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We introduce and analyze a hybrid steepest-descent algorithm by combining Korpelevich’s extragradient method, the steepest-
descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate
assumptions, the proposed algorithm converges strongly to the unique solution of a triple hierarchical constrained optimization
problem (THCOP) over the common fixed point set of finitely many nonexpansive mappings, with constraints of finitely many
generalized mixed equilibrium problems (GMEPs), finitely many variational inclusions, and a convex minimization problem

(CMP) in a real Hilbert space.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and
norm | -[|; let C be a nonempty closed convex subset of H and
let P be the metric projection of H onto C. Let S : C — H
be a nonlinear mapping on C. We denote by Fix(S) the set
of fixed points of S and by R the set of all real numbers. A
mapping S : C — H is called L-Lipschitz continuous if there
exists a constant L > 0 such that
ISx-Sy| <L|x-y|, Vx,yeC. (1)

In particular, if L = 1 then S is called a nonexpansive
mapping; if L € (0, 1) then S is called a contraction.

Let A : C — H be a nonlinear mapping on C. The
classical variational inequality problem (VIP) [1] is to find a
point x € C such that

(Ax,y-x) >0, VyeC. (2)

The solution set of VIP (2) is denoted by VI(C, A).

In 1976, Korpelevich [2] proposed an iterative algorithm
for solving the VIP (2) in Euclidean space R™:

Yn =PC(‘xn_TA‘xn)’

Xne1 = PC (xn - TA)/”) > (3)
Vn >0,

with 7 > 0 a given number, which is known as the extra-
gradient method. See, for example, [3-7] and the references
therein.
Let ¢ C — R be a real-valued function; let A :

H — H be a nonlinear mapping andlet® : CxC — R
be a bifunction. In 2008, Peng and Yao [8] introduced the
following generalized mixed equilibrium problem (GMEP) of
finding x € C such that

O(xy)+9(y) -9 +(Ax,y—x) >0, VyeC. (4)
We denote the set of solutions of GMEP (4) by
GMEP(®, ¢, A).
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In [8], Peng and Yao assumed that ® : CxC — Risa
bifunction satisfying conditions (Al)-(A4) and ¢ : C — Ris
a lower semicontinuous and convex function with restriction
(B1) or (B2), where

(A1) O(x,x) =0 forall x € C;
(A2) © is monotone; that is, ®(x, y) + O(y, x) < 0 for any

x,y €G;
(A3) O is upper-hemicontinuous; that is, for each x, y, z €
C)
limsup@® (tz+(1-t)x,y) <O (x,y); (5)
t—0*

(A4) O(x,-) is convex and lower semicontinuous for each
x €GC;

(BI) for each x € H and r > 0, there exists a bounded
subset D, ¢ Cand y, € Csuchthatforanyz € C\D,,

0(27)+9(1) 9@+ (-zz-2) <0 ©

(B2) Cis a bounded set.

Given a positive number r > 0. Let Tr(®“”) :H — Cbe
the solution set of the auxiliary mixed equilibrium problem;
that is, for each x € H,

TO9 (x) = {yeC:®(y,z)+<P(Z)—‘P()’)
+%<y—x,z—y> 20,VzeC}.
7)

Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C:

minf (x) (8)
(assuming the existence of minimizers). We denote by I' the
set of minimizers of CMP (8).

On the other hand, let B be a single-valued mapping of
C into H and R be a set-valued mapping with D(R) = C.

Considering the following variational inclusion, find a point
x € C such that

0 € Bx + Rx. 9)

We denote by I(B,R) the solution set of the variational
inclusion (9). Let a set-valued mapping R : D(R) ¢ H —
2H be maximal monotone. We define the resolvent operator
Jra:H — D(R) associated with R and A as follows:

Jea=(I+AR)"', VxeH, 10)

where A is a positive number.

Let S and T be two nonexpansive mappings. In 2009,
Yao et al. [9] considered the following hierarchical VIP: find
hierarchically a fixed point of T', which is a solution to the VIP
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for monotone mapping I — S; namely, find ¥ € Fix(T') such
that

(I-8)x,p-%x)=0, VpeFix(T). (11)
The solution set of the hierarchical VIP (11) is denoted
by A. It is not hard to check that solving the hierarchical
VIP (11) is equivalent to the fixed point problem of the
composite mapping Py, )S; that is, find ¥ € C such that
X = Pyix)SX. The authors [9] introduced and analyzed the
following iterative algorithm for solving the hierarchical VIP

11):

Yn = ﬁnsxn + (1 - ﬁn) X
X1 = (Xann + (1 - ‘xn) Tyn’ (12)
Vn > 0.

In this paper, we introduce and study the following triple
hierarchical constrained optimization problem (THCOP)
with constraints of the CMP (8), finitely many GMEPs and
finitely many variational inclusions.

Problem I. Let M,N, and K be three positive integers.
Assume that

(i) f : C — Ris a convex and continuously Fréchet
differentiable functional with L-Lipschitz continuous
gradient Vf,S; : H — H is a nonexpansive mapping,
and A; : H — His ¢ j-inverse-strongly monotone
fori=1,2,...,Nand j = 1,2,...,K;

(i) A, : H — H is a-inverse strongly monotone
and A, : H — H is ff-strongly monotone and -
Lipschitz continuous;

(iii) © jisa bifunctions from C x C to R satistying (Al)-
(Ad),and ¢; : C — Ris a lower semicontinuous
and convex functional with restriction (B1) or (B2) for
i=1,2,...,K;

(iv) R, : C — 2M is a maximal monotone mapping and
B, : C — H is nq-inverse strongly monotone for
k=1,2,...,M;

(v) VI(NY, Fix(S;), A;) #0 with (nY, Fix(S;)) ¢ (njg .
GMEP(®;,¢;, A ;) N (N, I(By, Ry)) NT.

Then the objective is to

N
findx* € VI <VI (ﬂ Fix(si),A]) ,Zf2>

i=i

= {x* € VI(ﬁFix(Si),Zl> : <Z2x*,v—x*>

i=i

>0,Vv € V1<ﬁm(si),§1>}.

i=i

(13)
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Motivated and inspired by the above facts, we introduce
and analyze a hybrid iterative algorithm via Korpelevich’s
extragradient method, the steepest-descent method, and
the gradient-projection algorithm obtained by the averaged
mapping approach. It is proven that under mild conditions,
the proposed algorithm converges strongly to a unique
element of VI(VI(NY, Fix(S;), A}), A,) with (Y, Fix(S;)) ¢
(nj.il GMEP(®,¢;,A;)) N (ML I(By, Ry)) N T, that is, the
unique solution of the THCOP (13). In this paper, the results
we acquired improve and extend the existing results found in
this field.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space of which inner product and norm are denoted by (, )
and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x,, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,(x,) to denote the weak w-limit set of the sequence {x,};
that is,

ww (xn)

= {x € H: x, — x for some subsequence {xni} of {xn}}.

(14)
Definition 1. A mapping A : C — H is called
(i) monotone if
(Ax—Ay,x—y) >0, VYx,yeC; (15)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax-Ap,x-y) znlx -y, vxyeC (1)

(iil) {-inverse-strongly monotone if there exists a constant
{ > 0 such that

(Ax - Ay, x - y) = {|Ax - Ay, Vx,yeC. (17)

Itis obvious that if A is -inverse-strongly monotone, then
A is monotone and 1/{-Lipschitz continuous. Moreover, we
also have that, for allu,v € Cand A > 0,

(I = AA)u — (I - AA) v|)?
(18)
< lu=vI* + A (A =20) || Au — Av|.

So,if A < 2(, then I — AA is a nonexpansive mapping from C
to H.

The metric projection from H onto C is the mapping P :
H — Cwhich assigns to each point x € H, the unique point
P-x € C, satisfying the property

v~ pexl = nf vl = 40 )

Some important properties of projections are gathered in
the following proposition.
Proposition 2. For given x € H and z € C:
(i)z=Pxe(x-2,y-2)<0, VyeC
(i) z=Pex o |x—zI* < lx - yI> =y - zl>, ¥y e G
(iii) (Pox — Pey,x — y) = |Pox — Poyl?, Yy € H. (This

implies that P is nonexpansive and monotone.)

