁𝐴𝑗) Δ
𝑗−1

𝑛+𝑁
𝑥𝑛+𝑁

− (𝐼 − 𝑟
𝑗,𝑛+𝑁

𝐴
𝑗
) Δ
𝑗−1

𝑛+𝑁
𝑥
𝑛+𝑁

󵄩󵄩󵄩󵄩󵄩󵄩
] ≤ 𝑀̃

2
.

(63)

Therefore, it follows from (18), (61), (62), and {𝜌
𝑛}
∞

𝑛=0
⊂ (0, 2𝛼]

that
󵄩󵄩󵄩󵄩𝑧𝑛+𝑁 − 𝑧𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑛+𝑁

V
𝑛+𝑁

− 𝜌
𝑛+𝑁

𝐴
1
𝑇
𝑛+𝑁

V
𝑛+𝑁

) − (𝑇
𝑛
V
𝑛
− 𝜌
𝑛
𝐴
1
𝑇
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑛+𝑁V𝑛+𝑁 − 𝜌𝑛+𝑁𝐴1𝑇𝑛+𝑁V𝑛+𝑁)

− (𝑇
𝑛
V
𝑛
− 𝜌
𝑛+𝑁

𝐴
1
𝑇
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑛V𝑛 − 𝜌𝑛+𝑁𝐴1𝑇𝑛V𝑛) − (𝑇𝑛V𝑛 − 𝜌𝑛𝐴1𝑇𝑛V𝑛)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛+𝑁V𝑛+𝑁 − 𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜌𝑛+𝑁 − 𝜌𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̃
0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁 − 𝜆𝑘,𝑛
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑢𝑛+𝑁 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁 − 𝑠𝑛
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜌𝑛+𝑁 − 𝜌𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀̃
0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁 − 𝜆𝑘,𝑛
󵄨󵄨󵄨󵄨 + 𝑀̃2

𝐾

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗,𝑛+𝑁

− 𝑟
𝑗,𝑛

󵄨󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁 − 𝑠𝑛
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜌𝑛+𝑁 − 𝜌𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(64)

From Lemma 11 and (64), it is found that
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁 − 𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+𝑁−1 − 𝜇𝛼𝑛+𝑁−1𝐴2𝑦𝑛+𝑁−1

− (𝑦
𝑛−1

− 𝜇𝛼
𝑛−1

𝐴
2
𝑦
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛+𝑁−1

[𝑛+𝑁]
𝑧
𝑛+𝑁−1

− 𝑆
𝛼
𝑛−1

[𝑛]
𝑧
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛+𝑁−1

[𝑛+𝑁]
𝑧𝑛+𝑁−1 − 𝑆

𝛼
𝑛+𝑁−1

[𝑛+𝑁]
𝑧𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛+𝑁−1

[𝑛+𝑁]
𝑧𝑛−1 − 𝑆

𝛼
𝑛−1

[𝑛]
𝑧𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛+𝑁−1𝜏)
󵄩󵄩󵄩󵄩𝑧𝑛+𝑁−1 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛+𝑁−1 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑆
[𝑛]
𝑧
𝑛−1

󵄩󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛+𝑁−1

𝜏)
󵄩󵄩󵄩󵄩𝑧𝑛+𝑁−1 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛+𝑁−1 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛+𝑁−1𝜏)

× [𝑀̃0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁−1 − 𝜆𝑘,𝑛−1
󵄨󵄨󵄨󵄨

+ 𝑀̃
2

𝐾

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗,𝑛+𝑁−1

− 𝑟
𝑗,𝑛−1

󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁−1 − 𝑠𝑛−1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝜌𝑛+𝑁−1 − 𝜌𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛−1

V
𝑛−1

󵄩󵄩󵄩󵄩󵄩
]

]

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛+𝑁−1 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛+𝑁−1𝜏)

󵄩󵄩󵄩󵄩𝑥𝑛+𝑁−1 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑀̃
0

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁−1 − 𝜆𝑘,𝑛−1
󵄨󵄨󵄨󵄨 + 𝑀̃2

𝐾

∑

j=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗,𝑛+𝑁−1 − 𝑟𝑗,𝑛−1

󵄨󵄨󵄨󵄨󵄨

+
4𝑀̃
1

𝐿

󵄨󵄨󵄨󵄨𝑠𝑛+𝑁−1 − 𝑠𝑛−1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜌𝑛+𝑁−1 − 𝜌𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛−1

V
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄨󵄨󵄨󵄨𝛼𝑛+𝑁−1 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴
2
𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛+𝑁−1

𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀̃
3(

𝑀

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘,𝑛+𝑁−1 − 𝜆𝑘,𝑛−1
󵄨󵄨󵄨󵄨 +

𝐾

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑟
𝑗,𝑛+𝑁−1 − 𝑟𝑗,𝑛−1

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑠𝑛+𝑁−1 − 𝑠𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜌𝑛+𝑁−1 − 𝜌𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛+𝑁−1 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 ) ,

(65)

where sup
𝑛≥0

{𝑀̃
0
+4𝑀̃
1
/𝐿+𝑀̃

2
+‖𝐴
1
𝑇
𝑛
V
𝑛
‖+𝜇‖𝐴

2
𝑦
𝑛
‖} ≤ 𝑀̃

3

for some 𝑀̃3 > 0. Applying Lemma 12 to (65) we obtain from
conditions (i)–(vi) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+𝑁 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (66)

Step 3. We prove that lim
𝑛→∞

‖𝑥
𝑛
− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

𝑥
𝑛
‖ = 0

provided lim
𝑛→∞

(‖𝑥
𝑛
− 𝑦
𝑛
‖ + ‖𝑇

𝑛
V
𝑛
− V
𝑛
‖) = 0.

Indeed, from ‖𝑥
𝑛+1

− 𝑦
𝑛
‖ = 𝜇𝛼

𝑛
‖𝐴
2
𝑦
𝑛
‖ ≤ 𝛼

𝑛
𝑀̃
3
and

condition (i), we get lim
𝑛→∞

‖𝑥
𝑛+1

−𝑦
𝑛
‖ = 0. Now, let us show

that ‖𝑢
𝑛
− 𝑥
𝑛
‖ → 0, ‖V

𝑛
− 𝑢
𝑛
‖ → 0 and ‖𝑥

𝑛
− 𝑇
𝑛
V
𝑛
‖ → 0
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as 𝑛 → ∞. As a matter of fact, utilizing Lemma 4, we get
from (43)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+1]

(𝑇
𝑛
V
𝑛
− 𝜌
𝑛
𝐴
1
𝑇
𝑛
V
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
V
𝑛
− 𝑥
∗
− 𝜌
𝑛
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 2𝜌
𝑛
⟨𝐴
1
𝑇
𝑛
V
𝑛
, 𝑧
𝑛
− 𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(67)

Observe that

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛

(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
)Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝑇
(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛

(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
)𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
)Δ
𝑗−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑗,𝑛
𝐴
𝑗
)𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝑟𝑗,𝑛 (𝑟𝑗,𝑛 − 2𝜁𝑗)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗Δ
𝑗−1

𝑛
𝑥𝑛 − 𝐴𝑗𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑗,𝑛
(𝑟
𝑗,𝑛
− 2𝜁
𝑗
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑘
,𝜆
𝑘,𝑛