Next we list some elementary conclusions for the mixed
equilibrium problem where MEP(0, ¢) is the solution set.

Proposition 3 (see [10]). Assume that ® : Cx C — R
satisfies (Al)-(A4) and let ¢ : C — R be a proper lower
semicontinuous and convex function. Assume that either (Bl)
or (B2) holds. For r > 0 and x € H, define a mapping
T . H — C as follows:

T (x) = {z €C:0(z,y)+9(y)-9(2)
1 (y-z,z-x)>0,Vy EC}
r
(20)
for all x € H. Then the following hold:

(i) for each x € H, Tr(®"”)(x) is nonempty and single-
valued;

(ii) Tr(®’(”) is firmly nonexpansive; that is, for any x, y € H,
o, 09 |12 o, o,
[1095 - 79 < (1O, TPy s @)
(iii) Fix(T®?) = MEP(®, ¢);
(iv) MEP(O, ) is closed and convex;
2
W ITOPx-TP%" < (s - 0)/s(T®"x

Tt(@"") x, TS(@),q:) x —x) foralls,t >0andx € H.

In the following, we recall some facts and tools in a real
Hilbert space H.

Lemma 4. Let X be a real inner product space. Then there
holds the following inequality

I+ > <IxlP+2(px+y), VxyeX. — (22)

Lemma 5. Let H be a real Hilbert space. Then the following
hold:

@) lx = yI* = IxI* = Iyl* = 2(x - y, y) forall x, y € H;

() [Ax + uyl® = Allxl® +ullyl> = Aullx - ylI forall x, y €
Hand A, p e [0, 1] withA +u=1;

(c) if {x,} is a sequence in H such that x,, — x, it follows
that

lim sup”xn - y||2
n—00

= lim sup|x,, — x||2 +|x - y||2, Vy e H.
n— 00



Definition 6. A mapping T : H — H is said to be an
averaged mapping if it can be written as the average of the
identity I and a nonexpansive mapping; that is,

T=01-a)l+asS, (24)

where « € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T' is «-
averaged. Thus firmly nonexpansive mappings (particularly,
projections) are 1/2-averaged mappings.

Lemma 7 (see [11]). Let T : H — H be a given mapping.

(i) T is nonexpansive if and only if the complement I — T
is 1/2-ism.
(ii) If T is v-ism, then for y > 0,yT is v/y-ism.
(iii) T is averaged if and only if the complement I-T is v-ism
forsomev > 1/2. Indeed, for o € (0, 1), T is a-averaged
ifand only if I - T is 1/2a-ism.

Lemma 8 (see [11]). Let S,T,V: H — H be given operators.

O IT = (1 -x)S+ aV for some « € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement
I — T is firmly nonexpansive.

(ii) f T = (1 - «)S + aV for some o € (0,1) and if S is
firmly nonexpansive and V' is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {T;}~,
is averaged, then so is the composite T,---Ty. In
particular, if Ty is a, -averaged and T, is «,-averaged,
where oy, , € (0,1), then the composite T\ T, is «-
averaged, where & = o) + &, — o, .

(v) If the mappings {Ti}f\_jl are averaged and have a
common fixed point, then

N
() Fix (T;) = Fix (T, T, -+ Ty). (25)
i=1

The notation Fix(T') denotes the set of all fixed points of
the mapping T; that is, Fix(T) = {x € H : Tx = x}.

Let f : C — R be a convex functional with L-
Lipschitz continuous gradient Vf. It is well known that the
gradient-projection algorithm (GPA) generates a sequence
{x,} determined by the gradient Vf and the metric projection
Pe:

X1 = Po(x, - AVf (x,)), Vn=>0, (26)
or more generally,
Xp1 = Po(x, - A, Vf (x,)), Vn=0, (27)

where, in both (26) and (27), the initial guess x, is taken
from C arbitrarily, and the parameters A or A, are positive
real numbers. The convergence of algorithms (26) and (27)
depends on the behavior of the gradient Vf.
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Lemma 9 (see [12, Demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma 10. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 2(i)) implies

ueVI(C A) & u=P;(u-AAu), A>0. (28)
Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0, 1] and let u > 0. Associating with a nonexpansive mapping
T:C — H, we define the mapping T* : C — H by
T x == Tx — AMF (Tx), VxeC, (29)
where F : H — H is an operator such that, for some positive
constants k,n > 0, F isk-Lipschitzian and n-strongly monotone
on H; that is, F satisfies the conditions:

(Fx - Fy,x~y) 2 nlx - y|
(30)

|Fx = Byl < e |x =],

orall x,y € H.
J y

Lemma 11 (see [13, Lemma 3.1]). T* is a contraction provided
by 0 < u < 21/’ that is,

"TAx - TAy“ <(1-M)|x-y|, Vx,yeC, (31

where T = 1 — |1 — u(2n — ux?) € (0, 1].

Lemma 12 (see [13]). Let {s,} be a sequence of nonnegative
numbers satisfying the conditions

Spp1 S (1 - “n) Syt anﬁn’ Vn>1, (32)
where {a,} and {f3,} are sequences of real numbers such that

(1) {e,} € [0,1] and 2221 o, = 00, or equivalently,

—1s

(1-a,):= nangon (1-0)=0; (33)
k=1

S
I
—

(ii) limsup,, _, .., < 0, or Yoo lex,B,l < co.

Then lim,, _, s, = 0.

Recall that a Banach space X is said to satisfy Opial’s
property [12] if, for any given sequence {x,} < X which
converges weakly to an element x € X, there holds the

inequality

limsup |x, — x| < limsup||x, - y|, VyeX, y#x.
n— 00 n— 00
(34)
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It is well known that every Hilbert space H satisfies Opials
property in [12].

Finally, recall that a set-valued mapping T : D(T) c
H — 2" is called monotone if for all x,y € D(T), f € Tx,
and g € Ty imply

(f-gx-y)=0. (35)

A set-valued mapping T is called maximal monotone if T is
monotone and (I + AT)D(T) = H for each A > 0, where I is
the identity mapping of H. We denote by G(T') the graph of T. It
is known that a monotone mapping T is maximal if and only if,
for (x, f) e HXH,(f —g,x—y) > 0, forevery (y, g) € G(T),
implies f € Tx. Let A : C — H be a monotone, k-Lipschitz-
continuous mapping and let N-v be the normal cone to C at
v € C; that is,

Nev={ueH:(v—-p,u) >0, Vp e C}. (36)

Define
~ Av+ Ngrv, ifvecC,
Ty JAY + Nev zlfv (37)
0, ifvécC.
Then, T is maximal monotone such that
0eTveveVIC,A). (38)

Let R : D(R) ¢ H — 29 be a maximal monotone
mapping. Let A, y > 0 be two positive numbers.

Lemma 13 (see [14]). There holds the resolvent identity

Pt (1 - %)]R’,\x>, VxeH. (39

Jrax =Jry (A

For A, u > 0, there holds the following relation that

Prax = Try| < lx=yl+1A-u

X (% Trax =yl + i |- IR,M”) ,
Vx,y € H.
(40)

Based on Huang [15], there holds the following property for
the resolvent operator J ) : H — D(R).

Lemma 14. Jy, is single-valued and firmly nonexpansive;
that is,

Upax = Jaaynx = ¥) = Jrax = Jead|’s  Vx.y € H.
(41)

Consequently, ] , is nonexpansive and monotone.

Lemma 15 (see [16]). Let R be a maximal monotone
mapping with D(R) = C. Then for any given A > 0, u €
C is a solution of problem (10) if and only if u € C
satisfies

u=Jp, (u—ABu). (42)

Lemma 16 (see [17]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then, for each z € H,
the equation z € (B+ AR)x has a unique solution x, for A > 0.

Lemma 17 (see [16]). Let R be a maximal monotone mapping
with D(R) = Candlet B: C — H be a monotone, continuous,
and single-valued mapping. Then (I + A(R+ B))C = H for each
A > 0. In this case, R + B is maximal monotone.

3. Main Results

In this section, we will introduce and analyze a hybrid
steepest-descent algorithm for finding a solution of the
THCOP (13) with constraints of several problems: the CMP
(8), finitely many GMEPs, and finitely many variational
inclusions in a real Hilbert space. This algorithm is based
on Korpelevichs extragradient method, the steepest-descent
method, and the averaged mapping approach to the gradient-
projection algorithm. We prove the strong convergence of
the proposed algorithm to a unique solution of THCOP (13)
under suitable conditions. Throughout this paper, let {Si}f\il
be N nonexpansive mappings S; : H — H with N > 1
an integer. We write Sy := Sy 104 n» for integer k > 1, with
the mod function taking values in the set {1,2,..., N} (ie., if
k = jN + q for some integers j > 0 and 0 < g < N, then
Ty =Nifg=0and Ty =qif1 < g < N).

The following is to state and prove the main result in this
paper.

Theorem 18. Let C be a nonempty closed convex subset of a
real Hilbert space H and let f : C — R be a convex and
continuously Fréchet differentiable functional with L-Lipschitz
continuous gradient Vf. Let M, N,K > 1 be three integers.
Let ©; be a bifunctions from C x C to R satisfying (A1)-(A4),
¢; :C - Ra lower semicontinuous and convex functional
with restriction (Bl) or (B2), and A; : H — H(;-inverse-
strongly monotone for j = 1,2,...,K. Let R, : C — 28
be a maximal monotone mapping and let B, : C — H
be ny-inverse strongly monotone for k = 1,2,...,M. Let
{S;}Y, be a finite family of nonexpansive mappings on H. Let
A, : H — H be a-inverse strongly monotone and let A, :
H — H be 3-strongly monotone and k-Lipschitz continuous.
Assume that VI(NY | Fix(S;), A,) #0 with (N, Fix(S;)) ¢
(nj.il GMEP(®;,¢,,A)) N (ML I(B,Ry)) N T. Let u €
(0,2B/k%), e, }o2 € (0,11, {p}2y < (0,2a], {A, )2, <
[a, b < (0,2), and {r;,}2, < [c;d;] ¢ (0,20;) where



jei{l,2,...,K} and k € {1,2,..., M}. For arbitrarily given
x, € H, let {x,} be a sequence generated by

u, = TR (I- ”K,nAK) Tr(G)K*l’(pK*l) (I- TK—l,nAKﬂ)

n TKon K-1n

e T;S,I’(Pl) (I - rl,nAl) X
Vo = ]RM,AM,,, (I- /\M,nBM) ]RM_I,AM_L,, (I- )‘M—LnBM—l)

: "]Rl,/\m (I- /\l,nBl) Uy

Yn = S[n+1] (I - pnzl) Tnvn’

Xn+1 = Yn — ‘“anZZyn’ Vn >0,

(43)

where Po(I- A, Vf) = s,1+(1-s,)T, (here T, is nonexpansive
and s, = s,(A,) = (2-A1,L)/4 € (0,1/2) for each A, €
(0,2/L)). Assume that

N
() Fix (S;) = Fix (S, -+~ Sy)
i=1
(44)
= Fix (SnS; - Sno1)
= = Fix (8,8; - Sx'S;)
and that the following conditions are satisfied:
() lim, |, &, = 0,Y 20, = oo and p, < «, for all
n=0;

(ii) lim,, _, o (o, — @, /ety ) = 0 07 ZEC:)O lov, — ot N <
005

(iil) lim,, _, oo (IS, = Spenl/in) = 0 0r 22(:)0 ISy = Senl <
005

(iV) hmn—»oo(lpn - pn+N|/pn+N) =0or ZZZO |Pn - pn+N| <
005

) lim,, _, oo (g = Manl /(@) = 0 08 3020 A, —
Ajminl <00 fork=1,2,..., M;

(Vi) hmn%oo(lrj,n - rj,n+N|/(‘Xn+N)) = 0or ZZZO |rj,n -
rimenl <00 for j=1,2,...,K.
Then the following hold:
(a) {x,},2, is bounded;
(b) lim,, _, o, llx,, = X, nll = 0;

0 provided

(c) hmn%oo”xn - S[n+N] Tt S[n+1]xn” =
lim,, _, oo (1%, = yll + |1 T,v,, = ) = 0;

(d) {x,}2, converges strongly to the unique element of
VI(VI(NY, Fix(S;), A,), A,) provided ||x, — y,ll +
IT,v,, = vull = 0o(p,).

Proof. Let {x*} = VI(VI(Q,A)),A,). Since Vf is L-
Lipschitzian, it follows that Vf is 1/L-ism. By Lemma 7(ii),
we know that for A > 0, AVf is 1/AL-ism. So by Lemma 7(iii),
we deduce that I — AVf is AL/2-averaged. Now since the pro-
jection P is 1/2-averaged, it is easy to see from Lemma 8(iv)
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that the composite P-(I — AVf) is (2+ AL)/4-averaged for A €
(0,2/L). Hence we obtain that, for each n > 0, Po(I — A, Vf)
is (2 + A,,L)/4-averaged for each A, € (0,2/L). Therefore, we
can write

2-A,L

" 2+A,L
I+
4

PC (I_ /\nvf) = 4 . Tn (45)

=s,l+(1-s,)T,

where T, is nonexpansive and s,, := s,(A,) = (2-A,L)/4 €
(0,1/2) for each A, € (0,2/L). Since A, is «-Lipschitz
continuous, we get

|&sy, - Apx|| < |y, - %", vnz0.  (46)
Putting z,, = (I - p,A,)T,v,, for all n > 0, we have

Xn+1 = Yn — M“nxzyn

= S[n+1]Zn - ”“nZZS[n+1]Zn (47)
aﬂ
=S% Ynz0.

Put

Ajn — T:f:j"pj) (I —r. A ) Tr(,(aj_l’(pj_l) (I - rjfl,nAj—l)

G} j) S riein

(48)
T (1 1) x,
forall j € {1,2,...,K}andn > 0,
k
A, = ]Rk,/\,m (I - )‘k,an) ]Rk,l,)tk,m (I - Ak—l,an—l) (49)

o ']RI,AM (I- Al,nBl)

forall k € {1,2,..., M}, A(L =], and Aon = I, where I is the
identity mapping on H. Then we have that u,, = AXx, and
v, = A?:Iun.

We divide the rest of the proof into several steps.

Step 1. We prove that {x,} is bounded.
Indeed, utilizing (18) and Proposition 3(ii), we have

o = 7]

TpoP (I = rye, Bi) Ay ' x

n n

O, K-1_ =
— T'O%9) (T — e By ) AN 'x

TKon

< "(I — iBi) AL, = (T =i, By) A

< "AKflx AR (50)
- n n n
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Utilizing (18) and Lemma 14 we have

v = %7
"]RMAM (I - ApnAp) A AL lun
~ TRy T = AngnAnr) Afflx*"

< ”(I - AM,nAM) A?l/lilun - (I - AM,nIAM) AIZIil‘x* “

(51)
< [ AY M, - AV X
< ”A(;un -Ax*
= [|u, — x|
Combining (50) and (51), we have
v, = x| < |x0 = x7] - (52)

Since A, is a-inverse strongly monotone and {p,}, <
(0, 2a], we have

[T, - %" = pu (&, T, = B[]
= T, = x"|
=2p, (&, T,v, - A,x", T, - x*)
+ 2| ATy, - A (53)

e e *
AlTnVn -4

< "Tnvn - x*uz = Pn (Z(X - pn)
<|T.wv, - x*”2

<|v.- x*||2.

Utilizing Lemma 11, we deduce from (52), p, < «,, and

S[n+1]x = x" - a,uA,x" that foralln > 0
||xn+1 - x*"
= IStz -]
< |Gz = Sprany x| + St = 7]
<(1-a,7) |z, - x*|| + auu Azx*“

= (1 _(an) "(I_ anI)Tn

* - *
v, — X " +a,u |'A2x “

7
= (1-a,0) |, - x" = p, (B, T, - Ayx") - p, A, x"

oA
< (1-a,0) [| Ty, - %" = po (AT, - A,x7))|

+ oo | |] + | A7)

< (1= 0,7) v, = 27| + po A7 || + e | &

< (1= 0,7) [, = 57| + o [A x| + e | Ao
< (1= ,7) [, = 57| + o A x| + e | A7
< (1-a,7) [x, — 7| + o, | A, x7|

+ o | A
= (1-a,7) |x, - x|

ol Ll
Smax{"xn_x*",IIElx*Ilwll'A* * }

T
(54)

where 7 = 1 — /1 — u(23 — ux?). So, by induction we obtain

e =1

JA ]+l ] } .
T

< max {"xo - x|

Hence {x,}, is bounded. Since A, : H — H is a-inverse

strongly monotone, it is known that A, is 1/a-Lipschitz
continuous. Thus, from (52), we get

e v e AR P P
(56)

1
< ;"xn—x*", Vn > 0.