(𝐼 − 𝜆𝑘,𝑛𝐵𝑘)Λ
𝑘−1

𝑛
𝑢𝑛 − 𝐽𝑅

𝑘
,𝜆
𝑘,𝑛

(𝐼 − 𝜆𝑘,𝑛𝐵𝑘)𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑘,𝑛
𝐵
𝑘
)Λ
𝑘−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑘,𝑛
𝐵
𝑘
)𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑘,𝑛
(𝜆
𝑘,𝑛
− 2𝜂
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝜆𝑘,𝑛 (𝜆𝑘,𝑛 − 2𝜂𝑘)

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Λ
𝑘−1

𝑛
𝑢𝑛 − 𝐵𝑘𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑘,𝑛
(𝜆
𝑘,𝑛
− 2𝜂
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

,

(68)

for 𝑗 ∈ {1, 2, . . . , 𝐾} and 𝑘 ∈ {1, 2, . . . ,𝑀}. Combining (67)-
(68), we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑘,𝑛
(𝜆
𝑘,𝑛
− 2𝜂
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑘,𝑛
(𝜆
𝑘,𝑛
− 2𝜂
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑗,𝑛
(𝑟
𝑗,𝑛
− 2𝜁
𝑗
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑘,𝑛
(𝜆
𝑘,𝑛
− 2𝜂
𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(69)

which immediately yields

𝑟
𝑗,𝑛
(2𝜁
𝑗
− 𝑟
𝑗,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑘,𝑛
(2𝜂
𝑘
− 𝜆
𝑘,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩)

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(70)

Since {𝜆
𝑘,𝑛
}
∞

𝑛=0
⊂ [𝑎

𝑘
, 𝑏
𝑘
] ⊂ (0, 2𝜂

𝑘
) and {𝑟

𝑗,𝑛
}
∞

𝑛=0
⊂

[𝑐
𝑗, 𝑑𝑗] ⊂ (0, 2𝜁𝑗) for 𝑗 = 1, 2, . . . , 𝐾 and 𝑘 = 1, 2, . . . ,𝑀

and {𝑥
𝑛}, {𝑦𝑛}, {𝐴1𝑇𝑛V𝑛} and {𝑧𝑛} are bounded sequences, we

deduce from 𝜌𝑛 → 0 and ‖𝑥𝑛 − 𝑦𝑛‖ → 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩
= 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Λ
𝑘−1

𝑛
𝑢𝑛 − 𝐵𝑘𝑥

∗󵄩󵄩󵄩󵄩󵄩
= 0,

(71)

for all 𝑗 ∈ {1, 2, . . . , 𝐾} and 𝑘 ∈ {1, 2, . . . ,𝑀}.
Furthermore, by Proposition 3(ii) and Lemma 5(a), we

have

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛

(𝐼 − 𝑟𝑗,𝑛𝐴𝑗)Δ
𝑗−1

𝑛
𝑥𝑛 − 𝑇

(Θ
𝑗
,𝜑
𝑗
)

𝑟
𝑗,𝑛

(𝐼 − 𝑟𝑗,𝑛𝐴𝑗)𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
) Δ
𝑗−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑗,𝑛
𝐴
𝑗
) 𝑥
∗
, Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗
⟩

=
1

2

× (
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
)Δ
𝑗−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑗,𝑛
𝐴
𝑗
)𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑟
𝑗,𝑛
𝐴
𝑗
)Δ
𝑗−1

𝑛
𝑥
𝑛
−(𝐼 − 𝑟

𝑗,𝑛
𝐴
𝑗
)𝑥
∗
−(Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛
− 𝑟
𝑗,𝑛
(𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(72)
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which implies that

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛
− 𝑟
𝑗,𝑛
(𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝑟
2

𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑗,𝑛
⟨Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛
, 𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗
⟩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥𝑛 − Δ

𝑗

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗Δ
𝑗−1

𝑛
𝑥𝑛 − 𝐴𝑗𝑥

∗󵄩󵄩󵄩󵄩󵄩
.

(73)

By Lemma 5(a) and Lemma 14, we obtain

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑅
𝑘
,𝜆
𝑘,𝑛

(𝐼 − 𝜆𝑘,𝑛𝐵𝑘)Λ
𝑘−1

𝑛
𝑢𝑛 − 𝐽𝑅

𝑘
,𝜆
𝑘,𝑛

(𝐼 − 𝜆𝑘,𝑛𝐵𝑘)𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑘,𝑛
𝐵
𝑘
) Λ
𝑘−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑘,𝑛
𝐵
𝑘
) 𝑥
∗
, Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗
⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑘,𝑛𝐵𝑘) Λ
𝑘−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑘,𝑛𝐵𝑘) 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑘,𝑛
𝐵
𝑘
) Λ
𝑘−1

𝑛
𝑢
𝑛

− (𝐼 − 𝜆
𝑘,𝑛
𝐵
𝑘
) 𝑥
∗
− (Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢𝑛 − Λ

𝑘

𝑛
𝑢𝑛 − 𝜆𝑘,𝑛(𝐵𝑘Λ

𝑘−1

𝑛
𝑢𝑛 − 𝐵𝑘𝑥

∗
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛
− 𝜆
𝑘,𝑛
(𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛
− 𝜆
𝑘,𝑛
(𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

) ,

(74)

which immediately leads to

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛
− 𝜆
𝑘,𝑛
(𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
2

𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑘,𝑛 ⟨Λ
𝑘−1

𝑛
𝑢𝑛 − Λ

𝑘

𝑛
𝑢𝑛, 𝐵𝑘Λ

𝑘−1

𝑛
𝑢𝑛 − 𝐵𝑘𝑥

∗
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩
.

(75)

Combining (67) and (75) we conclude that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘

𝑛
𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(76)

which yields

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘
Λ
𝑘−1

𝑛
𝑢
𝑛
− 𝐵
𝑘
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩)

+ 2𝜆
𝑘,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢𝑛 − Λ

𝑘

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑘Λ
𝑘−1

𝑛
𝑢𝑛 − 𝐵𝑘𝑥

∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(77)

Since {𝜆
𝑘,𝑛
}
∞

𝑛=0
⊂ [𝑎
𝑘
, 𝑏
𝑘
] ⊂ (0, 2𝜂

𝑘
) for 𝑘 = 1, 2, . . . ,𝑀 and

{𝑢
𝑛}, {𝑥𝑛}, {𝑦𝑛}, {𝐴1𝑇𝑛V𝑛} and {𝑧𝑛} are bounded sequences, we

deduce from (71), 𝜌
𝑛
→ 0, and ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑘−1

𝑛
𝑢
𝑛
− Λ
𝑘

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑘 ∈ {1, 2, . . . ,𝑀} . (78)
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Also, combining (51), (67), and (73), we deduce that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗

𝑛
𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑟𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥𝑛 − Δ

𝑗

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗Δ
𝑗−1

𝑛
𝑥𝑛 − 𝐴𝑗𝑥

∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(79)

which leads to
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩)

+ 2𝑟
𝑗,𝑛

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑗
Δ
𝑗−1

𝑛
𝑥
𝑛
− 𝐴
𝑗
𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 2𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(80)