Consequently, the boundedness of {x,} ensures the bound-
edness of {v,},{T,v,}, and {A,T,v,}. From y, = N
puA1)T,v, and the nonexpansivity of S,,,,;, it follows that

{y,} is bounded. Since A, is x-Lipschitz continuous, {4, y,}
is also bounded.

Step 2. We prove that lim,, _, [Ix,, — x,..nIl = 0



Indeed, utilizing (18) and (40), we obtain that

||Vn+N ~Va “

M
- '|An+Nu
_ M-1
= “]RM,AMM (I = AgenBar) Aoontbnin

_]RM,/\M,,, (I - AM,nBM) Alf_lun

< “]RM,/\MMN (I = A pgenBar) A?;/i_;]”mN
~Jry, Ariren (I- A, +Bar) An+N“n+N”
“]RM Arimen (I- A, Bt An+N”n+N
Ry (I = ApgnBur) AM_ ”n“
“(I ArtninBu) An+Nun+N (I = ApgnBar) An+N”n+N||
+ “(I ~ AainBar) AI::IJ:I\IJ”mN -

(I- AM,nBM) Af_lun"

+ |AM,n+N - AM,nl

% ( A “]RM A (I AM nBM) An+Nun+N
Mn+N

= (I = ApnBu) AM 'u

n

T "(I ArinBar) An+N”n+N

_]RM,AMm (I- AM,nBM) Afilun“ )

< A = Anl ||BMAn+Nun+N“+M)
“An+Nuﬂ+N A u "

< A atmen = Al ||BMAn+N”n+N“ + M)

M-2 =
+ Aot = Aatoal ||BM—1An+N”n+N" + M)

+ ARt = 85|

< AN = Anl ||BMAn+Nun+N“ + M)
+ A rtctnen = Anioral "BM 1An+Nu"+N|| +M)
ot A = A “BlAn+N“n+N” + M)

0 0
+ HA ntNUntN ~ Anun“

M
< MOZ lAk,n+N - Ak,n| + ”un+N - un" >
k=1

(57)
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where

sup ||]R1 AN (I Az n z) An+Nun+N

n=>0,1<i<M { A; n+N

i-1

- (I - /\i,nBi)

+ 3 ”(I Az nBi ) An+Nun+N

T, (1= LB N | } < T
(58)

for some M > 0 and supn>0{zk ) ||BkAn+Nun+N|| + M} < M,

for some M, > 0.
Furthermore, since Vf is 1/L-ism, Po(I — A,Vf) is
nonexpansive for A,, € (0,2/L). So, it follows that

|Pe (1= A VF) v
< [P (1= A V) v = 7| + 7]
= 1Pc (1= A VF) v = Pe (I = Aun V) £7[ + 7]
< ="+ 17

< vl + 207 50
59

With the boundedness of {v,}, this implies that {P-(I —
A.nVf)v,} is bounded. Also, observe that

” n+NVn Tnvn”

_ 4PC (I_An+NVf) (2 /\n+NL)I
24+ A, nL n

4P (I-AVf)-(2-A,L)I
2+A,L '

<”4ax1—AMNvﬂ

4P (I-A,Y)

v
2+ A, nL " 2+A,L "

‘2 AL 2—)&n+NL

2+/\L 24 A, L "

= || (4 (2 + AnL) PC (I - /\n+NVf) Va
—4 (2 + AnJrNL) PC (I - Aan) Vn)
(2 + A, D2+ 4,0)"

eyl
(2+A,,nL)(2+A,L) '
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= ||(4L (/\n - )Ln+N) Pe (I - /‘n+NVf) v, +4 (2 + /\n+NL)
X (PC (I - An+Nvf) Vn = PC (I - Anvf) Vn))
(2 + A yD)2+24,0) "
4L1|A -A
+ | n+N nl "Vn”
(2+A,,.nL)(2+A,L)

< 4L |An B An+N| "PC (I B /\n+NVf) Vn"
B 2+A,,.nL)(2+2,L)

+(4(2+A,,5L0)
X "PC(I_/\nJrNVf)V —Pc(I-A,Vf)v "
x (2+ A, nL)2+A,L0)"

L MY
2+ A, L) (2+A,0) 1"

£ |/\n+N - /\nl [L “PC (I - AnJrNVf) Vn“
+ 4|Vf Gl + L val]

< Ml |/\n+N - /\n| >

(60)

where supEO{LIIPC(I—)LmNVf)vn|| +4|IVF W l+Llv, I} < Ml
for some M, > 0. Thus, we conclude from (57) and (60) that

" n+NVn+N — TV “
“ ntNVn+N ~ LneNVn ||+|| n+tNVn Tnanl

< [Voen = Vall + My (Ao = A

4M,

<“Vn+N V||+ L |5n+N Snl (61)

M
< MOZ lAk,n+N - Ak,n| + |lun+N - un"
k=1

+@|s - s,
L n+N nl -

Also, utilizing Proposition 3(ii), (v), we deduce that

"un+N - un”

I AK K
- ”An+an+N - An‘xn

(Ox-9x)
TrK ,ﬁ;fK (I - rinenAk) A’ n+an+N

(Ox-9x) K-1
_TrK,: oK (I - rKnAK) A Xn

T(®1< Q)

TKntN

(I — Tk, n+NAK) An+N‘xn+N

(Ok-¢x) K-1
_TrK,f YOI = g A k) D Xnen

—Tkn Ag) A n+an+N

n

O, K-
~TORI ([ Ag) NS x

TKn

T(®1< Px)

K-1
RN (I = TieneNAK) D Xnin

(® )
T P (I - rKnJrNAK) An+N‘xn+N

(O-9x)
T X PO = T menAk) NN

(CrE
_TrK,f o (I ~TKn K) An+an+N

+ ”(I TKon K) An+an+N - (I - rK,nAK) Alz_lxn

< e =1l

K n+N

(Ox-¢x)
TrK::‘,)K (I = renmenAk) An+an+N

|

-(I- Tk, aNAK) An+N'xn+N

+|rrcnen = Tl || Ak n+an+N“

+ ”An+an+N A Xn

1

= |rrmen = Tk [ HAKA n+an+N|' +
TKneN

« | T(@x¥x)

TKntN

(I — Tk, n+NAK) A n+an+N

—(I = rgpenAx) An+N'xn+N“

K-1

+ ' A ntNXn+N ~ A Xn

1
< |riemen = Tl [“AKA n+an+N|' +
TKn+N

(Ox-9x)
T,KfIfK (I - ricnenAk) An+an+N

—(I = rgmenAk) An+an+N“

Tt l"l,n+N - "1,n|

1

0
X |: ||A IA n+an+N|| +
rl,n+N

T(®1 1)

0
FLasN (I - rl,n+NA1) An+an+N

]

- (I - rl,n+NA1) A(11+an+N
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+ ”A(;HNme - A(;xn“ < (1= N ) [20en-1 = 2|

— K +u |(Xn+N—1 - ‘Xn—1| ||K28[n]zn—1||
s MZZ | VimeN ~ J,n| + ||xn+N - xn” >
j=

—_

= (1 - (xn+N—1T) "szfl - ZVHH

(62) —
+u |an+N—1 - (Xn—1| ||A2yn—1||
where M, > 0 is a constant such that for each n > 0 <(l-a 7
= ~ “ntN-1
K ! "
A A —
;[n i [ B2
+ T(®Jl(5/ ( J'H'NA )An+len+N (63) — K
TjntN i + Mzz |"j,n+N—1 - rj,n—1| + "xn+N—1 - xn—l"
=1
- (I TiniNA )A;L+Nxﬂ+N ] < M,. 4M,

+ T |sn+N71 - Sn71|

Therefore, it follows from (18), (61), (62), and {p,},>, < (0, 2«]
that

|

+ |Puin-1 = Pactl ||Z1Tn—lvn—
||Zn+N - Zn”

(Tn+an+N - pn+NA T, +NVn+N) (Tnvn - PnZITnVn)

+ u |(xn+N—1 - (xn—ll "ZZyn—l"

< 'l(Tn+NVn+N - pn+NZITn+NVn+N) = (1 B (xn+N_1T) "xn+N—1 B xn—l"
- (Tnvn - pn+NK1TnVn)

+ “(Tnvn - pn+NKITnVn) - (Tnvn - anITnVn)"

M K
+ Moz N min-1 = Aot | + Mzz
k=1 j=1

TineN-1 ~ Tin-1 |

4M —
< WuusVuon = Tl + s = ol [E T o v sl e =l AT |

M + | N—1_“—1|"K2)’ —1"
< Mo Y Mimens = Mol + 1t = ] " ’ ’

k=1 < (1= et ?) [Xpenes = %

4M1 .|~ M K

el _ - AT " —
+ L |5n+N Snl + |Pn+N Pn| 14nVn + M; (Z |/‘k,n+N—1 - /\k,n—1| + Z TintN-1 " rj,n—1|
M K - =

s MOZ 'Ak’"*'N B Ak’”l + MZZ rj’"+N h rj’n + |Sn+N—1 - Sn—ll + |Pn+N—1 - Pn—1|
k=1 =1
4M _
“xn+N x " n Ll |sn+N | n |Pn+N Pnl "A Vn” + |(Xn+N—1 ‘xn—ll >,

(64) (65)

From Lemma 11 and (64), it is found that . o _ .
where SuPLzo{Mo +4M, /L+ M, +||A T, v, | +pullA,y, I} < M,
BN for some M; > 0. Applying Lemma 12 to (65) we obtain from

— conditions (i)-(vi) that
= |'yn+N—1 — P N1 A2V N-1

_ lim |[x, ., —x,| = 66

- (yn—l - //‘“n—lAzJ’n—1)“ n=00 " n+N " (66)

|S[;1Azif]l ZNo1 — S‘["’Zl—lzn_ln Step 3 We. prove that lim, _, ,llx, = Spn - S[,,+1]x | =0
provided lim,, _, . (llx, — I + IT,v, v~||) = B

< [tz = SpN 2z | Indeed, from [|x,,; — Il = pa,lA,y,l < «,M, and

condition (i), we getlim, _, llx,,; — ¥, Il = 0. Now, let us show

«, Oy
+ St 2 = SE 2| that [lu, — x,| — 0,]v, —u,] — 0and |x, - T,v,| — 0

[n+N] [n]
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asn — 00. As a matter of fact, utilizing Lemma 4, we get <|lx, - x*||2 +Tip (T’jn - 20 "A ,Af‘lx - A, |12
from (43) pR
+Akn(Akn_277k)"Bk "4, - Bix ”
"yn_X*H2 = S[n+l](TnVn_pn~1 nn +2Pn L= X ”)
< ”Tnvn -x" - pn;ﬁ\vlTnvn||2 (69)
(67)
* 12 e *
< T = %17 =200 (A T 002, - x7) which immediately yields
< v = x| + 20, |A T |2 — x| -
i (28— 15) 4,00 -
Observe that _ w2
+ A (201 = M) ||BkAn u, = Byx “
a7, < o =27 1F = Iy =27 + 20, | &
= [T = vy A A e, - T T A K ”2 < % =l Ul = " + v = %71
, +2p, |A -x".
< ”(I _ rj,nAj)A]n_lxn _ Pn 1*n"n n ||
<||aix, (1= 20) 4,0 5, - A 2 Since {A,}2% < lanh] < (0,27) and {r,,}, <
[cj,dj] C (O,ZCj) for j = 1,2,..., Kand k = 1,2,..., M
< |x, - x*|* + Pin(Tin—20;) "AjA’;lxn —A; and {x,}, {y,},{A,T,v,} and {z,} are bounded sequences, we
, deduce from p, — 0Oand |x, — y,| — 0 that
_ lim AAJlx—Ax =
Y ol e
< ||~ A BOAS - (1 - A, BOX | Jim B’ - B = 0
k-1 k-1 )2
< A% u, ~ 2, [ B, - Bex” | forall j € {1,2,...,K} and k € {1,2,...., M.
, R Furthermore, by Proposition 3(ii) and Lemma 5(a), we
< et = %" + A (M = 20) | By, = Bex”|| have
%12 k-1 |2
< - A, (A, —2 B, A - B , i |2
< e = 17+ A i = 2m) | BeAy Mt = Bix” | |87, - x|
= |21 = v A AT e, T A )
for j € {1,2,..., K}and k € {1,2,..., M}. Combining (67)- '
(68), we get < <(I rJﬂA])A]n1 (I r]nA])x A x, - X" >
Iy == T2
< vn =" + 29, | & T 20 - %7 x (||(1 ~ 1, ADATx,
AT, |z, - x|
< et = I + A (i — 20) | BeA M1, = Byx || - ||(1 - rj,nAj)Ajn_lx,,—(I—rj)nAj)x*—(A];, nm X 2)
+2p, HAlTnvn" "zn X ” < l ( A];lxn - x* + ”A
2
< |l Nw = 200) | Bt s, - B . . .
" nn B , ( k.n nk) “ k**n Yn k " _ A]nilxn—A]nxn i (AjA],;lxn—ij*)'|2),
+2Pn 1+n"n n_‘x*” (72)
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which implies that which immediately leads to
. k )%
[al, - [ [, = |
%112
<o, - f “boml
k-1 k k-1 PN
A% e A, =7y (A A, — AT ’ =A% e At = A (B, — B
_ 2 AR, Ak P
S R e | e o
2 k-1 2
- rJZ')n"AjA];:lxn — A’ ? B Ak’””B"A" , = Bix” "
j j j = +2) <Ak_lu - A B Ay - B x*>
+21), <A1n_1xn - Ajnxn,AjA]n_lxn - ij*> kn A0 P T e Pkn B Pk
* _ 2
<|ai s, - x| - |aix, - Al x| < w2 = A5 oy - A,
- n n n
. . . k-1 _ k k-1 _ *
ror,, ||A]n_1xn _ A]n'xn“ “AjA]n_lxn A + 240, 1A, w, = A || | B, u, — Brx ” .
< ||xn -x" ||2 - "A];l_lxn - Ajnxn"2 Combining (67) and (75) we conclude that
+2r a7 %, - AL x || lA AT, - AxF. _
el =l s =4, 1 == < Iva = %71 + 20, | BT |2 = %7
* 2 e *
By Lemma 5(a) and Lemma 14, we obtain < "Aknun -x ” + 20, 1A Tl |2 — %7 ||

< |x. - x*”2 - "Akrflun - Al;un ?

k |2
Nou, —x

k-1 k
+ 20, 1A, w, — Ay,

k-1 *
BkAn u, — ka ||

k-1 |2
= "]Rk,Ak)n(I = MBSty = Tpa, (L= Ay, Br)x |

+ 2Pn KlTnVn“ “Zﬂ -x " >
< <(I - Ak,an) Akn_lun - (I - /\k,an) x*’ Aknun - X*> (76)

= % ("(I = AnBe) Ak,:lun - (I-Ay,By) x*“z which yields

k |2
+ ”Anun - X

k-1 ko2
“An un—Anun“

k-1
=R 2 -2~ - F

—(I=AuBe) x™ - (Alilun - x*) ’

) +2A, Akilun - Aknun

n

k-1 *
|||BkAn u, - B.x ||

+ 2pn XlTnvn

< % ("Al;_lun x| A, - x* ? |z, — x| 77

+

: : . <l = yall (e = 27+ Ly = 271D
- “Akn u, - Aknun - Ak’n(BkAkn 'u, - Byx )"2) o " "

k-1 k
+ 20, 1A, w, — Ay,

| ||BkA];_1un - ka* “
< % (||un - x*"2 + "Aknun x|

+2p, "ZlTnvn

Iz = %71
- - PN
A% = A, = A (B, - B[ )
Since {A; )72 C [a.b] < (0,2) fork = 1,2,...,M and