Since {𝑟
𝑗,𝑛
}
∞

𝑛=0
⊂ [𝑐
𝑗
, 𝑑
𝑗
] ⊂ (0, 2𝜁

𝑗
) for 𝑗 = 1, 2, . . . , 𝐾

and {𝑥
𝑛}, {𝑦𝑛}, {𝐴1𝑇𝑛V𝑛} and {𝑧𝑛} are bounded sequences, we

conclude from (71), 𝜌𝑛 → 0, and ‖𝑥𝑛 − 𝑦𝑛‖ → 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗−1

𝑛
𝑥
𝑛
− Δ
𝑗

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑗 ∈ {1, 2, . . . , 𝐾} . (81)

Hence from (78) and (81) we get

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥
𝑛
− Δ
𝐾

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Δ
0

𝑛
𝑥𝑛 − Δ

1

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Δ
1

𝑛
𝑥𝑛 − Δ

2

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅

+
󵄩󵄩󵄩󵄩󵄩
Δ
𝐾−1

𝑛
𝑥𝑛 − Δ

𝐾

𝑛
𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞,

(82)

󵄩󵄩󵄩󵄩𝑢𝑛 − V𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢𝑛 − Λ

𝑀

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Λ
1

𝑛
𝑢
𝑛
− Λ
2

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑀−1

𝑛
𝑢
𝑛
− Λ
𝑀

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞,

(83)

respectively. Thus, from (82) and (83), we obtain
󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − V𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞,

(84)

together with ‖V
𝑛
− 𝑇
𝑛
V
𝑛
‖ → 0, which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛V𝑛
󵄩󵄩󵄩󵄩 = 0. (85)

On the other hand, we observe that the following relation
holds:

𝑥𝑛+𝑁 − 𝑥𝑛 = 𝑥𝑛+𝑁 − 𝑆[𝑛+𝑁] (𝐼 − 𝜌𝑛+𝑁−1𝐴1) 𝑇𝑛+𝑁−1V𝑛+𝑁−1

+ 𝑆
[𝑛+𝑁]

(𝐼 − 𝜌
𝑛+𝑁−1

𝐴
1
) 𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

− 𝑆[𝑛+𝑁]𝑆[𝑛+𝑁−1] (𝐼 − 𝜌𝑛+𝑁−2𝐴1) 𝑇𝑛+𝑁−2V𝑛+𝑁−2

+ ⋅ ⋅ ⋅ + 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+2]

(𝐼 − 𝜌
𝑛+1

𝐴
1
) 𝑇
𝑛+1

V
𝑛+1

− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

+ 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛
− 𝑥
𝑛
.

(86)

Since ‖𝑥
𝑛+1

− 𝑦
𝑛
‖ → 0 and 𝜌

𝑛
→ 0 as 𝑛 → ∞, from the

nonexpansivity of each 𝑆
𝑖
(𝑖 = 1, 2, . . . , 𝑁) and boundedness

of {𝐴
1
𝑇
𝑛
V
𝑛
} it follows from (85) that as 𝑛 → ∞ we have

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑁

− 𝑆
[𝑛+𝑁]

(𝐼 − 𝜌
𝑛+𝑁−1

𝐴
1
) 𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁 − 𝑦𝑛+𝑁−1

󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁]

(𝐼 − 𝜌
𝑛+𝑁−1

𝐴
1
) 𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

− 𝑆[𝑛+𝑁]𝑆[𝑛+𝑁−1] (𝐼 − 𝜌𝑛+𝑁−2𝐴1) 𝑇𝑛+𝑁−2V𝑛+𝑁−2
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜌

𝑛+𝑁−1
𝐴
1
) 𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

−𝑆
[𝑛+𝑁−1]

(𝐼 − 𝜌
𝑛+𝑁−2

𝐴
1
) 𝑇
𝑛+𝑁−2

V
𝑛+𝑁−2

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

−𝑆
[𝑛+𝑁−1]

(𝐼 − 𝜌
𝑛+𝑁−2

𝐴
1
) 𝑇
𝑛+𝑁−2

V
𝑛+𝑁−2

󵄩󵄩󵄩󵄩󵄩

+ 𝜌
𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛+𝑁−1V𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛+𝑁−1V𝑛+𝑁−1 − 𝑥𝑛+𝑁−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑁−1

− 𝑆
[𝑛+𝑁−1]

(𝐼 − 𝜌
𝑛+𝑁−2

𝐴
1
) 𝑇
𝑛+𝑁−2

V
𝑛+𝑁−2

󵄩󵄩󵄩󵄩󵄩

+ 𝜌
𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛+𝑁−1V𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑛+𝑁−1V𝑛+𝑁−1 − 𝑥𝑛+𝑁−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+𝑁−1 − 𝑦𝑛+𝑁−2

󵄩󵄩󵄩󵄩

+ 𝜌
𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛+𝑁−1

V
𝑛+𝑁−1

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0,

...
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+2] (𝐼 − 𝜌𝑛+1𝐴1) 𝑇𝑛+1V𝑛+1

−𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜌

𝑛+1
𝐴
1
) 𝑇
𝑛+1

V
𝑛+1

− 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

V
𝑛+1

− 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩
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+ 𝜌
𝑛+1

󵄩󵄩󵄩󵄩󵄩
𝐴
1
T
𝑛+1

V
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛+1V𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

+ 𝜌
𝑛+1

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛+1V𝑛+1

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑛+1V𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ 𝜌
𝑛+1

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛+1

V
𝑛+1

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(87)

Therefore, from (66) and (86), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (88)

So, it follows that
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1] (𝐼 − 𝜌𝑛𝐴1) 𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑥
𝑛

−𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1] (𝐼 − 𝜌𝑛𝐴1) 𝑇𝑛V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(89)

Observe that
󵄩󵄩󵄩󵄩𝑆[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1]𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

𝑥
𝑛
− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝑥
𝑛
− 𝜌
𝑛
𝐴
1
𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1] (𝑥𝑛 − 𝜌𝑛𝐴1𝑥𝑛) − 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

(𝑥
𝑛
− 𝜌
𝑛
𝐴
1
𝑥
𝑛
) − 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 (𝑛 󳨀→ ∞) .

(90)

That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1]𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (91)

Step 4. We prove that lim sup
𝑛→∞

⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
⟩ ≤ 0

provided lim
𝑛→∞

(‖𝑥
𝑛
− 𝑦
𝑛
‖ + ‖𝑇

𝑛
V
𝑛
− V
𝑛
‖) = 0.

Indeed, choose a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
⟩ = lim
𝑖→∞

⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
𝑖

⟩ . (92)

The boundedness of {𝑥
𝑛
𝑖

} implies the existence of a subse-
quence {𝑥

𝑛
𝑖
𝑗

} of {𝑥
𝑛
𝑖

} and a point 𝑥 ∈ 𝐻 such that 𝑥
𝑛
𝑖
𝑗

⇀ 𝑥.
We may assume without loss of generality that 𝑥

𝑛
𝑖

⇀ 𝑥; that
is,

lim sup
𝑛→∞

⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
⟩ = lim
𝑖→∞

⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
𝑖

⟩

= ⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥⟩ .

(93)

First, we can readily see that 𝑥 ∈ ∩
𝑁

𝑖=1
Fix(𝑆
𝑖
). Since the

pool of mappings {𝑆
𝑖
: 𝑖 ≤ 𝑖 ≤ 𝑁} is finite, we may further

assume (passing to a further subsequence if necessary) that,
for some integer 𝑙 ∈ {1, 2, . . . , 𝑁},

𝑆
[𝑛
𝑖
]
≡ 𝑆
𝑙
, ∀𝑖 ≥ 1. (94)

Then, it follows from (91) that

𝑥
𝑛
𝑖

− 𝑆
[𝑖+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑖+1]

𝑥
𝑛
− 𝑥
𝑛
𝑖

󳨀→ 0. (95)

Hence, by Lemma 9, we conclude that

𝑥 ∈ Fix (𝑆[𝑖+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑖+1]) . (96)

Together with the assumption

𝑁

⋂

𝑖=1

Fix (𝑆𝑖) = Fix (𝑆1𝑆2 ⋅ ⋅ ⋅ 𝑆𝑁)

= Fix (𝑆
𝑁
𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑁−1

)

= ⋅ ⋅ ⋅ = Fix (𝑆
2
𝑆
3
⋅ ⋅ ⋅ 𝑆
𝑁
𝑆
1
) ,

(97)

this implies that 𝑥 ∈ ∩𝑁
𝑖=1

Fix(𝑆𝑖). Now, since

𝑥
∗
∈ VI(

𝑁

⋂

𝑖=𝑖

Fix (𝑆
𝑖
) , 𝐴
1
) , (98)

we obtain

lim sup
𝑛→∞

⟨𝐴1𝑥
∗
, 𝑥
∗
− 𝑥𝑛⟩ = lim

𝑖→∞

⟨𝐴1𝑥
∗
, 𝑥
∗
− 𝑥𝑛

𝑖

⟩

= ⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0.

(99)

Step 5. We prove that lim
𝑛→∞‖𝑥𝑛 − 𝑥

∗
‖ = 0 provided ‖𝑥𝑛 −

𝑦𝑛‖ + ‖𝑇𝑛V𝑛 − V𝑛‖ = 𝑜(𝜌𝑛).
Indeed, first of all, let us show that

lim sup
𝑛→∞

⟨𝐴1𝑥
∗
, 𝑥
∗
− 𝑥𝑛⟩ ≤ 0. We choose a subsequence

{𝑥
𝑛
𝑘

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨𝐴2𝑥
∗
, 𝑥
∗
− 𝑥𝑛⟩ = lim

𝑘→∞

⟨𝐴2𝑥
∗
, 𝑥
∗
− 𝑥𝑛

𝑘

⟩ . (100)

The boundedness of {𝑥
𝑛
𝑘

} implies that there is a subsequence
of {𝑥
𝑛
𝑘

} which converges weakly to a point 𝑥 ∈ 𝐻. Without
loss of generality, we may assume that 𝑥

𝑛
𝑘

⇀ 𝑥; that is,

lim sup
𝑛→∞

⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
⟩ = lim
𝑘→∞

⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
𝑘

⟩

= ⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥⟩ .

(101)

Repeating the same argument as in the proof of
𝑥 ∈ ∩

𝑁

𝑖=1
Fix(𝑆𝑖), we have 𝑥 ∈ ∩

𝑁

𝑖=1
Fix(𝑆𝑖). Let

𝑝 ∈ ∩
𝑁

𝑖=1
Fix(𝑆
𝑖
) be fixed arbitrarily. Note that

∩
𝑁

𝑖=𝑖
Fix(𝑆𝑖) ⊂ ∩

𝐾

𝑗=1
GMEP(Θ𝑗, 𝜑𝑗, 𝐴𝑗) ∩ ∩

𝑀

𝑘=1
𝐼(𝐵𝑘, 𝑅𝑘) ∩ Γ.

Then, it follows from the nonexpansivity of each
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𝑆
𝑖
(𝑖 = 1, 2, . . . , 𝑁) and monotonicity of 𝐴

1
that, for all

𝑛 ≥ 0,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩󵄩
𝑆
[𝑛+1](𝐼 − 𝜌𝑛𝐴1)𝑇𝑛V𝑛 − 𝑆[𝑛+1]𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑛V𝑛 − 𝑝) − 𝜌𝑛𝐴1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜌𝑛 ⟨𝐴1𝑇𝑛V𝑛, 𝑝 − 𝑇𝑛V𝑛⟩

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛
⟨𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩

+ 2𝜌
𝑛
⟨𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩ + 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛
⟨𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜌𝑛 ⟨𝐴1𝑝, 𝑝 − 𝑇𝑛V𝑛⟩ + 𝜌

2

𝑛
𝑀̃
2

3
,

(102)

which implies that

lim
𝑛→∞

⟨𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩

≤ lim
𝑛→∞

1

2𝜌
𝑛

[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜌
2

𝑛
𝑀̃
2

3
]

≤ lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2𝜌
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + lim
𝑛→∞

𝜌
𝑛

2
𝑀̃
2

3
.

(103)

So, from ‖𝑥
𝑛
− 𝑦
𝑛
‖ = 𝑜(𝜌

𝑛
) and the boundedness of {𝑥

𝑛
} and

{𝑦
𝑛
}, we get

lim sup
𝑛→∞

⟨𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩ ≤ 0, (104)

together with (85), which implies that

⟨𝐴
1𝑝, 𝑝 − 𝑥⟩

= lim
𝑘→∞

⟨𝐴
1
𝑝, 𝑝 − 𝑥

𝑛
𝑘

⟩

≤ lim sup
𝑛→∞

⟨𝐴
1
𝑝, 𝑝 − 𝑥

𝑛
⟩

≤ lim sup
𝑛→∞

(⟨𝐴1𝑝, 𝑝 − 𝑇𝑛V𝑛⟩ + ⟨𝐴1𝑝, 𝑇𝑛V𝑛 − 𝑥𝑛⟩)

≤ lim sup
𝑛→∞

⟨𝐴
1
𝑝, 𝑝 − 𝑇

𝑛
V
𝑛
⟩

≤ 0.

(105)

Thus, we have

⟨𝐴
1
𝑝, 𝑝 − 𝑥⟩ ≤ 0, ∀𝑝 ∈

𝑁

⋂

𝑖=1

Fix (𝑆
𝑖
) . (106)

Since 𝐴
1

is monotone and 1/𝛼-Lipschitz continuous,
in terms of Minty’s lemma [12], we deduce that
𝑥 ∈ VI(∩𝑁

𝑖=1
Fix(𝑆𝑖), 𝐴1). Therefore, from {𝑥

∗
} =

VI(VI(Ω, 𝐴
1
), 𝐴
2
), we have

lim sup
𝑛→∞

⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
⟩ = lim
𝑘→∞

⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛
𝑘

⟩

= ⟨𝐴
2
𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0.

(107)

Finally, let us show that ‖𝑥
𝑛
− 𝑥
∗
‖ → 0 as 𝑛 → ∞.