{u,}, (x5 1.} {ZlTnvn} and {z,,} are bounded sequences, we

1 # 12 k |2
< 5(||xn—x I+ A%, — }
educe from (71), p, — 0,and ||x, — y,| — 0 that

Akilu —Aku -A (B Akilu -B x*)“z)
n n n“*n kn\Pkidy n k >
(74) lim ”Akn’lun - Aknun“ =0, Vke{l,2,..., M}.  (78)

n— 00
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Also, combining (51), (67), and (73), we deduce that
”yn - x*"2 < "Vn - X*HZ +2p, "A'lTnVn” ”Zn - x*"

ZlTnvn

<ty <[ + 20, -]

< "Aan x| 2p, "ZlTnvn“ Iz, — x|

-1 i
N, x, - A x,

e

+2r;, A x, - A];lxn| ||A A, - A
v 20, | T - <7
(79)
which leads to
a0, = a0
< s =2 =y =<1
+2r,, |80 %, - Al | A AL x, - A Xt
+ 20, | AT o - 5] (80)
< w2l (e = 7| + 1y = x7[)
+2r,, A X, - Al | A AL x, - A X
e 20, | AT e - .
Since {r;,}e% < [cpd;] < (0,20) for j = 1,2,...,K

and {x,}, {y,},{A,T,v,} and {z,} are bounded sequences, we
conclude from (71), p, — 0, and [x, — y,| — 0 that

lim

Jl _AJ
=00 An Xn Anxn

=0, Vje{l2,..., K}. (81
Hence from (78) and (81) we get

||xn - un" = “A(an - Aﬁxn

< “A(an - Alnxn" + “Alnxn - A2nxn" to (82)

K-1 K
+ “An x, — A, x,

— 0 asn-— 00,

0 M
Au, — N, u,

“un - Vn" =
< “Aonun — Alnl,ln“ + “Alnun - Aznun” +eoo0 (83)

+

M-1 M
A un—Anun” — 0 asn-— oo,

respectively. Thus, from (82) and (83), we obtain

%0 = vall < 1% = vl + |t = V| — 0 as n — o0,

(84)
together with ||v,, — T,,v, || — 0, which implies that
nIeréo "xn - Tnvn” =0. (85)

13

On the other hand, we observe that the following relation
holds:

XptN — X = XN — S[n+N] (I - pn+N—1Z1) T N-1VneN-1
+ SN (1 - Pn+N—1K 1) ToiN-1Vnen-1
= SN Sinen-1) (I - Pn+N—ZZ 1) T N-2VneN—-2
+oo+ Spany 7 S (I - Pn+1Z1) T1Vnn
= SpueNy " St (I - Pngl) T,

+ S[n+N] T S[n+1] (I - pnzl) Tnvn — Xy
(86)

Since [|x,,; = ¥, — Oand p, — Oasn — oo, from the
nonexpansivity ofeach §; (i = 1,2,..., N) and boundedness
of {A,T,v,} it follows from (85) that asn — oo we have
”me = Siuan) (1 - Pn+N—1K 1) T N-1Vnsn-1 “
= |%uen = Ynenaal — 0,
'|S[n+N] (I - pn+N—IZI) ToiN-1VneN-1
- S[n+N]S[n+N—1] (I - Pn+N—2K 1) Tn+N—2Vn+N—2||
= " (I - Pn+N—1K1) T N-1Vnin-1
~S{neN-1] (I ~ Pun—2A 1) Tn+N—2Vn+N—2“

<

Tn+N—1vn+N—1
_S[n+N—1] (I - Pn+N—2E 1) Tn+N—2Vn+N—2“
* PriN-1 "Z 1T N-1VniN—1 "
< "Tn+N—lvn+N—1 - xn+N—1||
+ ||xn+N—1 = Sinan-1) (I - Pn+N—2X 1) Tn+N—2Vn+N—2|'
* PriN-1 "Z 1T N-1VniN-1 "

= ||Tn+N—1Vn+N—1 - xn+N—1|| + ||xn+N—1 - yn+N—2|l

+ PneN-1 |A1Tn+N—1Vn+N—1" — 0,

“S[n+N] T S[n+2] (I - pn+lgl) Tn+lvn+1
_S[n+N] Tt S[n+1] (I - pn;(l) Tnvn
= "(I B anA'l) Tn+lvn+1 - S[n+1] (I - Pngl) Tnvn”

Tn+lvn+1 - S[n+1] (I - pngl) Tnvn '

<
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+ Past [ A1 Tia Vi

< | T iVpar = X + ||xn+1 = St (I - pn;{l) Tn"n"
+ Past [ A1 TtV |

=iV = Xt + [ = 22

+ Pn+1 “KITn+lvn+1'| — 0.
(87)

Therefore, from (66) and (86), we obtain
M Sy Sprer) (I = paAy) Tav = X, = 0. (88)
So, it follows that
[Stnen = Siaer (1 = puy) %, = 5,
S+ Sieny (1= PuAAy) %,
~Spuent * Sinen) (1= PuAis) T
S+ Spaery (1= puy) Tv =,

Observe that

<|

(89)

— 0.

||S[n+N] T S[n+1]xn - xn”

= ”S[n+N] “*Stner)Xn = Spaeny S (xn - Pnglxn)"

+ |'S[n+N] T S[n+1] ('xn - pnzlxn) - Xy

< Pn ||len + ||S[n+N] St ('xn - Pn;{lxn) - xn“
—0 (n— 00).
(90)
That is,
(IS - Sy = %] = 0. (91)

Step 4. We prove that limsup, , (A;x*,x* - x,) < 0
provided lim,, _, (lIx,, — v, + IT,v,, — v,Il) = 0.
Indeed, choose a subsequence {xni} of {x,} such that

lim sup <A'1x*,x* - xn> = llirglo <X1x*,x* - xni> - (92)

n—00
The boundedness of {xni} implies the existence of a subse-
quence {x,, } of {x, } and a point X € H such that x, — X.
Xj 1 15

]
We may assume without loss of generality that x,, — X; that
is,

lim <le*,x* - xn,_>

1— 00

lim sup <A1x*, x* - xn>
n—00

(93)
<le*,x* - fc> :

First, we can readily see that € N, Fix(S;). Since the
pool of mappings {S; : i < i < N} is finite, we may further
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assume (passing to a further subsequence if necessary) that,
for some integer [ € {1,2,..., N},

S[”i] = Sl’ Vl > 1. (94)

Then, it follows from (91) that

Xy = Sty Spiv11 X0 — X, — 0. (95)

i

Hence, by Lemma 9, we conclude that
X € Fix (S[H-N] S[H—l]) (96)

Together with the assumption

N
() Fix (S;) = Fix (S,S, -+~ Sy)
i=1
(97)
= Fix (SxS; - Sno1)

= = Fix (5,8 - SpS,) »

this implies that X € N, Fix(S;). Now, since

N
x* eVI(ﬂFm(si),Zl>, (98)

i=i
we obtain

lim sup <A1x*,x* - xn> = lim <A1x*,x* —xn_>
n— 0o 1= 00 !

(99)
= <le*,x* —9?> <0.

Step 5. We prove that lim,, _, ||
Yall + IT,0, = v, = o).

Indeed, first of all, let us show that
limsup,, _, ,(A;x",x" - x,) < 0. We choose a subsequence
{xnk} of {x,,} such that

x, — x"|| = 0 provided |x,, —

li’?lsol(l)p <K2x*,x* - xn> = klingo <K2x*,x* - xnk> . (100)
The boundedness of {x,, } implies that there is a subsequence

of {x,, } which converges weakly to a point X € H. Without
loss of generality, we may assume that x,, — X; that is,

lim sup <sz*,x* - xn> = lim <sz*,x* -x, >
71— 00 k— oo k

(101)
= <K2x*,x* —E>.