By utilizing Lemma 11, we deduce from (52) and 𝑆𝛼𝑛
[𝑛+1]

𝑥
∗
=

𝑥
∗
− 𝛼
𝑛
𝜇𝐴
2
𝑥
∗ that for all 𝑛 ≥ 0

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑧
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑧
𝑛
− 𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗
+ 𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
𝑛

[𝑛+1]
𝑧𝑛 − 𝑆

𝛼
𝑛

[𝑛+1]
𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑆
𝛼
𝑛

[𝑛+1]
𝑥
∗
− 𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 2𝛼
𝑛
𝜇 ⟨𝐴
2
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛V𝑛 − 𝑥

∗
− 𝜌𝑛𝐴1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
𝜇 ⟨𝐴
2
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= (1 − 𝛼
𝑛
𝜏) [

󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛
⟨𝐴
1
𝑇
𝑛
V
𝑛
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩ + 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
𝑛
V
𝑛

󵄩󵄩󵄩󵄩󵄩

2

]

− 2𝛼
𝑛
𝜇 ⟨𝐴
2
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= (1 − 𝛼
𝑛
𝜏) [

󵄩󵄩󵄩󵄩𝑇𝑛V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛
⟨𝐴
1
𝑇
𝑛
V
𝑛
− 𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩

+ 2𝜌𝑛 ⟨𝐴1𝑥
∗
, 𝑥
∗
− 𝑇𝑛V𝑛⟩ + 𝜌

2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

2

]

− 2𝛼
𝑛𝜇 ⟨𝐴2𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 − 𝛼
𝑛
𝜏) [

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛
⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇𝑛V𝑛

󵄩󵄩󵄩󵄩󵄩

2

]

− 2𝛼
𝑛𝜇 ⟨𝐴2𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ (1 − 𝛼
𝑛
𝜏) [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ 2𝜌
𝑛
⟨𝐴
1
𝑥
∗
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩ + 𝜌
2

𝑛
𝑀̃
2

3
]

− 2𝛼
𝑛
𝜇 ⟨𝐴
2
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝜌
𝑛
(1 − 𝛼

𝑛
𝜏) ⟨𝐴

1
𝑥
∗
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩ + 𝜌
2

𝑛
𝑀̃
2

3

− 2𝛼
𝑛
𝜇 ⟨𝐴
2
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩
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= (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜏 ⋅

1

𝜏
[2

𝜌
𝑛

𝛼𝑛

(1 − 𝛼
𝑛
𝜏) ⟨𝐴

1
𝑥
∗
, 𝑥
∗
− 𝑇
𝑛
V
𝑛
⟩

+
𝜌
2

𝑛

𝛼𝑛

𝑀̃
2

3
+ 2𝜇 ⟨𝐴

2
𝑥
∗
, 𝑥
∗
− 𝑥
𝑛+1

⟩] .

(108)

Since ∑∞
𝑛=0

𝛼𝑛 = ∞, 𝜌𝑛 ≤ 𝛼𝑛 for all 𝑛 ≥ 0 and 𝛼𝑛 → 0 as
𝑛 → ∞, we obtain, from (107) and (104) with 𝑝 = 𝑥

∗, that
∑
∞

𝑛=0
𝛼𝑛𝜏 = ∞, 2(𝜌𝑛/𝛼𝑛)(1 − 𝛼𝑛𝜏) ≤ 2, and

lim sup
𝑛→∞

1

𝜏
[2

𝜌
𝑛

𝛼
𝑛

(1 − 𝛼𝑛𝜏) ⟨𝐴1𝑥
∗
, 𝑥
∗
− 𝑇𝑛V𝑛⟩

+
𝜌
2

𝑛

𝛼
𝑛

𝑀̃
2

3
+ 2𝜇 ⟨𝐴2𝑥

∗
, 𝑥
∗
− 𝑥𝑛+1⟩] ≤ 0.

(109)

Applying Lemma 12 to (108), we infer that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = 0. (110)

This completes the proof.

In Theorem 18, putting 𝑓(𝑥) ≡ 0, ∀𝑥 ∈ 𝐶, we obtain that
Γ = 𝐶 and 𝑇

𝑛
= 𝐼 which is the identity mapping of 𝐶. Hence

Theorem 18 reduces to the following.

Corollary 19. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑀,𝑁,𝐾 ≥ 1 be three integers.
Let Θ

𝑗
be a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4),

𝜑
𝑗
: 𝐶 → R a lower semicontinuous and convex functional

with the restriction (B1) or (B2), and 𝐴
𝑗 : 𝐻 → 𝐻𝜁𝑗-inverse

strongly monotone for 𝑗 = 1, 2, . . . , 𝐾. Let 𝑅
𝑘
: 𝐶 → 2

𝐻

be a maximal monotone mapping and let 𝐵
𝑘
: 𝐶 → 𝐻

be 𝜂
𝑘
-inverse strongly monotone for 𝑘 = 1, 2, . . . ,𝑀. Let

{𝑆𝑖}
𝑁

𝑖=1
be a finite family of nonexpansive mappings on 𝐻. Let

𝐴
1
: 𝐻 → 𝐻 be 𝛼-inverse strongly monotone and let 𝐴

2
:

𝐻 → 𝐻 be 𝛽-strongly monotone and 𝜅-Lipschitz continuous.
Assume that VI(∩𝑁

𝑖=1
Fix(𝑆𝑖), 𝐴1) ̸= 0 with (∩

𝑁

𝑖=1
Fix(𝑆𝑖)) ⊂

(∩
𝐾

𝑗=1
GMEP(Θ

𝑗
, 𝜑
𝑗
, 𝐴
𝑗
))∩(∩
𝑀

𝑘=1
𝐼(𝐵
𝑘
, 𝑅
𝑘
)). Let𝜇 ∈ (0, 2𝛽/𝜅2),

{𝛼
𝑛
}
∞

𝑛=0
⊂ (0, 1], {𝜌

𝑛
}
∞

𝑛=0
⊂ (0, 2𝛼], {𝜆

𝑘,𝑛
}
∞

𝑛=0
⊂ [𝑎
𝑘
, 𝑏
𝑘
] ⊂

(0, 2𝜂
𝑘
), and {𝑟

𝑗,𝑛
}
∞

𝑛=0
⊂ [𝑐
𝑗
, 𝑑
𝑗
] ⊂ (0, 2𝜁

𝑗
) where 𝑗 ∈

{1, 2, . . . , 𝐾} and 𝑘 ∈ {1, 2, . . . ,𝑀}. For arbitrarily given 𝑥
0
∈

𝐻, let {𝑥
𝑛
} be a sequence generated by

𝑢𝑛 = 𝑇
(Θ
𝐾
,𝜑
𝐾
)

𝑟
𝐾,𝑛

(𝐼 − 𝑟𝐾,𝑛𝐴𝐾) 𝑇
(Θ
𝐾−1
,𝜑
𝐾−1
)

𝑟
𝐾−1,𝑛

(𝐼 − 𝑟𝐾−1,𝑛𝐴𝐾−1)

⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟1,𝑛𝐴1) 𝑥𝑛,

V
𝑛
= 𝐽
𝑅
𝑀
,𝜆
𝑀,𝑛

(𝐼 − 𝜆
𝑀,𝑛

𝐵
𝑀
) 𝐽
𝑅
𝑀−1
,𝜆
𝑀−1,𝑛

(𝐼 − 𝜆
𝑀−1,𝑛

𝐵
𝑀−1

)

⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) V
𝑛
,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝜇𝛼
𝑛
𝐴
2
𝑦
𝑛
, ∀𝑛 ≥ 0.

(111)

Assume that

𝑁

⋂

𝑖=1

Fix (𝑆𝑖) = Fix (𝑆1𝑆2 ⋅ ⋅ ⋅ 𝑆𝑁)

= Fix (𝑆
𝑁
𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑁−1

)

= ⋅ ⋅ ⋅ = Fix (𝑆2𝑆3 ⋅ ⋅ ⋅ 𝑆𝑁𝑆1)

(112)

and that the following conditions are satisfied:

(i) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=0
𝛼
𝑛
= ∞ and 𝜌

𝑛
≤ 𝛼
𝑛
for all

𝑛 ≥ 0;

(ii) lim𝑛→∞(|𝛼𝑛−𝛼𝑛+𝑁|/(𝛼𝑛+𝑁)) = 0 or∑
∞

𝑛=0
|𝛼𝑛−𝛼𝑛+𝑁| <

∞;

(iii) lim𝑛→∞(|𝜌𝑛−𝜌𝑛+𝑁|/(𝜌𝑛+𝑁)) = 0 or∑
∞

𝑛=0
|𝜌𝑛−𝜌𝑛+𝑁| <

∞;

(iv) lim𝑛→∞(|𝜆𝑘,𝑛 − 𝜆𝑘,𝑛+𝑁|/(𝛼𝑛 +𝑁)) = 0 or∑
∞

𝑛=0
|𝜆𝑘,𝑛 −

𝜆𝑘,𝑛+𝑁| < ∞ for 𝑘 = 1, 2, . . . ,𝑀;

(v) lim
𝑛→∞(|𝑟𝑗,𝑛 − 𝑟𝑗,𝑛+𝑁|/(𝛼𝑛 + 𝑁)) = 0 or ∑∞

𝑛=0
|𝑟𝑗,𝑛 −

𝑟𝑗,𝑛+𝑁| < ∞ for 𝑗 = 1, 2, . . . , 𝐾.

Then the following hold:

(a) {𝑥
𝑛
}
∞

𝑛=0
is bounded;

(b) lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+𝑁

‖ = 0;

(c) lim
𝑛→∞‖𝑥𝑛 − 𝑆[𝑛+𝑁] ⋅ ⋅ ⋅ 𝑆[𝑛+1]𝑥𝑛‖ = 0 provided ‖𝑥𝑛 −

𝑦𝑛‖ → 0 (𝑛 → ∞);

(d) {𝑥
𝑛}
∞

𝑛=0
converges strongly to the unique element of

VI(VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
), 𝐴
2
) provided ‖𝑥

𝑛
− 𝑦
𝑛
‖ =

𝑜(𝜌
𝑛
).

In Corollary 19, putting 𝐾 = 1 and𝑀 = 2, we obtain the
following.

Corollary 20. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑁 ≥ 1 be an integer. Let Θ
be a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4), 𝜑 :

𝐶 → R a lower semicontinuous and convex functional with
the restriction (B1) or (B2), and 𝐴 : 𝐻 → 𝐻𝜁-inverse strongly
monotone. Let 𝑅

𝑘
: 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐵𝑘 : 𝐶 → 𝐻 be 𝜂𝑘-inverse strongly monotone
for 𝑘 = 1, 2. Let {𝑆

𝑖
}
𝑁

𝑖=1
be a finite family of nonexpansive

mappings on 𝐻. Let 𝐴
1
: 𝐻 → 𝐻 be 𝛼-inverse strongly

monotone and let 𝐴
2 : 𝐻 → 𝐻 be 𝛽-strongly monotone and

𝜅-Lipschitz continuous. Assume that VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
) ̸= 0

with (∩𝑁
𝑖=1

Fix(𝑆
𝑖
)) ⊂ GMEP(Θ, 𝜑, 𝐴) ∩ 𝐼(𝐵

2
, 𝑅
2
) ∩ 𝐼(𝐵

1
, 𝑅
1
).

Let 𝜇 ∈ (0, 2𝛽/𝜅
2
), {𝛼
𝑛
}
∞

𝑛=0
⊂ (0, 1], {𝜌

𝑛
}
∞

𝑛=0
⊂ (0, 2𝛼],

{𝜆
𝑘,𝑛
}
∞

𝑛=0
⊂ [𝑎
𝑘
, 𝑏
𝑘
] ⊂ (0, 2𝜂

𝑘
), and {𝑟

𝑛
}
∞

𝑛=0
⊂ [𝑐, 𝑑] ⊂ (0, 2𝜁)
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for 𝑘 = 1, 2. For arbitrarily given 𝑥
0
∈ 𝐻, let {𝑥

𝑛
} be a sequence

generated by

Θ(𝑢𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝐽
𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆
2,𝑛
𝐵
2
) 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑦𝑛 = 𝑆[𝑛+1] (𝐼 − 𝜌𝑛𝐴1) V𝑛,

𝑥
𝑛+1 = 𝑦𝑛 − 𝜇𝛼𝑛𝐴2𝑦𝑛, ∀𝑛 ≥ 0.

(113)

Assume that

𝑁

⋂

𝑖=1

Fix (𝑆
𝑖
) = Fix (𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑁
)

= Fix (𝑆
𝑁
𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑁−1

)

= ⋅ ⋅ ⋅ = Fix (𝑆2𝑆3 ⋅ ⋅ ⋅ 𝑆𝑁𝑆1)

(114)

and that the following conditions are satisfied:

(i) lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=0
𝛼
𝑛
= ∞ and 𝜌

𝑛
≤ 𝛼
𝑛
for all

𝑛 ≥ 0;
(ii) lim

𝑛→∞
(|𝛼
𝑛
−𝛼
𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝛼
𝑛
−𝛼
𝑛+𝑁

| <

∞;
(iii) lim

𝑛→∞
(|𝜌
𝑛
−𝜌
𝑛+𝑁

|/(𝜌
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝜌
𝑛
−𝜌
𝑛+𝑁

| <

∞;
(iv) lim

𝑛→∞
(|𝜆
𝑘,𝑛

− 𝜆
𝑘,𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or ∑∞
𝑛=0

|𝜆
𝑘,𝑛

−

𝜆𝑘,𝑛+𝑁| < ∞ for 𝑘 = 1, 2;
(v) lim𝑛→∞(|𝑟𝑛 − 𝑟𝑛+𝑁|/(𝛼𝑛+𝑁)) = 0 or∑

∞

𝑛=0
|𝑟𝑛 − 𝑟𝑛+𝑁| <

∞.

Then the following hold:

(a) {𝑥
𝑛
}
∞

𝑛=0
is bounded;

(b) lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+𝑁

‖ = 0;
(c) lim

𝑛→∞
‖𝑥
𝑛
− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

𝑥
𝑛
‖ = 0 provided ‖𝑥

𝑛
−

𝑦
𝑛
‖ → 0 (𝑛 → ∞);

(d) {𝑥
𝑛
}
∞

𝑛=0
converges strongly to the unique element of

VI(VI(∩𝑁
𝑖=1

Fix(𝑆𝑖), 𝐴1), 𝐴2) provided ‖𝑥𝑛 − 𝑦𝑛‖ =

𝑜(𝜌𝑛).