Repeating the same argument as in the proof of
X € ﬂf\:rl Fix(S;), we have x € ﬂf\:rl Fix(S;). Let
p € NY, Fix(S;) be fixed arbitrarily. Note that
N Fix(S) ¢ N, GMEP(©;,9;,A)) N ML I(B, Ry) N T.

Then, it follows from the nonexpansivity of each
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S; (i = 1,2,...,N) and monotonicity of A, that, for all
n=0,
7 - ol = lis[m]a ~ AT = Sy
“(T v, —
= |T,v, - ol + 2p, (A Vo D= TV

+ pj"ZlTnvn“

= Tuvs = oI + 20, (A T,v, = A1 p = Tov,)
+2p,{Z,pop - T,v,) + 2| A T

< [lv = pl* + 26, (A1 p.p - T,)

— 2
AT,

2
* P

s ”xn - p"2 + zpn <le’p - Tnvn> + pﬁﬁg’

(102)
which implies that
nILHgO <Klp’p - Tnvn>
< ,}Lngog [, = pI* =l = 2I” + £33
< HLOO% (< = 2l + v = 2l + ,,lgngo’;” 3
(103)
So, from |x,, — ¥,l = o(p,) and the boundedness of {x, } and
{y,}, we get
limsup (4, p, p~T,v,) <0, (104)

together with (85), which implies that
(Aip.p-%)
= lim (A p.p-x,)
< lim sup (&,p.p-x,)
<timsup (X, p Ty, + (A,p. Ty, - 5,))

< lim sup <X1P’ p- Tn"n>

<0.
(105)
Thus, we have
_ N
(A,p,p-%) <0, Vpe[)|Fix(s).  (106)
i=1
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Since A, is monotone and 1/a-Lipschitz continuous,
in terms of Mintys lemma [12], we deduce that
X € VI(ﬂf\:]1 Fix(S;), A;). Therefore, from {x*} =
VI(VI(Q, A,), A,), we have
lim sup <sz*,x* - xn> = lim <A'2x*,x* - x, >
n— 00 k— oo k
(107)
= <K2x*,x* —§> <0.

Finally, let us show that ||lx, — x*| — Oasn — ©o.
By utilizing Lemma 11, we deduce from (52) and S'"

[n+1]

x* —a,uA,x* thatforalln >0

s =71

2
X,
Sz —x"

[n+1]"n
2
Xy % %
= |S[n+1]Z S[n+1]x + S[n+1] -Xx
&, 5 « N
"S["H] S["+1]x + 2 <S[n+1] TX Xy T X >

<(1-a,7)|z, - x" || - 2a,u <sz*,xn+l - x*>
— 2
- PnAlTnVn”
- 20,1 <Z2x*,xn+l - x*>
= (1 - “nT) [llTnvn

+2p, <A Tnvn’x Tﬂvn> + 'Dj ~1 n

=(1-a,r)

_ x* "2

]
n

- 20,4 <;4'2x*,xn+1 - x*>
= (1 - ‘XnT) ["Tnvn - x*"2

+2p, <Z1Tnvn ~Ax",x" - Tnvn>

+2p, (A", x" =T, + oL A T, ]
= 20,4 (Ayx", %,y — X°)
< (1= 1) [Iv, - 2" I + 20, (A1, 6" = T,
+ AT ]
= 20,4 (Ayx", %,y — X7
< (1= ay7) [, = x| + 20, (A", x" = T, ) + i M3
= 20,4 (Ayx*, Xy — X°)
< (1-a,7) [, - x|
+2p, (1 - a,7) (A, x", x" = T,w,) + pp Mj

- 206,“[/! <ZZx*’xn+l - x*>
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=(1-a,7)|x, - x*"2

1 P, ~ % %
Tt~ Za—"(l—anr) <A1x ,X —Tnvn>

n

2

P 172 e *
+ oc_:M3 +2u <A2x , X —xn+1> .
(108)

Since Y2 &, = 00,p, < a, foralln > 0Oand, — Oas
n — 00, we obtain, from (107) and (104) with p = x”, that
Y20 0T = 00, 2(p, /) (1 — a,7) < 2, and

n

. 1 P, —
1 — 22 (1- Ax"x"-T
im sup o ( ocnr)< X5 x vn>

2 (109)
+ p—”Mﬁ+2y (Apx™,x" =Xy ) | 0.
(X}‘l
Applying Lemma 12 to (108), we infer that
Tim [, -+ = 0. (10
This completes the proof. O

In Theorem 18, putting f(x) = 0,Vx € C, we obtain that
I' = Cand T, = I which is the identity mapping of C. Hence
Theorem 18 reduces to the following.

Corollary 19. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let M,N,K > 1 be three integers.
Let ®; be a bifunction from C x C to R satisfying (A1)-(A4),
¢; : C — Ralower semicontinuous and convex functional
with the restriction (Bl) or (B2), and Aj+H — HCj—inverse
strongly monotone for j = 1,2,...,K. Let R, : C — 2H
be a maximal monotone mapping and let B : C — H
be n-inverse strongly monotone for k = 1,2,...,M. Let
{Si}f\_jl be a finite family of nonexpansive mappings on H. Let
A, : H — H be a-inverse strongly monotone and let A, :
H — H be f-strongly monotone and «-Lipschitz continuous.
Assume that VI(NY, Fix(S,), A,) #0 with (Y, Fix(S;)) <
(N GMEP(®, 9, A NDN(ML, I(By, Ry)). Let € (0,2/xc%),
{oheo € (0,1], {p )y € (0,2a],{A, 1020 € [ab] C
(0,27), and {rj,n}z';o c lepdjl c (0,2(;) where j €
{1,2,...,K}and k € {1,2,..., M}. For arbitrarily given x, €
H, let {x,} be a sequence generated by
ty = TO (1= 1 A TOD (I -1, Ay ,)

TK-1,n
(©1,91)
e Trlml ! (I - rl,nAl) X

Y = ]RM,)LM,n (I - /\M,nBM) ]RM,I,AM,M (I - AM—I,nBM—l)

e ]Rl,/ll,,, (I - /\l,nBl) Uy»

Yn = S[n+1] (I - anl) Vi

Xpt1 = Vn — #“nxz)’w Vn > 0.

(111)
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Assume that

N
() Fix(S;) = Fix (8,S, -~ Sy)
i=1
(112)
= Fix (SnSy -+ Sn-1)

-+ = Fix (8,85 - SxS1)

and that the following conditions are satisfied:

() lim, |, oo, = 0,Y 20, = oo and p, < «, for all
n=0;

(11) hmn—)oo(lan_(xn-*—Nl/((Xn+N)) =0or ZS;)O |(xn_(xn+N| <
00O;

(111) limn—>oo(|pn_Pn+N|/(pn+N)) =0or 2220 |Pn_pn+N| <
005

(iV) hmn—mo(lAk,n - Ak,n+N|/(0‘n + N)) =0or Z;;.Zo Mk,n -
Menen| <00 fork =1,2,..., M;

W) lim,, _, (I, = 7 penl/ (e, + N)) = 0 0r 320 |7, —
Timnl <00 for j=1,2,...,K.

Then the following hold:

(a) {x,}72, is bounded;
(b) lim,, _, o, lIx,, — x,.. 1l = 0;

(©) lim,, _, oM, = Sy =+ SpusryXull = 0 provided ||x,, —
Vull = 0 (n — 00);

(d) {x,}2, converges strongly to the unique element of
VI(VI(NY, Fix(S;), A,), A,) provided ||x, — y,ll =
o(p,).

In Corollary 19, putting K = 1 and M = 2, we obtain the
following.