In Theorem 18, putting 𝐾 = 1 and𝑀 = 2, we obtain the
following.

Corollary 21. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 and let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let𝑁 ≥ 1

be an integer. Let Θ be a bifunction from 𝐶 × 𝐶 to R satisfying
(A1)–(A4), 𝜑 : 𝐶 → R a lower semicontinuous and convex
functional with the restriction (B1) or (B2), and𝐴 : 𝐻 → 𝐻𝜁-
inverse-strongly monotone. Let 𝑅

𝑘
: 𝐶 → 2

𝐻 be a maximal
monotone mapping and let 𝐵

𝑘
: 𝐶 → 𝐻 be 𝜂

𝑘
-inverse

strongly monotone for 𝑘 = 1, 2. Let {𝑆
𝑖
}
𝑁

𝑖=1
be a finite family

of nonexpansive mappings on 𝐻. Let 𝐴
1
: 𝐻 → 𝐻 be

𝛼-inverse strongly monotone and let 𝐴
2
: 𝐻 → 𝐻 be 𝛽-

strongly monotone and 𝜅-Lipschitz continuous. Assume that
VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
) ̸= 0 with ∩𝑁

𝑖=1
Fix(𝑆
𝑖
) ⊂ GMEP(Θ, 𝜑, 𝐴) ∩

𝐼(𝐵2, 𝑅2) ∩ 𝐼(𝐵1, 𝑅1) ∩ Γ. Let 𝜇 ∈ (0, 2𝛽/𝜅2), {𝛼𝑛}
∞

𝑛=0
⊂ (0, 1],

{𝜌𝑛}
∞

𝑛=0
⊂ (0, 2𝛼], {𝜆𝑘,𝑛}

∞

𝑛=0
⊂ [𝑎𝑘, 𝑏𝑘] ⊂ (0, 2𝜂𝑘), and {𝑟𝑛}

∞

𝑛=0
⊂

[𝑐, 𝑑] ⊂ (0, 2𝜁) for 𝑘 = 1, 2. For arbitrarily given 𝑥0 ∈ 𝐻, let
{𝑥𝑛} be a sequence generated by

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝐽
𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆
2,𝑛
𝐵
2
) 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑦
𝑛
= 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛
,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝜇𝛼
𝑛
𝐴
2
𝑦
𝑛
, ∀𝑛 ≥ 0,

(115)

where 𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive

and 𝑠
𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈

(0, 2/𝐿)). Assume that

𝑁

⋂

𝑖=1

Fix (𝑆
𝑖
) = Fix (𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑁
)

= Fix (𝑆
𝑁
𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑁−1

)

= ⋅ ⋅ ⋅ = Fix (𝑆2𝑆3 ⋅ ⋅ ⋅ 𝑆𝑁𝑆1)

(116)

and that the following conditions are satisfied:

(i) lim
𝑛→∞𝛼𝑛 = 0,∑

∞

𝑛=0
𝛼𝑛 = ∞ and 𝜌𝑛 ≤ 𝛼𝑛 for all

𝑛 ≥ 0;
(ii) lim𝑛→∞(|𝛼𝑛−𝛼𝑛+𝑁|/(𝛼𝑛+𝑁)) = 0 or∑

∞

𝑛=0
|𝛼𝑛−𝛼𝑛+𝑁| <

∞;
(iii) lim

𝑛→∞
(|𝑠
𝑛
− 𝑠
𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝑠
𝑛
− 𝑠
𝑛+𝑁

| <

∞;
(iv) lim

𝑛→∞
(|𝜌
𝑛
−𝜌
𝑛+𝑁

|/(𝜌
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝜌
𝑛
−𝜌
𝑛+𝑁

| <

∞;
(v) lim

𝑛→∞
(|𝜆
𝑘,𝑛
− 𝜆
𝑘,𝑛+𝑁

|/(𝛼
𝑛
+𝑁)) = 0 or∑∞

𝑛=0
|𝜆
𝑘,𝑛
−

𝜆
𝑘,𝑛+𝑁

| < ∞ for 𝑘 = 1, 2;
(vi) lim

𝑛→∞
(|𝑟
𝑛
−𝑟
𝑛+𝑁

|/(𝛼
𝑛
+𝑁)) = 0 or∑∞

𝑛=0
|𝑟
𝑛
−𝑟
𝑛+𝑁

| <

∞.

Then the following hold:

(a) {𝑥
𝑛
}
∞

𝑛=0
is bounded;

(b) lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+𝑁

‖ = 0;
(c) lim

𝑛→∞
‖𝑥
𝑛
− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

𝑥
𝑛
‖ = 0 provided

lim𝑛→∞(‖𝑥𝑛 − 𝑦𝑛‖ + ‖𝑇𝑛V𝑛 − V𝑛‖) = 0;
(d) {𝑥

𝑛}
∞

𝑛=0
converges strongly to the unique element of

VI(VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
), 𝐴
2
) provided ‖𝑥

𝑛
− 𝑦
𝑛
‖ +

‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ = 𝑜(𝜌

𝑛
).

In Theorem 18, putting 𝐾 = 1 and𝑀 = 1, we obtain the
following.
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Corollary 22. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 and let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let𝑁 ≥ 1

be an integer. Let Θ be a bifunction from 𝐶 × 𝐶 to R satisfying
(A1)–(A4), 𝜑 : 𝐶 → R a lower semicontinuous and convex
functional with the restriction (B1) or (B2), and𝐴 : 𝐻 → 𝐻𝜁-
inverse-strongly monotone. Let 𝑅 : 𝐶 → 2

𝐻 be a maximal
monotone mapping and let 𝐵 : 𝐶 → 𝐻 be 𝜂-inverse
stronglymonotone. Let {𝑆

𝑖
}
𝑁

𝑖=1
be a finite family of nonexpansive

mappings on 𝐻. Let 𝐴1 : 𝐻 → 𝐻 be 𝛼-inverse strongly
monotone and let 𝐴

2
: 𝐻 → 𝐻 be 𝛽-strongly monotone and

𝜅-Lipschitz continuous. Assume that VI(∩𝑁
𝑖=1

Fix(𝑆𝑖), 𝐴1) ̸= 0

with (∩𝑁
𝑖=1

Fix(𝑆
𝑖
)) ⊂ GMEP(Θ, 𝜑, 𝐴) ∩ 𝐼(𝐵, 𝑅) ∩ Γ. Let 𝜇 ∈

(0, 2𝛽/𝜅
2
), {𝛼
𝑛
}
∞

𝑛=0
⊂ (0, 1], {𝜌

𝑛
}
∞

𝑛=0
⊂ (0, 2𝛼], {𝜇

𝑛
}
∞

𝑛=0
⊂

[𝑎, 𝑏] ⊂ (0, 2𝜂), and {𝑟
𝑛
}
∞

𝑛=0
⊂ [𝑐, 𝑑] ⊂ (0, 2𝜁). For arbitrarily

given 𝑥
0
∈ 𝐻, let {𝑥

𝑛
} be a sequence generated by

Θ(𝑢
𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

V
𝑛
= 𝐽
𝑅,𝜇
𝑛

(𝐼 − 𝜇
𝑛
𝐵) 𝑢
𝑛
,

𝑦
𝑛
= 𝑆
[𝑛+1]

(𝐼 − 𝜌
𝑛
𝐴
1
) 𝑇
𝑛
V
𝑛
,

𝑥
𝑛+1

= 𝑦
𝑛
− 𝜇𝛼
𝑛
𝐴
2
𝑦
𝑛
, ∀𝑛 ≥ 0,
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where 𝑃
𝐶(𝐼−𝜆𝑛∇𝑓) = 𝑠𝑛𝐼+(1−𝑠𝑛)𝑇𝑛 (here𝑇𝑛 is nonexpansive

and 𝑠𝑛 := 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈

(0, 2/𝐿)). Assume that

𝑁

⋂

𝑖=1

Fix (𝑆𝑖) = Fix (𝑆1𝑆2 ⋅ ⋅ ⋅ 𝑆𝑁)

= Fix (𝑆
𝑁
𝑆
1
⋅ ⋅ ⋅ 𝑆
𝑁−1

)

= ⋅ ⋅ ⋅ = Fix (𝑆
2
𝑆
3
⋅ ⋅ ⋅ 𝑆
𝑁
𝑆
1
)
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and that the following conditions are satisfied:

(i) lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=0
𝛼
𝑛
= ∞ and 𝜌

𝑛
≤ 𝛼
𝑛
for all

𝑛 ≥ 0;
(ii) lim

𝑛→∞
(|𝛼
𝑛
−𝛼
𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝛼
𝑛
−𝛼
𝑛+𝑁

| <

∞;
(iii) lim

𝑛→∞
(|𝑠
𝑛
− 𝑠
𝑛+𝑁

|/(𝛼
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝑠
𝑛
− 𝑠
𝑛+𝑁

| <

∞;
(iv) lim

𝑛→∞
(|𝜌
𝑛
−𝜌
𝑛+𝑁

|/(𝜌
𝑛+𝑁

)) = 0 or∑∞
𝑛=0

|𝜌
𝑛
−𝜌
𝑛+𝑁

| <

∞;
(v) lim

𝑛→∞(|𝜇𝑛 − 𝜇𝑛+𝑁|/(𝛼𝑛 + 𝑁)) = 0 or ∑∞
𝑛=0

|𝜇𝑛 −

𝜇𝑛+𝑁| < ∞;
(vi) lim

𝑛→∞(|𝑟𝑛−r𝑛+𝑁|/(𝛼𝑛+𝑁)) = 0 or∑
∞

𝑛=0
|𝑟𝑛−𝑟𝑛+𝑁| <

∞.

Then the following hold:

(a) {𝑥
𝑛
}
∞

𝑛=0
is bounded;

(b) lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+𝑁

‖ = 0;

(c) lim
𝑛→∞

‖𝑥
𝑛
− 𝑆
[𝑛+𝑁]

⋅ ⋅ ⋅ 𝑆
[𝑛+1]

𝑥
𝑛
‖ = 0 provided

lim
𝑛→∞

(‖𝑥
𝑛
− 𝑦
𝑛
‖ + ‖𝑇

𝑛
V
𝑛
− V
𝑛
‖) = 0;

(d) {𝑥
𝑛}
∞

𝑛=0
converges strongly to the unique element of

VI(VI(∩𝑁
𝑖=1

Fix(𝑆
𝑖
), 𝐴
1
), 𝐴
2
) provided ‖𝑥

𝑛
− 𝑦
𝑛
‖ +

‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ = 𝑜(𝜌

𝑛
).
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Limites Non Linéaires, Dunod, Paris, France, 1969.

[2] G. M. Korpelevich, “The extragradient method for finding
saddle points and other problems,” Matecon, vol. 12, pp. 747–
756, 1976.

[3] L. C. Zeng and J. C. Yao, “Strong convergence theorem by an
extragradient method for fixed point problems and variational
inequality problems,” Taiwanese Journal of Mathematics, vol. 10,
no. 5, pp. 1293–1303, 2006.

[4] L. Ceng, Q. H. Ansari, and J. Yao, “Relaxed extragradient
methods for finding minimum-norm solutions of the split
feasibility problem,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 75, no. 4, pp. 2116–2125, 2012.

[5] L. C. Ceng, Q. H. Ansari, and J. C. Yao, “Relaxed extragradient
iterative methods for variational inequalities,” Applied Mathe-
matics and Computation, vol. 218, no. 3, pp. 1112–1123, 2011.

[6] L. C. Ceng, Q. H. Ansari, N. C. Wong, and J. C. Yao,
“An extragradient-like approximation method for variational
inequalities and fixed point problems,” Fixed Point Theory and
Applications, vol. 2011, article 22, 18 pages, 2011.

[7] L. C. Ceng, M. Teboulle, and J. C. Yao, “Weak convergence of an
iterative method for pseudomonotone variational inequalities
and fixed-point problems,” Journal of Optimization Theory and
Applications, vol. 146, no. 1, pp. 19–31, 2010.

[8] J. Peng and J. Yao, “A new hybrid-extragradient method for
generalized mixed equilibrium problems, fixed point problems
and variational inequality problems,” Taiwanese Journal of
Mathematics, vol. 12, no. 6, pp. 1401–1432, 2008.

[9] Y. Yao, Y. C. Liou, andG.Marino, “Two-step iterative algorithms
for hierarchical fixed point problems and variational inequality
problems,” Journal of Applied Mathematics and Computing, vol.
31, no. 1-2, pp. 433–445, 2009.

[10] L. Ceng and J. Yao, “A hybrid iterative scheme for mixed
equilibrium problems and fixed point problems,” Journal of
Computational andAppliedMathematics, vol. 214, no. 1, pp. 186–
201, 2008.



Abstract and Applied Analysis 19

[11] C. Byrne, “A unified treatment of some iterative algorithms in
signal processing and image reconstruction,” Inverse Problems,
vol. 20, no. 1, pp. 103–120, 2004.

[12] K. Goebel and W. A. Kirk, Topics on Metric Fixed-Point
Theory, vol. 28 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 1990.

[13] H. K. Xu and T. H. Kim, “Convergence of hybrid steepest-
descent methods for variational inequalities,” Journal of Opti-
mization Theory and Applications, vol. 119, no. 1, pp. 185–201,
2003.

[14] V. Barbu, Nonlinear Semigroups and Differential Equations in
Banach Spaces, Noordhoff, 1976.

[15] N. Huang, “A new completely general class of variational
inclusions with noncompact valued mappings,” Computers &
Mathematics with Applications, vol. 35, no. 10, pp. 9–14, 1998.

[16] L. Ceng, Q. H. Ansari, M. M. Wong, and J. Yao, “Mann
type hybrid extragradient method for variational inequalities,
variational inclusions and fixed point problems,” Fixed Point
Theory, vol. 13, no. 2, pp. 403–422, 2012.

[17] L. C. Zeng, S. M. Guu, and J. C. Yao, “Characterization of
𝐻-monotone operators with applications to variational inclu-
sions,” Computers &Mathematics with Applications, vol. 50, no.
3-4, pp. 329–337, 2005.