Corollary 20. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let N > 1 be an integer. Let ©
be a bifunction from C x C to R satisfying (Al)-(A4), ¢ :
C — R a lower semicontinuous and convex functional with
the restriction (BI) or (B2), and A : H — H{-inverse strongly
monotone. Let R, : C — 2M be a maximal monotone
mapping and let B, : C — H be n-inverse strongly monotone
for k = 1,2. Let {Si}fil be a finite family of nonexpansive
mappings on H. Let A, : H — H be a-inverse strongly
monotone and let A, : H — H be f-strongly monotone and
K-Lipschitz continuous. Assume that VI(ﬂf\il Fix(S;), Zl) +0
with (N, Fix(S;)) ¢ GMEP(®, ¢, A) N I(B,, R,) N (B}, R,).
Let u € (0,2B/x%), {0}, < (0,11, {p,}2, < (0,2al,
{Aknteo € @b € (0,2n), and {r,}2, < [c,d] € (0,20)
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fork = 1,2. For arbitrarily given x,, € H, let {x,,} be a sequence
generated by

O (ty, y) + 9 (y) — 9 (u,) + (Ax,, y — 14,)

+l(y—un,un—xn>20, Vy eC,

Tn

Vo= Trony, (L= A2Bo) Jon,, (= Ay,By ) u,,  (13)
yn = S[n+1] (I - pnzl) vn)
Xpy1 = Yo — U, ALY, Ym0
Assume that
N
() Fix (S;) = Fix (8, -+ Sy)
i=1
(114)

= Fix (SnS; -+ Sn-1)
== Fix(szss"'SNS1)
and that the following conditions are satisfied:
(i) lim,, , &, = 0,> 20, = 0o and p, < «, for all
nz=0;

(ii) hmyz—»oo(l‘xn_“n+N|/(‘xn+N)) = OOVZZZO |“n_‘xn+N| <
00,

(111) limn—>oo(|Pn_Pn+N|/(Pn+N)) =0or 2220 Ipn_Pn+N| <
00;

(iv) lim,, _, o (1A, = Al /(@) = 007 Y20 Ay, —
Afminl <00 fork =1,2;

(V) hmn—»oo(lrn - rn+N|/(Ocn+N)) =0or 2220 |Tn - rn+N| <

0.
Then the following hold:

(a) {x,}02, is bounded;

(b) lim,, _, o, lIx,, — x,.. 1l = 0;

(©) lim,, _, oMl = Sppany *** SpsyXnull = 0 provided |x,, -

Yl = 0 (n — oco);

(d) {x,}2, converges strongly to the unique element of
VI(VI(NY, Fix(S;), A)), A,) provided |x, — y,l =
o(p,).

In Theorem 18, putting K = 1 and M = 2, we obtain the
following.

Corollary 21. Let C be a nonempty closed convex subset of
a real Hilbert space H and let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let N > 1
be an integer. Let © be a bifunction from C x C to R satisfying
(Al)-(A4), ¢ : C — R a lower semicontinuous and convex
functional with the restriction (Bl) or (B2), and A : H — H{-
inverse-strongly monotone. Let R, : C — 2 be a maximal
monotone mapping and let B, : C — H be n-inverse
strongly monotone for k = 1,2. Let {Si}f\:]l be a finite family
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of nonexpansive mappings on H. Let A, : H — H be
a-inverse strongly monotone and let A, : H — H be f3-

strongly monotone and k-Lipschitz continuous. Assume that
VI(NY, Fix(S;), A,) #0 with nY, Fix(S;) ¢ GMEP(®, ¢, A) N
I(B,,R,) N I(B},R) NT. Let u € (0,2B/x%), {et,}2, < (0,1],
{Palnco € (0,2a], {Ag 120 € [ar bl < (0,2), and {r,},.2% C
[c,d] c (0,20) for k = 1,2. For arbitrarily given x, € H, let
{x,} be a sequence generated by

O (up y) + ¢ (y) — 9 (u,) + (Ax,, y —u,)

+l(y—un,un—xn) >0, VyeC,
T,

n

Vn = ]Rz’Az,n (I - AZ,nBZ) ]Rl,llm (I - Al,nBl) Up> (115)

Yn = S[n+l] (I - pngl) Tnvm

Xpp1 = Yo — U, ALY, Vn20,

where Po(I- A, Vf) = s,1+(1-s,)T, (here T, is nonexpansive
and s, = s,(A,) = (2-A,L)/4 € (0,1/2) for each A, €
(0,2/L)). Assume that

N
() Fix(S;) = Fix (8,S, -+~ Sy)
i=1
(116)
= Fix (SnSy -+~ Sno1)

== Fix(SZS3-~-SNSI)
and that the following conditions are satisfied:

() lim, |, oo, = 0,Y 20, = oo and p, < «, for all
n=0;

(ii) limnaoo(l‘xn_‘wal/(“MN)) =0or Zﬁzo |“n_(xn+N| <

005

(iii) hmn—»oo(lsn - Sn+N|/((xn+N)) =0or ZEZO |Sn - Sn+N| <
005

(iV) hmnaoo(lpn_anrN'/(PnJrN)) =0or 2220 |Pn_pn+N| <
005

() lim,, _, oo (IAje, = A/ (0, + N)) = 007 Y020 Ay, —
Afmin| < 00 fork =1,2;

(vi) lim,, _, oo (I, =Tan /(0 + N)) = 0 0r Y o2 |1y —Tan ] <
0.

Then the following hold:

(a) {x,}02, is bounded;

(b) lim,, _, o, llx,, — x,..nll = 0;

(©) lim,, , llx, = SpunySpyXull = 0 provided
lim,, _, o (I, = yull + 1T, = v,oll) = 05

(d) {x,}2, converges strongly to the unique element of
VI(VI(NY, Fix(S;), A,), A,) provided |x, — y,| +
1TV = vall = 0(p,)-

In Theorem 18, putting K = 1 and M = 1, we obtain the
following.
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Corollary 22. Let C be a nonempty closed convex subset of
a real Hilbert space H and let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let N > 1
be an integer. Let © be a bifunction from C x C to R satisfying
(A1)-(A4), ¢ : C — R a lower semicontinuous and convex
functional with the restriction (B1) or (B2), and A : H — H({-
inverse-strongly monotone. Let R : C — 2 be a maximal
monotone mapping and let B C — H be y-inverse
strongly monotone. Let {S;}}Y | be a finite family of nonexpansive
mappings on H. Let A, : H — H be a-inverse strongly
monotone and let A, : H — H be [-strongly monotone and
k-Lipschitz continuous. Assume that VI(ﬂf\_jl Fix(Si),Zl) +0
with (NY, Fix(S;)) ¢ GMEP(®, ¢, A) N I(B,R) N T. Let u €
(0,2B/6%), {or 12y € (0,11, {p,hn2y € (0,2a), {p,}7%, €
[a,b] c (0,2n), and {r,}2, < [c,d] c (0,2(). For arbitrarily
given x, € H, let {x,} be a sequence generated by

®(un’y)+¢(y)_¢(un)+ <Axn’y_un>

1
+—(y-u,u,—x,) =0, VyeC,

Tn

Vo = Jry, (I = 4, B) th,s (117)
Y = Spur) (1= PuAs) TV
Xnt1 = Vn — ‘u(xnzz)/n) Vn >0,

where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive
and s, = s,(A,) = (2-A,L)/4 € (0,1/2) for each A, €
(0,2/L)). Assume that

ﬁFix (S;) = Fix(S$;S, -+~ Sy)
i=1
= Fix (SS; -+ Sno1) (s
=+ = Fix (8,8 - SySy)
and that the following conditions are satisfied:

() lim, &, = 0, Y20, = coand p, < a, for all

n>0;

(11) limnﬁm(lan_“n+N|/(“n+N)) =0or Zf;c:)O |“n_an+N| <
[S0H

(lll) hmnaoo(lsn - Sn+N|/(an+N)) = 0 or ZZZO |Sﬂ - $n+N| <
[S0H

(iV) hmnaoo(lpn_PrHN'/(PnJrN)) =0or ZEC:)O |Pn_Pn+N| <
[S0H

) lim, oo 1ty — e/, + N)) = 0 07 32 1t -
:"ln+N| < 005

(Vl) hmn—»oo(lrn_rn+N|/(ocn+N)) =0or ZZZO |r1‘l_rn+N| <
Q.

Then the following hold:

(a) {x,}02, is bounded;

(b) hmn—»oo”xn - xn+N" = 0’
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(©) lim, , llx, = SpunySpyXull = 0 provided

1imn—>00("xn - yn” + "Tnvn - 1/n") = 0)

(d) {x,}2, converges strongly to the unique element of
VI(VI(NY, Fix(S;), A,), A,) provided ||x, — y,ll +
1TV, = vl = 0(py)-
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